Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2019 Volume 43 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2019 Volume 43 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Epigenetic mechanisms and implications in tendon inflammation (Review)

  • Authors:
    • Finosh G. Thankam
    • Chandra S. Boosani
    • Matthew F. Dilisio
    • Devendra K. Agrawal
  • View Affiliations / Copyright

    Affiliations: Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA, Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA
    Copyright: © Thankam et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-14
    |
    Published online on: October 29, 2018
       https://doi.org/10.3892/ijmm.2018.3961
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cellular inflammation is not just an immediate response following pathogenic infections or resulting from damage due to injury, it is also associated with normal physiological functions, including wound healing and tissue repair. The existence of such a definitive role in normal physiology and in disease pathology indicates the presence of a regulatory mechanism that is tightly controlled in normal cells. A tight control over gene expression is associated with regulatory mechanisms in the cells, which can be either inducible or epigenetic. Among other intracellular mechanisms that contribute to epigenetic gene regulation, DNA methylation has been shown to maintain a tight control over gene expression through the actions of DNA methyltransferases (DNMTs). With a clear role in developmental and tissue‑specific temporal gene regulation, the involvement of DNMTs is evident in normal and pathological conditions. In this review article, inflammation in tendons associated with disease pathology and tissue repair or regeneration at the musculoskeletal joints is critically reviewed. More specifically, the review focuses on known epigenetic mechanisms and their role in the clinical presentation of the disease in human joint disorders associated with tendon inflammation, with an emphasis on the gene regulatory mechanisms that are controlled through DNA methylation, histone deacetylation, and microRNAs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Thankam FG, Dilisio MF, Dougherty KA, Dietz NE and Agrawal DK: Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: A potential therapeutic target. Expert Rev Clin Immunol. 12:1239–1249. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Thankam FG, Dilisio MF and Agrawal DK: Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. Mol Cell Biochem. 417:17–33. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Page P: Shoulder muscle imbalance and subacromial impingement syndrome in overhead athletes. Int J Sports Phys Ther. 6:51–58. 2011.PubMed/NCBI

4 

Waddington CH: Towards a theoretical biology. Nature. 218:525–527. 1968. View Article : Google Scholar : PubMed/NCBI

5 

Kornberg RD: Chromatin structure: A repeating unit of histones and DNA. Science. 184:868–871. 1974. View Article : Google Scholar : PubMed/NCBI

6 

Weintraub H and Groudine M: Chromosomal subunits in active genes have an altered conformation. Science. 193:848–856. 1976. View Article : Google Scholar : PubMed/NCBI

7 

Narlikar GJ, Fan HY and Kingston RE: Cooperation between complexes that regulate chromatin structure and transcription. Cell. 108:475–487. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Felsenfeld G and Groudine M: Controlling the double helix. Nature. 421:448–453. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Surani MA, Hayashi K and Hajkova P: Genetic and epigenetic regulators of pluripotency. Cell. 128:747–762. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Human Genome Structural Variation Working Group; Eichler EE, Nickerson DA, Altshuler D, Bowcock AM, Brooks LD, Carter NP, Church DM, Felsenfeld A, Guyer M, et al: Completing the map of human genetic variation. Nature. 447:161–165. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Sebat J: Major changes in our DNA lead to major changes in our thinking. Nat Genet. 39(Suppl 7): S3–S5. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Jin B, Li Y and Robertson KD: DNA Methylation: Superior or subordinate in the epigenetic hierarchy. Genes Cancer. 2:607–617. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Voelter-Mahlknecht S: Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics. 8:42016. View Article : Google Scholar : PubMed/NCBI

15 

Shea JM, Serra RW, Carone BR, Shulha HP, Kucukural A, Ziller MJ, Vallaster MP, Gu H, Tapper AR, Gardner PD, et al: Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev Cell. 35:750–758. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Lachner M and Jenuwein T: The many faces of histone lysine methylation. Curr Opin Cell Biol. 14:286–298. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Pradhan S, Bacolla A, Wells RD and Roberts RJ: Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 274:33002–33010. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Leonhardt H, Page AW, Weier HU and Bestor TH: A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 71:865–873. 1992. View Article : Google Scholar : PubMed/NCBI

19 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T and Weber M: Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet. 42:1093–1100. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y and Sun YE: Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 329:444–448. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, et al: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 448:714–717. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP and Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 97:5237–5242. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Pinney S: Mammalian Non-CpG methylation: Stem cells and beyond. Biology (Basel). 3. pp. 739–751. 2014

25 

Suzuki MM and Bird A: DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet. 9:465–476. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA and Gehrke C: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 10:2709–2721. 1982. View Article : Google Scholar : PubMed/NCBI

27 

Reik W, Dean W and Walter J: Epigenetic reprogramming in mammalian development. Science. 293:1089–1093. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA and Issa JP: Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3:2023–2036. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Henderson IR and Jacobsen SE: Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev. 22:1597–1606. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Lienert F, Wirbelauer C, Som I, Dean A, Mohn F and Schübeler D: Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet. 43:1091–1097. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, et al: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 454:766–770. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A and Meissner A: A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 484:339–344. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Aran D, Sabato S and Hellman A: DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 14:R212013. View Article : Google Scholar : PubMed/NCBI

34 

Sharif O and Knapp S: From expression to signaling: Roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology. 213:701–713. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 466:253–257. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J and Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res. 20:320–331. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Mayer W, Niveleau A, Walter J, Fundele R and Haaf T: Demethylation of the zygotic paternal genome. Nature. 403:501–502. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Inoue A and Zhang Y: Replication-dependent loss of 5- hydroxymethylcytosine in mouse preimplantation embryos. Science. 334:1942011. View Article : Google Scholar

40 

Guo JU, Su Y, Zhong C, Ming GL and Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 145:423–434. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Yang H, Lin H, Xu H, Zhang L, Cheng L, Wen B, Shou J, Guan K, Xiong Y and Ye D: TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Res. 24:1017–1020. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wu H and Zhang Y: Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 25:2436–2452. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Gill G: SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms. Genes Dev. 18:2046–2059. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Tsankova N, Renthal W, Kumar A and Nestler EJ: Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 8:355–367. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Ragunathan K, Jih G and Moazed D: Epigenetic inheritance uncoupled from sequence-specific recruitment. Science. 348:12586992015. View Article : Google Scholar :

47 

Covic M, Hassa PO, Saccani S, Buerki C, Meier NI, Lombardi C, Imhof R, Bedford MT, Natoli G and Hottiger MO: Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J. 24:85–96. 2005. View Article : Google Scholar

48 

Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H and Shinkai Y: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16:1779–1791. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J and Mer G: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 127:1361–1373. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Techima M: Inquiring for new approach to nursing education. III. A case in clinical practicum (2). Kango Kenkyu. 24:366–372. 1991.In Japanese.

51 

Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H and Allis CD: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 438:1116–1122. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Margueron R, Trojer P and Reinberg D: The key to development: Interpreting the histone code. Curr Opin Genet Dev. 15:163–176. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, et al: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 442:86–90. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Andrews FH, Gatchalian J, Krajewski K, Strahl BD and Kutateladze TG: Regulation of methyllysine readers through phosphorylation. ACS Chem Biol. 11:547–553. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Couture JF, Collazo E and Trievel RC: Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 13:698–703. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Kadota S and Nagata K: pp32, an INHAT component, is a transcription machinery recruiter for maximal induction of IFN-stimulated genes. J Cell Sci. 124:892–899. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W and Kingston RE: Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 98:37–46. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Chandrasekharan MB, Huang F and Sun ZW: Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci USA. 106:16686–16691. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Canzonetta C, Vernarecci S, Iuliani M, Marracino C, Belloni C, Ballario P and Filetici P: SAGA DUB-Ubp8 deubiquitylates centromeric histone variant Cse4. G3 (Bethesda). 6:287–298. 2015. View Article : Google Scholar

60 

Sun L, Johnston SA and Kodadek T: Physical association of the APIS complex and general transcription factors. Biochem Biophys Res Commun. 296:991–999. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Muratani M and Tansey WP: How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol. 4:192–201. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Sun ZW and Allis CD: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 418:104–108. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA and Berger SL: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17:2648–2663. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Gao C, Huang W, Kanasaki K and Xu Y: The role of ubiquitination and sumoylation in diabetic nephropathy. Biomed Res Int. 2014.160692:2014.

65 

Collins P, Mitxitorena I and Carmody R: The ubiquitination of NF-κB subunits in the control of transcription. Cells. 5:pii: E232016. View Article : Google Scholar

66 

Moazed D: Small RNAs in transcriptional gene silencing and genome defence. Nature. 457:413–420. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI

69 

Matzke M, Matzke AJ and Kooter JM: RNA: Guiding gene silencing. Science. 293:1080–1083. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Boosani C and Agrawal D: Epigenetic regulation of innate immunity by microRNAs. Antibodies. 5:82016. View Article : Google Scholar

71 

Castel SE and Martienssen RA: RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet. 14:100–112. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Pak J and Fire A: Distinct populations of primary and secondary effectors during RNAi iC elegans. Science. 315:241–244. 2007. View Article : Google Scholar

74 

Halic M and Moazed D: Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell. 140:504–516. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP and Moazed D: Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell. 119:789–802. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Bühler M, Verdel A and Moazed D: Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell. 125:873–886. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Holoch D and Moazed D: RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 16:71–84. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Bayne EH, White SA, Kagansky A, Bijos DA, Sanchez-Pulido L, Hoe KL, Kim DU, Park HO, Ponting CP, Rappsilber J and Allshire RC: Stc1: A critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell. 140:666–677. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Gerace EL, Halic M and Moazed D: The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol Cell. 39:360–372. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marí L, Chang AY, Goto D, et al: RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature. 479:135–138. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Li F, Martienssen R and Cande WZ: Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. Nature. 475:244–248. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Millar NL, Murrell GA and McInnes IB: Inflammatory mechanisms in tendinopathy-towards translation. Nat Rev Rheumatol. 13:110–122. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Campbell AL, Smith NC, Reilly JH, Kerr SC, Leach WJ, Fazzi UG, Rooney BP, Murrell GA and Millar NL: IL-21 receptor expression in human tendinopathy. Mediators Inflamm. 2014.481206:2014.

84 

Legerlotz K, Jones ER, Screen HR and Riley GP: Increased expression of IL-6 family members in tendon pathology. Rheumatology (Oxford). 51:1161–1165. 2012. View Article : Google Scholar

85 

Dean BJ, Gettings P, Dakin SG and Carr AJ: Are inflammatory cells increased in painful human tendinopathy? A systematic review. Br J Sports Med. 50:216–220. 2016. View Article : Google Scholar

86 

Thankam FG, Dilisio MF, Dietz NE and Agrawal DK: TREM-1, HMGB1 and RAGE in the shoulder tendon: Dual mechanisms for inflammation based on the coincidence of glenohumeral arthritis. PLoS One. 11:e01654922016. View Article : Google Scholar : PubMed/NCBI

87 

Guo J, Zhang JF, Li G and Chan KM: A Mini-review: MicroRNA in tendon injuries. J Stem Cell Res Ther. 5:3032015.

88 

Millar NL, Gilchrist DS, Akbar M, Reilly JH, Kerr SC, Campbell AL, Murrell GA, Liew FY, Kurowska-Stolarska M and McInnes IB: MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat Commun. 6:67742015. View Article : Google Scholar : PubMed/NCBI

89 

Thankam FG, Boosani CS, Dilisio MF, Dietz NE and Agrawal DK: MicroRNAs associated with shoulder tendon matrisome disorganization in glenohumeral arthritis. PLoS One. 11:e01680772016. View Article : Google Scholar : PubMed/NCBI

90 

Thankam FG, Boosani CS, Dilisio MF and Agrawal DK: MicroRNAs associated with inflammation in shoulder tendinopathy and glenohumeral arthritis. Mol Cell Biochem. 437:81–97. 2018. View Article : Google Scholar

91 

Medzhitov R and Horng T: Transcriptional control of the inflammatory response. Nat Rev Immunol. 9:692–703. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Wierda RJ, Geutskens SB, Jukema JW, Quax PH and van den Elsen PJ: Epigenetics in atherosclerosis and inflammation. J Cell Mol Med. 14:1225–1240. 2010. View Article : Google Scholar : PubMed/NCBI

93 

De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G and Natoli G: The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 130:1083–1094. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD, Chu FF and Pfeifer GP: Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 68:10280–10289. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Chen X, El Gazzar M, Yoza BK and McCall CE: The NF-kappaB Factor RelB and Histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem. 284:27857–27865. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Gazzar ME, Yoza BK, Chen X, Hu J, Hawkins GA and McCall CE: G9a and HP1 couple histone and DNA methylation to TNF transcription silencing during endotoxin tolerance. J Biol Chem. 283:32198–32208. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Villagra A, Sotomayor EM and Seto E: Histone deacetylases and the immunological network: Implications in cancer and inflammation. Oncogene. 29:157–173. 2010. View Article : Google Scholar

98 

Bayarsaihan D: Epigenetic Mechanisms in Inflammation. J Dent Res. 90:9–17. 2011. View Article : Google Scholar :

99 

Shuto T, Furuta T, Oba M, Xu H, Li JD, Cheung J, Gruenert DC, Uehara A, Suico MA, Okiyoneda T and Kai H: Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells. FASEB J. 20:782–784. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Takahashi N: Microbial ecosystem in the oral cavity: Metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser. 1284:103–112. 2005. View Article : Google Scholar

101 

Brand RA: Surgical anatomy of the rotator cuff and the natural history of degenerative periarthritis. Clin Orthop Related Res. 466:543–551. 2008. View Article : Google Scholar

102 

Claycombe KJ, Brissette CA and Ghribi O: Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 145 (Suppl):. 1109S–1115S. 2015.

103 

Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M and Ushijima T: Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res. 70:1430–1440. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Ding W, Mouzaki M, You H, Laird JC, Mato J, Lu SC and Rountree CB: CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology. 49:1277–1286. 2009. View Article : Google Scholar

105 

Wang YQ, Li YM, Li X, Liu T, Liu XK, Zhang JQ, Guo JW, Guo LY and Qiao L: Hypermethylation of TGF-β1 gene promoter in gastric cancer. World J Gastroenterol. 19:5557–5564. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Boosani CS, Dhar K and Agrawal DK: Down-regulation of hsa-miR-1264 contributes to DNMT1-mediated silencing of SOCS3. Mol Biol Rep. 42:1365–1376. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Cheng C, Huang C, Ma TT, Bian EB, He Y, Zhang L and Li J: SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicol Lett. 225:488–497. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Kuo PL, Shen KH, Hung SH and Hsu YL: CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation. Carcinogenesis. 33:2477–2487. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Chen S, Boosani C and Agrawal DK: Abstract 12818: KPNA4 mediates vitamin D-dependent inhibition of NF-κB activity in swine epicardial preadipocytes. Circulation. 130:A128182014.

110 

Cao B, Yang Y, Pan Y, Jia Y, Brock MV, Herman JG and Guo M: Epigenetic silencing of CXCL14 induced colorectal cancer migration and invasion. Discov Med. 16:137–147. 2013.PubMed/NCBI

111 

Ramos EA, Grochoski M, Braun-Prado K, Seniski GG, Cavalli IJ, Ribeiro EM, Camargo AA, Costa FF and Klassen G: Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One. 6:e294612011. View Article : Google Scholar

112 

Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R and Ahmad N: Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015.201703:2015.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Thankam FG, Boosani CS, Dilisio MF and Agrawal DK: Epigenetic mechanisms and implications in tendon inflammation (Review). Int J Mol Med 43: 3-14, 2019.
APA
Thankam, F.G., Boosani, C.S., Dilisio, M.F., & Agrawal, D.K. (2019). Epigenetic mechanisms and implications in tendon inflammation (Review). International Journal of Molecular Medicine, 43, 3-14. https://doi.org/10.3892/ijmm.2018.3961
MLA
Thankam, F. G., Boosani, C. S., Dilisio, M. F., Agrawal, D. K."Epigenetic mechanisms and implications in tendon inflammation (Review)". International Journal of Molecular Medicine 43.1 (2019): 3-14.
Chicago
Thankam, F. G., Boosani, C. S., Dilisio, M. F., Agrawal, D. K."Epigenetic mechanisms and implications in tendon inflammation (Review)". International Journal of Molecular Medicine 43, no. 1 (2019): 3-14. https://doi.org/10.3892/ijmm.2018.3961
Copy and paste a formatted citation
x
Spandidos Publications style
Thankam FG, Boosani CS, Dilisio MF and Agrawal DK: Epigenetic mechanisms and implications in tendon inflammation (Review). Int J Mol Med 43: 3-14, 2019.
APA
Thankam, F.G., Boosani, C.S., Dilisio, M.F., & Agrawal, D.K. (2019). Epigenetic mechanisms and implications in tendon inflammation (Review). International Journal of Molecular Medicine, 43, 3-14. https://doi.org/10.3892/ijmm.2018.3961
MLA
Thankam, F. G., Boosani, C. S., Dilisio, M. F., Agrawal, D. K."Epigenetic mechanisms and implications in tendon inflammation (Review)". International Journal of Molecular Medicine 43.1 (2019): 3-14.
Chicago
Thankam, F. G., Boosani, C. S., Dilisio, M. F., Agrawal, D. K."Epigenetic mechanisms and implications in tendon inflammation (Review)". International Journal of Molecular Medicine 43, no. 1 (2019): 3-14. https://doi.org/10.3892/ijmm.2018.3961
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team