Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma

  • Authors:
    • Eva Skarmoutsou
    • Valentina Bevelacqua
    • Fabio D' Amico
    • Angela Russo
    • Demetrios   A. Spandidos
    • Aurora Scalisi
    • Grazia Malaponte
    • Claudio Guarneri
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece, Unit of Oncologic Diseases, ASP‑Catania, 95100 Catania, Italy, Research Unit of the Catania Section of the Italian League Against Cancer, 95122 Catania, Italy, Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
    Copyright: © Skarmoutsou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 392-404
    |
    Published online on: April 4, 2018
       https://doi.org/10.3892/ijmm.2018.3618
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor‑β (TGF‑β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF‑β‑induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno­cytochemical analysis. Gene expression levels were assessed by reverse transcription‑quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ‑secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF‑β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh‑TGF‑β. TGF‑β‑mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh‑TGF‑β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF‑β‑mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Buzaid AC: Management of metastatic cutaneous melanoma. Oncology (Williston Park). 18:1443–1450; discussion 1457–1459. 2004.

2 

La Porta CA: Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets. 9:391–397. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Fava P, Astrua C, Chiarugi A, Crocetti E, Pimpinelli N, Fargnoli MC, Maurichi A, Rubegni P, Manganoni AM, Bottoni U, et al: Differences in clinicopathological features and distribution of risk factors in Italian melanoma patients. Dermatology. 230:256–262. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Maio M: Melanoma as a model tumour for immune-oncology. Ann Oncol. 23(Suppl 8): viii10–14. 2012. View Article : Google Scholar

5 

Shrayer DP, Bogaars H, Wolf SF, Hearing VJ and Wanebo HJ: A new mouse model of experimental melanoma for vaccine and lymphokine therapy. Int J Oncol. 13:361–374. 1998.PubMed/NCBI

6 

Nakai N, Katoh N, Kitagawa T, Ueda E, Takenaka H and Kishimoto S: Immunoregulatory T cells in the peripheral blood of melanoma patients treated with melanoma antigen-pulsed mature monocyte-derived dendritic cell vaccination. J Dermatol Sci. 54:31–37. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, Travali S, McCubrey JA, Spandidos DA and Libra M: Emerging targeted therapies for melanoma treatment (Review). Int J Oncol. 45:516–524. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Nakamura K and Okuyama R: Immunotherapy for advanced melanoma: Current knowledge and future directions. J Dermatol Sci. 83:87–94. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Slingluff CL Jr, Chianese-Bullock KA, Bullock TN, Grosh WW, Mullins DW, Nichols L, Olson W, Petroni G, Smolkin M and Engelhard VH: Immunity to melanoma antigens: From self-tolerance to immunotherapy. Adv Immunol. 90:243–295. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Hori S, Nomura T and Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 299:1057–1061. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Ramsdell F: Foxp3 and natural regulatory T cells: Key to a cell lineage. Immunity. 19:165–168. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 22:531–562. 2004. View Article : Google Scholar

13 

Takeuchi Y and Nishikawa H: Roles of regulatory T cells in cancer immunity. Int Immunol. 28:401–409. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Liu R, Li S, Yang WH and Wang L: IPEX syndrome, FOXP3 and cancer. J Syndr. 1:72013.PubMed/NCBI

15 

Martin F, Ladoire S, Mignot G, Apetoh L and Ghiringhelli F: Human FOXP3 and cancer. Oncogene. 29:4121–4129. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Coffer PJ and Burgering BM: Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 4:889–899. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Shen Z, Chen L, Hao F and Wu J: Transcriptional regulation of Foxp3 gene: Multiple signal pathways on the road. Med Res Rev. 29:742–766. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Lu H: FOXP3 expression and prognosis: Role of both the tumor and T cells. J Clin Oncol. 27:1735–1736. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, et al: Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 67:8344–8350. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, Barda AK, Gourgoulianis KI and Germenis AE: Foxp3 expression in human cancer cells. J Transl Med. 6:192008. View Article : Google Scholar : PubMed/NCBI

21 

Wang WH, Jiang CL, Yan W, Zhang YH, Yang JT, Zhang C, Yan B, Zhang W, Han W, Wang JZ and Zhang YQ: FOXP3 expression and clinical characteristics of hepatocellular carcinoma. World J Gastroenterol. 16:5502–5509. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM and Li Y: FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: Implications for tumor progression and escape. Acta Histochem. 115:151–157. 2013. View Article : Google Scholar

23 

Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U, Germer CT, et al: Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS One. 8:e536302013. View Article : Google Scholar : PubMed/NCBI

24 

Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, Tagliabue E and Balsari A: FOXP3 expression and overall survival in breast cancer. J Clin Oncol. 27:1746–1752. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E and Marth C: The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res. 11:8326–8331. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, Thompson TC, Old LJ and Wang RF: CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 13:6947–6958. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Niu J, Jiang C, Li C, Liu L, Li K, Jian Z and Gao T: Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother. 60:1109–1118. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP, MacGregor D, et al: The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 68:3001–3009. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Douglass S, Ali S, Meeson AP, Browell D and Kirby JA: The role of FOXP3 in the development and metastatic spread of breast cancer. Cancer Metastasis Rev. 31:843–854. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Zeng C, Yao Y, Jie W, Zhang M, Hu X, Zhao Y, Wang S, Yin J and Song Y: Up-regulation of Foxp3 participates in progression of cervical cancer. Cancer Immunol Immunother. 62:481–487. 2013. View Article : Google Scholar

31 

Triulzi T, Tagliabue E, Balsari A and Casalini P: FOXP3 expression in tumor cells and implications for cancer progression. J Cell Physiol. 228:30–35. 2013. View Article : Google Scholar

32 

Quaglino P, Osella-Abate S, Marenco F, Nardò T, Gado C, Novelli M, Savoia P and Bernengo MG: FoxP3 expression on melanoma cells is related to early visceral spreading in melanoma patients treated by electrochemotherapy. Pigment Cell Melanoma Res. 24:734–736. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Gerber AL, Münst A, Schlapbach C, Shafighi M, Kiermeir D, Hüsler R and Hunger RE: High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol. 170:103–109. 2014. View Article : Google Scholar

34 

Viguier M, Lemaître F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P and Ferradini L: Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 173:1444–1453. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Knol AC, Nguyen JM, Quéreux G, Brocard A, Khammari A and Dréno B: Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol. 20:430–434. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Jandus C, Bioley G, Speiser DE and Romero P: Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother. 57:1795–1805. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Zhang L and Zhao Y: The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: Multiple pathways on the road. J Cell Physiol. 211:590–597. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Wang X, Liu Y, Dai L, Liu Q, Jia L, Wang H, An L, Jing X, Liu M, Li P and Cheng Z: Foxp3 downregulation in NSCLC mediates epithelial-mesenchymal transition via NF-κB signaling. Oncol Rep. 36:2282–2288. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Ou-Yang HF, Zhang HW, Wu CG, Zhang P, Zhang J, Li JC, Hou LH, He F, Ti XY, Song LQ, et al: Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem. 320:109–114. 2009. View Article : Google Scholar

40 

Maruyama T, Konkel JE, Zamarron BF and Chen W: The molecular mechanisms of Foxp3 gene regulation. Semin Immunol. 23:418–423. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Uzdensky AB, Demyanenko SV and Bibov MY: Signal transduction in human cutaneous melanoma and target drugs. Curr Cancer Drug Targets. 13:843–866. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Liu J, Sato C, Cerletti M and Wagers A: Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 92:367–409. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 7:678–689. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Radtke F and Raj K: The role of Notch in tumorigenesis: Oncogene or tumour suppressor. Nat Rev Cancer. 3:756–767. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Roy M, Pear WS and Aster JC: The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 17:52–59. 2007. View Article : Google Scholar

47 

Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Fortini ME: Notch signaling: The core pathway and its posttranslational regulation. Dev Cell. 16:633–647. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Schroeter EH, Kisslinger JA and Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 393:382–386. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Koch U and Radtke F: Notch signaling in solid tumors. Curr Top Dev Biol. 92:411–455. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Gao J, Dong Y, Zhang B, Xiong Y, Xu W, Cheng Y, Dai M, Yu Z, Xu H and Zheng G: Notch1 activation contributes to tumor cell growth and proliferation in human hepatocellular carcinoma HepG2 and SMMC7721 cells. Int J Oncol. 41:1773–1781. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Bolós V, Mira E, Martínez-Poveda B, Luxán G, Cañamero M, Martínez-A C, Mañes S and de la Pompa JL: Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res. 15:R542013. View Article : Google Scholar : PubMed/NCBI

53 

Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S and Egan SE: Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 33:1223–1229. 2008.PubMed/NCBI

54 

Yuan X, Wu H, Xu H, Han N, Chu Q, Yu S, Chen Y and Wu K: Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 5:103382015. View Article : Google Scholar : PubMed/NCBI

55 

Hijioka H, Setoguchi T, Miyawaki A, Gao H, Ishida T, Komiya S and Nakamura N: Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 36:817–822. 2010.PubMed/NCBI

56 

Ai Q, Ma X, Huang Q, Liu S, Shi T, Zhang C, Zhu M, Zhang Y, Wang B, Ni D, et al: High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma. PLoS One. 7:e350222012. View Article : Google Scholar : PubMed/NCBI

57 

Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ, Brafford PA, Xiao M, Himes B, Zabierowski SE, et al: Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 69:5312–5320. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Howard JD, Moriarty WF, Park J, Riedy K, Panova IP, Chung CH, Suh KY, Levchenko A and Alani RM: Notch signaling mediates melanoma-endothelial cell communication and melanoma cell migration. Pigment Cell Melanoma Res. 26:697–707. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Müller CS: Notch signaling and malignant melanoma. Adv Exp Med Biol. 727:258–264. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X and Herlyn M: Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 66:4182–4190. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M and Liu ZJ: Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest. 115:3166–3176. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P and Santucci M: Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol. 19:246–254. 2006. View Article : Google Scholar

63 

Akhurst RJ and Derynck R: TGF-beta signaling in cancer - a double-edged sword. Trends Cell Biol. 11:S44–S51. 2001.PubMed/NCBI

64 

Trapani JA: The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell. 8:349–350. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Li MO, Wan YY, Sanjabi S, Robertson AK and Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 24:99–146. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF and Blessing M: Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 173:6526–6531. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G and Wahl SM: Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 198:1875–1886. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Pyzik M and Piccirillo CA: TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol. 82:335–346. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Oft M, Heider KH and Beug H: TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 8:1243–1252. 1998. View Article : Google Scholar : PubMed/NCBI

71 

Zhang HJ, Wang HY, Zhang HT, Su JM, Zhu J, Wang HB, Zhou WY, Zhang H, Zhao MC, Zhang L and Chen XF: Transforming growth factor-β1 promotes lung adenocarcinoma invasion and metastasis by epithelial-to-mesenchymal transition. Mol Cell Biochem. 355:309–314. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Lee D, Chung YH, Kim JA and Lee YS, Lee D, Jang MK, Kim KM, Lim YS, Lee HC and Lee YS: Transforming growth factor beta 1 overexpression is closely related to invasiveness of hepatocellular carcinoma. Oncology. 82:11–18. 2012. View Article : Google Scholar

73 

Teraoka H, Sawada T, Yamashita Y, Nakata B, Ohira M, Ishikawa T, Nishino H and Hirakawa K: TGF-β1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion. Int J Oncol. 19:709–715. 2001.PubMed/NCBI

74 

Malaponte G, Zacchia A, Bevelacqua Y, Marconi A, Perrotta R, Mazzarino MC, Cardile V and Stivala F: Co-regulated expression of matrix metalloproteinase-2 and transforming growth factor-β in melanoma development and progression. Oncol Rep. 24:81–87. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P and Ray A: Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest. 116:996–1004. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Samon JB, Champhekar A, Minter LM, Telfer JC, Miele L, Fauq A, Das P, Golde TE and Osborne BA: Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood. 112:1813–1821. 2008. View Article : Google Scholar

77 

Zhou J, Jain S, Azad AK, Xu X, Yu HC, Xu Z, Godbout R and Fu Y: Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal. 28:838–849. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Zavadil J, Cermak L, Soto-Nieves N and Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U and Ibáñez CF: Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 163:723–728. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Klüppel M and Wrana JL: Turning it up a Notch: Cross-talk between TGF beta and Notch signaling. BioEssays. 27:115–118. 2005. View Article : Google Scholar

81 

Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M, Ciuffetta A, Colantoni S, Vacca A, Frati L, et al: Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol. 186:6199–6206. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Burghardt S, Claass B, Erhardt A, Karimi K and Tiegs G: Hepatocytes induce Foxp3+ regulatory T cells by Notch signaling. J Leukoc Biol. 96:571–577. 2014. View Article : Google Scholar

83 

Mota C, Nunes-Silva V, Pires AR, Matoso P, Victorino RM, Sousa AE and Caramalho I: Delta-like 1-mediated Notch signaling enhances the in vitro conversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells. J Immunol. 193:5854–5862. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Trehanpati N, Shrivastav S, Shivakumar B, Khosla R, Bhardwaj S, Chaturvedi J, Sukriti, Kumar B, Bose S, Mani Tripathi D, et al: Analysis of Notch and TGF-β signaling expression in different stages of disease progression during hepatitis B virus infection. Clin Transl Gastroenterol. 3:e232012. View Article : Google Scholar

85 

Luo X, Tan H, Zhou Y, Xiao T, Wang C and Li Y: Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell Int. 13:342013. View Article : Google Scholar : PubMed/NCBI

86 

Josien H: Recent advances in the development of gamma-secretase inhibitors. Curr Opin Drug Discov Devel. 5:513–525. 2002.PubMed/NCBI

87 

Cardile V, Frasca G, Libra M, Caggia S, Umezawa K, Panico A and Malaponte G: Dehydroxymethylepoxyquinomicin inhibits expression and production of inflammatory mediators in interleukin-1beta-induced human chondrocytes. Cell Physiol Biochem. 25:543–550. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Ohnuki H and Tosato G: Notch and TGFβ: Functional partners facilitating tumor progression. OncoImmunology. 3:e290292014. View Article : Google Scholar

89 

Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, et al: Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 64:5270–5282. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Perrot CY, Javelaud D and Mauviel A: Insights into the transforming growth factor-β signaling pathway in cutaneous melanoma. Ann Dermatol. 25:135–144. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Zhang J, Wang Y, Li D and Jing S: Notch and TGF-β/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour Biol. 35:379–385. 2014. View Article : Google Scholar

92 

Zhang HY and Sun H: Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 287:91–97. 2010. View Article : Google Scholar

93 

Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, McNally B, Lin L, Zhou P, Zuo T, et al: Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 16:336–346. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Zuo T, Liu R, Zhang H, Chang X and Liu Y, Wang L, Zheng P and Liu Y: FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 117:3765–3773. 2007.PubMed/NCBI

95 

Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S and Chen W: A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol. 9:632–640. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV and Witkiewicz AK: Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle. 8:1930–1934. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Chen C, Rowell EA, Thomas RM, Hancock WW and Wells AD: Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem. 281:36828–36834. 2006. View Article : Google Scholar

98 

Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, Kalofonos HP and Mouzaki A: Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res. 31:1677–1683. 2011.PubMed/NCBI

99 

Franco-Molina MA, Miranda-Hernández DF, Mendoza- Gamboa E, Zapata-Benavides P, Coronado-Cerda EE, Sierra- Rivera CA, Saavedra-Alonso S, Taméz-Guerra RS and Rodríguez-Padilla C: Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment. OncoTargets Ther. 9:243–253. 2016. View Article : Google Scholar

100 

Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR and Neurath MF: Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 172:5149–5153. 2004. View Article : Google Scholar

101 

Selvaraj RK and Geiger TL: A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J Immunol. 178:7667–7677. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Guo X and Wang XF: Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19:71–88. 2009. View Article : Google Scholar

103 

Wang Y, Shen RW, Han B, Li Z, Xiong L, Zhang FY, Cong BB and Zhang B: Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol. 23:2330–2336. 2017. View Article : Google Scholar :

104 

Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, et al: miR-342-5p is a notch downstream molecule and regulates multiple angiogenic pathways including notch, vascular endothelial growth factor and transforming growth factor β signaling. J Am Heart Assoc. 5:e0030422016. View Article : Google Scholar

105 

Kared H, Adle-Biassette H, Foïs E, Masson A, Bach JF, Chatenoud L, Schneider E and Zavala F: Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity. 25:823–834. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Stockhausen MT, Sjö J and Axelson H: Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res. 310:218–228. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Pisklakova A, Grigson E, Ozerova M, Chen F, Sullivan DM and Nefedova Y: Anti-myeloma effect of pharmacological inhibition of Notch/gamma-secretase with RO4929097 is mediated by modulation of tumor microenvironment. Cancer Biol Ther. 17:477–485. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Tas F, Karabulut S, Yasasever CT and Duranyildiz D: Serum transforming growth factor-beta 1 (TGF-β1) levels have diagnostic, predictive, and possible prognostic roles in patients with melanoma. Tumour Biol. 35:7233–7237. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Takizawa T, Ochiai W, Nakashima K and Taga T: Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 31:5723–5731. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Asnaghi L, Ebrahimi KB, Schreck KC, Bar EE, Coonfield ML, Bell WR, Handa J, Merbs SL, Harbour JW and Eberhart CG: Notch signaling promotes growth and invasion in uveal melanoma. Clin Cancer Res. 18:654–665. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB and Ball DW: Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 61:3200–3205. 2001.PubMed/NCBI

112 

Thélu J, Rossio P and Favier B: Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2:72002. View Article : Google Scholar : PubMed/NCBI

113 

Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, Pellerito S, Pimpinelli N, Santucci M and Massi D: Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. Mod Pathol. 21:316–325. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Banerjee D, Hernandez SL, Garcia A, Kangsamaksin T, Sbiroli E, Andrews J, Forrester LA, Wei N, Kadenhe-Chiweshe A, Shawber CJ, et al: Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 75:1592–1602. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, Frati L, Paolo Dotto G, Gulino A and Screpanti I: Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 305:343–354. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Takebe N, Nguyen D and Yang SX: Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther. 141:140–149. 2014. View Article : Google Scholar :

117 

Olsauskas-Kuprys R, Zlobin A and Osipo C: Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 6:943–955. 2013.PubMed/NCBI

118 

Ji X, Wang Z, Geamanu A, Sarkar FH and Gupta SV: Inhibition of cell growth and induction of apoptosis in non-small cell lung cancer cells by delta-tocotrienol is associated with notch-1 down-regulation. J Cell Biochem. 112:2773–2783. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Wang M, Wu L, Wang L and Xin X: Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780. Biochem Biophys Res Commun. 393:144–149. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Hu J, Zhu X and Lu Q: Antiproliferative effects of γ-secretase inhibitor, a Notch signalling inhibitor, in multiple myeloma cells and its molecular mechanism of action. J Int Med Res. 41:1017–1026. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T and Cao X: Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63:8323–8329. 2003.PubMed/NCBI

122 

Wang L, Qin H, Chen B, Xin X, Li J and Han H: Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer. 17:1283–1292. 2007. View Article : Google Scholar : PubMed/NCBI

123 

Miranda-Hernández DF, Franco-Molina MA, Mendoza-Gamboa E, Zapata-Benavides P, Sierra-Rivera CA, Coronado-Cerda EE, Rosas-Taraco AG, Taméz-Guerra RS and Rodríguez-Padilla C: Expression of Foxp3, CD25 and IL-2 in the B16F10 cancer cell line and melanoma is correlated with tumor growth in mice. Oncol Lett. 6:1195–1200. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Del Papa B, Sportoletti P, Cecchini D, Rosati E, Balucani C, Baldoni S, Fettucciari K, Marconi P, Martelli MF, Falzetti F and Di Ianni M: Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J Immunol. 43:182–187. 2013. View Article : Google Scholar

125 

Rao P and Kadesch T: The intracellular form of notch blocks transforming growth factor beta-mediated growth arrest in Mv1Lu epithelial cells. Mol Cell Biol. 23:6694–6701. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Sun XF, Sun XH, Cheng SF, Wang JJ, Feng YN, Zhao Y, Yin S, Hou ZM, Shen W and Zhang XF: Interaction of the transforming growth factor-β and Notch signaling pathways in the regulation of granulosa cell proliferation. Reprod Fertil Dev. 28:1873–1881. 2016. View Article : Google Scholar

127 

Masuda S, Kumano K, Shimizu K, Imai Y, Kurokawa M, Ogawa S, Miyagishi M, Taira K, Hirai H and Chiba S: Notch1 oncoprotein antagonizes TGF-beta/Smad-mediated cell growth suppression via sequestration of coactivator p300. Cancer Sci. 96:274–282. 2005. View Article : Google Scholar : PubMed/NCBI

128 

Asano N, Watanabe T, Kitani A, Fuss IJ and Strober W: Notch1 signaling and regulatory T cell function. J Immunol. 180:2796–2804. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Xu L, Kitani A, Stuelten C, McGrady G, Fuss I and Strober W: Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity. 33:313–325. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 9:194–202. 2008. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Skarmoutsou E, Bevelacqua V, D' Amico F, Russo A, Spandidos DA, Scalisi A, Malaponte G and Guarneri C: FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. Int J Mol Med 42: 392-404, 2018.
APA
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D.A., Scalisi, A. ... Guarneri, C. (2018). FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. International Journal of Molecular Medicine, 42, 392-404. https://doi.org/10.3892/ijmm.2018.3618
MLA
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D. A., Scalisi, A., Malaponte, G., Guarneri, C."FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma". International Journal of Molecular Medicine 42.1 (2018): 392-404.
Chicago
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D. A., Scalisi, A., Malaponte, G., Guarneri, C."FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma". International Journal of Molecular Medicine 42, no. 1 (2018): 392-404. https://doi.org/10.3892/ijmm.2018.3618
Copy and paste a formatted citation
x
Spandidos Publications style
Skarmoutsou E, Bevelacqua V, D' Amico F, Russo A, Spandidos DA, Scalisi A, Malaponte G and Guarneri C: FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. Int J Mol Med 42: 392-404, 2018.
APA
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D.A., Scalisi, A. ... Guarneri, C. (2018). FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. International Journal of Molecular Medicine, 42, 392-404. https://doi.org/10.3892/ijmm.2018.3618
MLA
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D. A., Scalisi, A., Malaponte, G., Guarneri, C."FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma". International Journal of Molecular Medicine 42.1 (2018): 392-404.
Chicago
Skarmoutsou, E., Bevelacqua, V., D' Amico, F., Russo, A., Spandidos, D. A., Scalisi, A., Malaponte, G., Guarneri, C."FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma". International Journal of Molecular Medicine 42, no. 1 (2018): 392-404. https://doi.org/10.3892/ijmm.2018.3618
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team