Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 41 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)

  • Authors:
    • Xin Wang
    • Guoli Huai
    • Hailian Wang
    • Yuande Liu
    • Ping Qi
    • Wei Shi
    • Jie Peng
    • Hongji Yang
    • Shaoping Deng
    • Yi Wang
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China, Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China, 91388 Military Hospital, Zhanjiang, Guangdong 524022, P.R. China, Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1201-1212
    |
    Published online on: December 29, 2017
       https://doi.org/10.3892/ijmm.2017.3352
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glaucoma is the leading cause of irreversible blindness worldwide and there is no effective treatment thus far. The trabecular meshwork has been identified as the major pathological area involved. Certain signaling pathways in the trabecular meshwork, including the Wnt, lysophosphatidic acid and transforming growth factor‑β pathways, have been identified as novel therapeutic targets in glaucoma treatment. Meanwhile, it has been reported that key proteins in these pathways, particularly the primary transcription regulator Yes‑associated protein (YAP) and transcriptional co‑activator with PDZ‑binding motif (TAZ), exhibit interactions with the Hippo pathway. The Hippo pathway, which was first identified in Drosophila, has drawn great focus with regard to various aspects of studies in recent years. One role of the Hippo pathway in the regulation of organ size was indicated by more recent evidence. Defining the relevant physiological function of the Hippo pathway has proven to be extremely complicated. Studies have ascribed a role for the Hippo pathway in an overwhelming number of processes, including cell proliferation, cell death and cell differentiation. Therefore, the present review aimed to unravel the roles of YAP and TAZ in the Hippo pathway and the pathogenesis of glaucoma. Furthermore, a new and creative study for the treatment of glaucoma is provided.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Quigley HA: Open-angle glaucoma. N Engl J Med. 328:1097–1106. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Johnson M: ‘What controls aqueous humour outflow resistance?’. Exp Eye Res. 82:545–557. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Johnstone MA and Grant WG: Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 75:365–383. 1973. View Article : Google Scholar : PubMed/NCBI

4 

Knepper PA, Goossens W, Hvizd M and Palmberg PF: Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 37:1360–1367. 1996.

5 

Mao W, Millar JC, Wang WH, Silverman SM, Liu Y, Wordinger RJ, Rubin JS, Pang IH and Clark AF: Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 53:7043–7051. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM, Liu J, Peters EC and Wu X: Identification of serum-derived sphin-gosine-1-phosphate as a small molecule regulator of YAP. Chem Biol. 19:955–962. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH and Clark AF: TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci. 47:226–234. 2006. View Article : Google Scholar

8 

Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, et al: The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 18:579–591. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Kango-Singh M and Singh A: Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn. 238:1627–1637. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Saucedo LJ and Edgar BA: Filling out the Hippo pathway. Nat Rev Mol Cell Biol. 8:613–621. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Buttitta LA and Edgar BA: How size is controlled: from Hippos to Yorkies. Nat Cell Biol. 9:1225–1227. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Pan D: Hippo signaling in organ size control. Genes Dev. 21:886–897. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Zhao B, Lei QY and Guan KL: The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol. 20:638–646. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Yu FX and Guan KL: The Hippo pathway: regulators and regulations. Genes Dev. 27:355–371. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Justice RW, Zilian O, Woods DF, Noll M and Bryant PJ: The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9:534–546. 1995. View Article : Google Scholar : PubMed/NCBI

17 

Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D and Hariharan IK: Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 110:467–478. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G: Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 5:914–920. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL and Li Y: Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 120:675–685. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Huang J, Wu S, Barrera J, Matthews K and Pan D: The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell. 122:421–434. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J and Zider A: SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol. 18:435–441. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Hilman D and Gat U: The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol. 28:2403–2417. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhao B, Li L and Guan KL: Hippo signaling at a glance. J Cell Sci. 123:4001–4006. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Rauskolb C, Pan G, Reddy BV, Oh H and Irvine KD: Zyxin links fat signaling to the hippo pathway. PLoS Biol. 9:e10006242011. View Article : Google Scholar : PubMed/NCBI

26 

Bryant PJ, Huettner B, Held LI Jr, Ryerse J and Szidonya J: Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 129:541–554. 1988. View Article : Google Scholar : PubMed/NCBI

27 

Poernbacher I, Baumgartner R, Marada SK, Edwards K and Stocker H: Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr Biol. 22:389–396. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H and Halder G: The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 8:27–36. 2006. View Article : Google Scholar

29 

Zhao B, Tumaneng K and Guan KL: The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 13:877–883. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Yu J, Zheng Y, Dong J, Klusza S, Deng WM and Pan D: Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 18:288–299. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Robinson BS, Huang J, Hong Y and Moberg KH: Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol. 20:582–590. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–7. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Sun S and Irvine KD: Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol. 26:694–704. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Tyler DM and Baker NE: Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol. 305:187–201. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, Zhang X and Halder G: The fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr Biol. 16:2090–2100. 2006. View Article : Google Scholar : PubMed/NCBI

37 

McCartney BM, Kulikauskas RM, LaJeunesse DR and Fehon RG: The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development. 127:1315–1324. 2000.PubMed/NCBI

38 

Baumgartner R, Poernbacher I, Buser N, Hafen E and Stocker H: The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 18:309–316. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Tikoo A, Varga M, Ramesh V, Gusella J and Maruta H: An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem. 269:23387–23390. 1994.PubMed/NCBI

40 

Yi C and Kissil JL: Merlin in organ size control and tumorigenesis: Hippo versus EGFR? Genes Dev. 24:1673–1679. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C and Halder G: The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA. 107:15810–15815. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Edgar BA: From cell structure to transcription: Hippo forges a new path. Cell. 124:267–273. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Avruch J, Zhou D, Fitamant J and Bardeesy N: Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer. 104:24–32. 2011. View Article : Google Scholar :

44 

Wu S, Huang J, Dong J and Pan D: Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA and Silljé HH: The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 24:2076–2086. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Callus BA, Verhagen AM and Vaux DL: Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 273:4264–4276. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Li Y, Pei J, Xia H, Ke H, Wang H and Tao W: Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene. 22:4398–4405. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T and Tao W: LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene. 21:1233–1241. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Yang X, Li DM, Chen W and Xu T: Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G(2)/M arrest or apoptosis. Oncogene. 20:6516–6523. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Pan D: The Hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Zhao B, Li L, Lei Q and Guan KL: The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes De. 24:862–874. 2010. View Article : Google Scholar

52 

Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB, Bowtell DD and Harvey KF; AOC S Study group: The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 30:2810–2822. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Sudol M: Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 9:2145–2152. 1994.PubMed/NCBI

54 

Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et al: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 125:1253–1267. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W and Song H: Structural basis of YAP recognition by TEAD4 in the Hippo pathway. Genes Dev. 24:290–300. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Oh H and Irvine KD: In vivo regulation of Yorkie phosphorylation and localization. Development. 135:1081–1088. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Oh H and Irvine KD: Yorkie: the final destination of Hippo signaling. Trends Cell Biol. 20:410–417. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, et al: TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. 2000. View Article : Google Scholar : PubMed/NCBI

62 

Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ and Cantley LC: The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 91:961–971. 1997. View Article : Google Scholar

63 

Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y and Guan KL: TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol. 28:2426–2436. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Basu S, Totty NF, Irwin MS, Sudol M and Downward J: Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 11:11–23. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Zhao B, Li L, Tumaneng K, Wang CY and Guan KL: A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24:72–85. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, et al: The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 285:37159–37169. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R and Brummelkamp TR: YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 17:2054–2060. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Da CL, Xin Y, Zhao J and Luo XD: Significance and relationship between Yes-associated protein and survivin expression in gastric carcinoma and precancerous lesions. World J Gastroenterol. 15:4055–4061. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Wang X, Su L and Ou Q: Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur J Cancer. 48:1227–1234. 2012. View Article : Google Scholar

70 

Lam-Himlin DM, Daniels JA, Gayyed MF, Dong J, Maitra A, Pan D, Montgomery EA and Anders RA: The Hippo pathway in human upper gastrointestinal dysplasia and carcinoma: a novel oncogenic pathway. Int J Gastrointest Cancer. 37:103–109. 2006.

71 

Wada K, Itoga K, Okano T, Yonemura S and Sasaki H: Hippo pathway regulation by cell morphology and stress fibers. Development. 138:3907–3914. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Straßburger K, Tiebe M, Pinna F, Breuhahn K and Teleman AA: Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol. 367:187–196. 2012. View Article : Google Scholar

73 

Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al: Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 150:780–791. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Fan R, Kim NG and Gumbiner BM: Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA. 110:2569–2574. 2013. View Article : Google Scholar : PubMed/NCBI

75 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Kikuchi A, Yamamoto H and Sato A: Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 19:119–129. 2009. View Article : Google Scholar : PubMed/NCBI

77 

He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R: Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Ouyang H, Zhuo Y and Zhang K: WNT signaling in stem cell differentiation and tumor formation. J Clin Invest. 123:1422–1424. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Xing Y, Clements WK, Kimelman D and Xu W: Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 17:2753–2764. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Habas R and Dawid IB: Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 4:22005. View Article : Google Scholar : PubMed/NCBI

82 

Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S and Wieschaus E: Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell. 4:407–418. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, et al: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 24:245–250. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Giles RH, van Es JH and Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 1653:1–24. 2003.PubMed/NCBI

85 

Cong F, Schweizer L and Varmus H: Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 131:5103–5115. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Cliffe A, Hamada F and Bienz M: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol. 13:960–966. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A and Lee E: The way Wnt works: components and mechanism. Growth Factors. 31:1–31. 2013. View Article : Google Scholar :

88 

Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP and Li L: Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol. 180:1087–1100. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Itoh K, Brott BK, Bae GU, Ratcliffe MJ and Sokol SY: Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol. 4:32005. View Article : Google Scholar : PubMed/NCBI

90 

Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M and Piccolo S: Role of TAZ as mediator of Wnt signaling. Cell. 151:1443–1456. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL and Martin JF: Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 332:458–461. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Willert K, Shibamoto S and Nusse R: Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev. 13:1768–1773. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, et al: Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 149:1245–1256. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G and Yochum GS: Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem. 287:11730–11739. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al: YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Wang WH, McNatt LG, Pang IH, Millar JC, Hellberg PE, Hellberg MH, Steely HT, Rubin JS, Fingert JH, Sheffield VC, et al: Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 118:1056–1064. 2008.PubMed/NCBI

97 

Morgan JT, Raghunathan VK, Chang YR, Murphy CJ and Russell P: Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells. Exp Eye Res. 132:174–178. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Kwon HS, Lee HS, Ji Y, Rubin JS and Tomarev SI: Myocilin is a modulator of Wnt signaling. Mol Cell Biol. 29:2139–2154. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Tovar-Vidales T, Roque R, Clark AF and Wordinger RJ: Tissue transglutaminase expression and activity in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 49:622–628. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, et al: LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 50:157–186. 2010. View Article : Google Scholar : PubMed/NCBI

101 

van Corven EJ, Groenink A, Jalink K, Eichholtz T and Moolenaar WH: Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 59:45–54. 1989. View Article : Google Scholar : PubMed/NCBI

102 

Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y and Nagawa H: Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res. 63:1706–1711. 2003.PubMed/NCBI

103 

Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, et al: Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 15:539–550. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Rohen JW: Why is intraocular pressure elevated in chronic simple glaucoma? Anatomical considerations. Ophthalmology. 90:758–765. 1983. View Article : Google Scholar : PubMed/NCBI

105 

No authors listed. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 130:429–440. 2000. View Article : Google Scholar

106 

Gasiorowski JZ and Russell P: Biological properties of trabecular meshwork cells. Exp Eye Res. 88:671–675. 2009. View Article : Google Scholar

107 

Iyer P, Lalane R III, Morris C, Challa P, Vann R and Rao PV: Autotaxin-lysophosphatidic acid axis is a novel molecular target for lowering intraocular pressure. PLoS One. 7:e426272012. View Article : Google Scholar : PubMed/NCBI

108 

Li AF, Tane N and Roy S: Fibronectin overexpression inhibits trabecular meshwork cell monolayer permeability. Mol Vis. 10:750–757. 2004.PubMed/NCBI

109 

Willier S, Butt E and Grunewald TG: Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 105:317–333. 2013. View Article : Google Scholar : PubMed/NCBI

110 

De Larco JE and Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA. 75:4001–4005. 1978. View Article : Google Scholar : PubMed/NCBI

111 

Todaro GJ and De Larco JE: Growth factors produced by sarcoma virus-transformed cells. Cancer Res. 38:4147–4154. 1978.PubMed/NCBI

112 

Roberts AB, Lamb LC, Newton DL, Sporn MB, De Larco JE and Todaro GJ: Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci USA. 77:3494–3498. 1980. View Article : Google Scholar : PubMed/NCBI

113 

Pena RA, Jerdan JA and Glaser BM: Effects of TGF-beta and TGF-beta neutralizing antibodies on fibroblast-induced collagen gel contraction: implications for proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 35:2804–2808. 1994.PubMed/NCBI

114 

Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Yu, Pierschbacher MD and Ruoslahti E: Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 360:361–364. 1992. View Article : Google Scholar : PubMed/NCBI

115 

Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis. 17:1745–1758. 2011.

116 

Itoh S, Itoh F, Goumans MJ and Ten Dijke P: Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem. 267:6954–6967. 2000. View Article : Google Scholar : PubMed/NCBI

117 

Dupont J, McNeilly J, Vaiman A, Canepa S, Combarnous Y and Taragnat C: Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells. Biol Reprod. 68:1877–1887. 2003. View Article : Google Scholar : PubMed/NCBI

118 

Chen HB, Shen J, Ip YT and Xu L: Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev. 20:648–653. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Eisenstein R and Grant-Bertacchini D: Growth inhibitory activities in avascular tissues are recognized by anti-transforming growth factor beta antibodies. Curr Eye Res. 10:157–162. 1991. View Article : Google Scholar : PubMed/NCBI

120 

Tripathi RC, Li J, Chan WF and Tripathi BJ: Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 59:723–727. 1994. View Article : Google Scholar : PubMed/NCBI

121 

Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N and Honda Y: Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 239:109–113. 2001. View Article : Google Scholar : PubMed/NCBI

122 

Pervan CL, Lautz JD, Blitzer AL, Langert KA and Stubbs EB Jr: Rho GTPase signaling promotes constitutive expression and release of TGF-β2 by human trabecular meshwork cells. Exp Eye Res. 146:95–102. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Rao PV, Deng PF, Kumar J and Epstein DL: Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 42:1029–1037. 2001.PubMed/NCBI

124 

Inoue T and Tanihara H: Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res. 37:1–12. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Takai Y, Tanito M and Ohira A: Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 53:241–247. 2012. View Article : Google Scholar

126 

Li J, Tripathi BJ and Tripathi RC: Modulation of pre-mRNA splicing and protein production of fibronectin by TGF-beta2 in porcine trabecular cells. Invest Ophthalmol Vis Sci. 41:3437–3443. 2000.PubMed/NCBI

127 

Wordinger RJ, Clark AF, Agarwal R, Lambert W, McNatt L, Wilson SE, Qu Z and Fung BK: Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci. 39:1575–1589. 1998.PubMed/NCBI

128 

Tamm ER, Siegner A, Baur A and Lütjen-Drecoll E: Transforming growth factor-beta 1 induces alpha-smooth muscle-actin expression in cultured human and monkey trabecular meshwork. Exp Eye Res. 62:389–397. 1996. View Article : Google Scholar : PubMed/NCBI

129 

Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Quigley HA and Broman AT: The number of people with glaucoma worldwide in 2010-2020. Br J Ophthalmol. 90:262–267. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Tamm ER: The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 88:648–655. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, Fautsch MP, Murphy CJ and Russell P: Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 52:2147–2152. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Raghunathan VK, Morgan JT, Dreier B, Reilly CM, Thomasy SM, Wood JA, Ly I, Tuyen BC, Hughbanks M, Murphy CJ, et al: Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ. Invest Ophthalmol Vis Sci. 54:378–386. 2013. View Article : Google Scholar :

135 

Comes N, Buie LK and Borras T: Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells. 16:243–259. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S, Wang Y, Wang Y, et al: Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). Int J Mol Med 41: 1201-1212, 2018.
APA
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W. ... Wang, Y. (2018). Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). International Journal of Molecular Medicine, 41, 1201-1212. https://doi.org/10.3892/ijmm.2017.3352
MLA
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W., Peng, J., Yang, H., Deng, S., Wang, Y."Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)". International Journal of Molecular Medicine 41.3 (2018): 1201-1212.
Chicago
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W., Peng, J., Yang, H., Deng, S., Wang, Y."Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)". International Journal of Molecular Medicine 41, no. 3 (2018): 1201-1212. https://doi.org/10.3892/ijmm.2017.3352
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S, Wang Y, Wang Y, et al: Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). Int J Mol Med 41: 1201-1212, 2018.
APA
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W. ... Wang, Y. (2018). Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). International Journal of Molecular Medicine, 41, 1201-1212. https://doi.org/10.3892/ijmm.2017.3352
MLA
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W., Peng, J., Yang, H., Deng, S., Wang, Y."Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)". International Journal of Molecular Medicine 41.3 (2018): 1201-1212.
Chicago
Wang, X., Huai, G., Wang, H., Liu, Y., Qi, P., Shi, W., Peng, J., Yang, H., Deng, S., Wang, Y."Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)". International Journal of Molecular Medicine 41, no. 3 (2018): 1201-1212. https://doi.org/10.3892/ijmm.2017.3352
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team