|
1
|
Stewart BW and Wild CP: World Cancer
Report 2014. 2014.
|
|
2
|
Danish Gynecologic Cancer Group: Annual
Report of the Danish Gynecologic Cancer Database 2016-17. Danish
Gynecol Cancer Database. 2017.
|
|
3
|
Goff BA, Mandel LS, Drescher CW, Urban N,
Gough S, Schurman KM, Patras J, Mahony BS and Andersen MR:
Development of an ovarian cancer symptom index: Possibilities for
earlier detection. Cancer. 109:221–227. 2007. View Article : Google Scholar
|
|
4
|
Hamilton W, Peters TJ, Bankhead C and
Sharp D: Risk of ovarian cancer in women with symptoms in primary
care: Population based case-control study. BMJ. 339:b29982009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sundar S, Neal RD and Kehoe S: Diagnosis
of ovarian cancer. BMJ. 351:h44432015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Köbel M, Kalloger SE, Boyd N, McKinney S,
Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, et al:
Ovarian carcinoma subtypes are different diseases: Implications for
biomarker studies. PLoS Med. 5:e2322008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Prat J: Ovarian carcinomas: Five distinct
diseases with different origins, genetic alterations, and
clinicopathological features. Virchows Arch. 460:237–249. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vaughan S, Coward JI, Bast RC Jr, Berchuck
A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R,
Etemadmoghadam D, et al: Rethinking ovarian cancer: Recommendations
for improving outcomes. Nat Rev Cancer. 11:719–725. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bast RC Jr, Klug TL, St John E, Jenison E,
Niloff JM, Lazarus H, Berkowitz RS, Leavitt T, Griffiths CT, Parker
L, et al: A radioim-munoassay using a monoclonal antibody to
monitor the course of epithelial ovarian cancer. N Engl J Med.
309:883–887. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hellström I, Raycraft J, Hayden-Ledbetter
M, Ledbetter JA, Schummer M, McIntosh M, Drescher C, Urban N and
Hellström KE: The HE4 (WFDC2) protein is a biomarker for ovarian
carcinoma. Cancer Res. 63:3695–3700. 2003.PubMed/NCBI
|
|
11
|
Karlsen MA, Fagö-Olsen C, Høgdall E,
Schnack TH, Christensen IJ, Nedergaard L, Lundvall L, Lydolph MC,
Engelholm SA and Høgdall C: A novel index for preoperative,
non-invasive prediction of macro-radical primary surgery in
patients with stage IIIC-IV ovarian cancer-a part of the Danish
prospective pelvic mass study. Tumor Biol. 37:12619–12626. 2016.
View Article : Google Scholar
|
|
12
|
Jacobs I, Oram D, Fairbanks J, Turner J,
Frost C and Grudzinskas JG: A risk of malignancy index
incorporating CA 125, ultrasound and menopausal status for the
accurate preoperative diagnosis of ovarian cancer. Br J Obstet
Gynaecol. 97:922–929. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Moore RG, McMeekin DS, Brown AK,
DiSilvestro P, Miller MC, Allard WJ, Gajewski W, Kurman R, Bast RC
Jr and Skates SJ: A novel multiple marker bioassay utilizing HE4
and CA125 for the prediction of ovarian cancer in patients with a
pelvic mass. Gynecol Oncol. 112:40–46. 2009. View Article : Google Scholar
|
|
14
|
Skates SJ: Ovarian cancer screening:
Development of the risk of ovarian cancer algorithm (ROCA) and ROCA
screening trials. Int J Gynecol Cancer. 22(Suppl 1): S24–S26. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ueland FR, Desimone CP, Seamon LG, Miller
RA, Goodrich S, Podzielinski I, Sokoll L, Smith A, van Nagell JR Jr
and Zhang Z: Effectiveness of a multivariate index assay in the
preoperative assessment of ovarian tumors. Obstet Gynecol.
117:1289–1297. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Karlsen MA, Sandhu N, Høgdall C,
Christensen IJ, Nedergaard L, Lundvall L, Engelholm SA, Pedersen
AT, Hartwell D, Lydolph M, et al: Evaluation of HE4, CA125, risk of
ovarian malignancy algorithm (ROMA) and risk of malignancy index
(RMI) as diagnostic tools of epithelial ovarian cancer in patients
with a pelvic mass. Gynecol Oncol. 127:379–383. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jacobs IJ and Menon U: Progress and
challenges in screening for early detection of ovarian cancer. Mol
Cell Proteomics. 3:355–366. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Norquist BM, Harrell MI, Brady MF, Walsh
T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA, et
al: Inherited mutations in women with ovarian carcinoma. JAMA
Oncol. 2:482–490. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ramus SJ, Song H, Dicks E, Tyrer JP,
Rosenthal AN, Intermaggio MP, Fraser L, Gentry-Maharaj A, Hayward
J, Philpott S, et al: Germline mutations in the BRIP1, BARD1,
PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer
Inst. 107:djv2142015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee
A, Shen HC, Beesley J, Lawrenson K, McGuffog L, Healey S, Lee JM,
et al: Identification of six new susceptibility loci for invasive
epithelial ovarian cancer. Nat Genet. 47:164–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Moher D, Liberati A, Tetzlaff J and Altman
DG; PRISMA Group: Preferred reporting items for systematic reviews
and meta-analyses: The PRISMA statement. PLoS Med. 6:e10000972009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
International Human Genome Sequencing
Consortium: Finishing the euchromatic sequence of the human genome.
Nature. 431:931–945. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
The 1000 Genomes Project Consortium; Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA and Abecasis GR: A global reference for
human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Metzker ML: Sequencing technologies-the
next generation. Nat Rev Genet. 11:31–46. 2010. View Article : Google Scholar
|
|
25
|
Ashley EA: Towards precision medicine. Nat
Rev Genet. 17:507–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Goodwin S, McPherson JD and McCombie WR:
Coming of age: Ten years of next-generation sequencing
technologies. Nat Rev Genet. 17:333–351. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Blum A, Wang P and Zenklusen JC: SnapShot:
TCGA-analyzed tumors. Cell. 173:5302018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cancer Genome Atlas Research Network:
Integrated genomic analyses of ovarian carcinoma. Nature.
474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Amos CI, Dennis J, Wang Z, Byun J,
Schumacher FR, Gayther SA, Casey G, Hunter DJ, Sellers TA, Gruber
SB, et al: The oncoarray consortium: A network for understanding
the genetic architecture of common cancers. Cancer Epidemiol
Biomarkers Prev. 26:126–135. 2017. View Article : Google Scholar :
|
|
30
|
Sakoda LC, Jorgenson E and Witte JS:
Turning of COGS moves forward findings for hormonally mediated
cancers. Nat Genet. 45:345–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar
SP, Lawrenson K, Winham SJ, Dennis J, Pirie A, Riggan MJ, Chornokur
G, et al: Identification of 12 new susceptibility loci for
different histotypes of epithelial ovarian cancer. Nat Genet.
49:680–691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Michailidou K, Beesley J, Lindstrom S,
Canisius S, Dennis J, Lush MJ, Maranian MJ, Bolla MK, Wang Q, Shah
M, et al: Genome-wide association analysis of more than 120,000
individuals identifies 15 new susceptibility loci for breast
cancer. Nat Genet. 47:373–380. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
McKay JD, Hung RJ, Han Y, Zong X,
Carreras-Torres R, Christiani DC, Caporaso NE, Johansson M, Xiao X,
Li Y, et al: Large-scale association analysis identifies new lung
cancer susceptibility loci and heterogeneity in genetic
susceptibility across histological subtypes. Nat Genet.
49:1126–1132. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Schumacher FR, Al Olama AA, Berndt SI,
Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D,
Anokian E, Cieza-Borrella C, et al: Association analyses of more
than 140,000 men identify 63 new prostate cancer susceptibility
loci. Nat Genet. 50:928–936. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Melin BS, Barnholtz-Sloan JS, Wrensch MR,
Johansen C, Il'yasova D, Kinnersley B, Ostrom QT, Labreche K, Chen
Y, Armstrong G, et al: Genome-wide association study of glioma
subtypes identifies specific differences in genetic susceptibility
to glioblastoma and non-glioblastoma tumors. Nat Genet. 49:789–794.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shen H, Fridley BL, Song H, Lawrenson K,
Cunningham JM, Ramus SJ, Cicek MS, Tyrer J, Stram D, Larson MC, et
al: Epigenetic analysis leads to identification of HNF1B as a
subtype-specific susceptibility gene for ovarian cancer. Nat
Commun. 4:16282013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pharoah PD, Tsai YY, Ramus SJ, Phelan CM,
Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, et
al: GWAS meta‑analysis and replication identifies three new
susceptibility loci for ovarian cancer. Nat Genet. 45:362–370.
2013. View Article : Google Scholar
|
|
38
|
Kelemen LE, Lawrenson K, Tyrer J, Li Q,
Lee JM, Seo JH, Phelan CM, Beesley J, Chen X, Spindler TJ, et al:
Genome-wide significant risk associations for mucinous ovarian
carcinoma. Nat Genet. 47:888–897. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tsuchiya A, Sakamoto M, Yasuda J, Chuma M,
Ohta T, Ohki M, Yasugi T, Taketani Y and Hirohashi S: Expression
profiling in ovarian clear cell carcinoma: Identification of
hepatocyte nuclear factor-1beta as a molecular marker and a
possible molecular target for therapy of ovarian clear cell
carcinoma. Am J Pathol. 163:2503–2512. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gudmundsson J, Sulem P, Steinthorsdottir
V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T,
Gudbjartsson D, Agnarsson BA, Baker A, et al: Two variants on
chromosome 17 confer prostate cancer risk and the one in TCF2
protects against type 2 diabetes. Nat Genet. 39:977–983. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sun J, Zheng SL, Wiklund F, Isaacs SD,
Purcell LD, Gao Z, Hsu FC, Kim ST, Liu W, Zhu Y, et al: Evidence
for two independent prostate cancer risk-associated loci in the
HNF1B gene at 17q12. Nat Genet. 40:1153–1155. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Thomas G, Jacobs KB, Yeager M, Kraft P,
Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, et
al: Multiple loci identified in a genome‑wide association study of
prostate cancer. Nat Genet. 40:310–315. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Spurdle AB, Thompson DJ, Ahmed S, Ferguson
K, Healey CS, O'Mara T, Walker LC, Montgomery SB, Dermitzakis ET;
Australian National Endometrial Cancer Study Group; et al:
Genome-wide association study identifies a common variant
associated with risk of endometrial cancer. Nat Genet. 43:451–455.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
44
|
Painter JN, O'Mara TA, Batra J, Cheng T,
Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, et
al: Fine‑mapping of the HNF1B multicancer locus identifies
candidate variants that mediate endometrial cancer risk. Hum Mol
Genet. 24:1478–1492. 2015. View Article : Google Scholar
|
|
45
|
Setiawan VW, Haessler J, Schumacher F,
Cote ML, Deelman E, Fesinmeyer MD, Henderson BE, Jackson RD,
Vöckler JS, Wilkens LR, et al: HNF1B and endometrial cancer risk:
Results from the PAGE study. PLoS One. 7:e303902012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ross-Adams H, Ball S, Lawrenson K, Halim
S, Russell R, Wells C, Strand SH, Ørntoft TF, Larson M, Armasu S,
et al: HNF1B variants associate with promoter methylation and
regulate gene networks activated in prostate and ovarian cancer.
Oncotarget. 7:74734–74746. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pooley KA, Bojesen SE, Weischer M, Nielsen
SF, Thompson D, Amin Al Olama A, Michailidou K, Tyrer JP, Benlloch
S, Brown J, et al: A genome-wide association scan (GWAS) for mean
telomere length within the COGS project: Identified loci show
little association with hormone-related cancer risk. Hum Mol Genet.
22:5056–5064. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bojesen SE, Pooley KA, Johnatty SE,
Beesley J, Michailidou K, Tyrer JP, Edwards SL, Pickett HA, Shen
HC, Smart CE, et al: Multiple independent variants at the TERT
locus are associated with telomere length and risks of breast and
ovarian cancer. Nat Genet. 45:371–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vinagre J, Almeida A, Pópulo H, Batista R,
Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L, et al:
Frequency of TERT promoter mutations in human cancers. Nat Commun.
4:21852013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bolton KL, Tyrer J, Song H, Ramus SJ,
Notaridou M, Jones C, Sher T, Gentry-Maharaj A, Wozniak E, Tsai YY,
et al: Common variants at 19p13 are associated with susceptibility
to ovarian cancer. Nat Genet. 42:880–884. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shao G, Patterson-Fortin J, Messick TE,
Feng D, Shanbhag N, Wang Y and Greenberg RA: MERIT40 controls
BRCA1-Rap80 complex integrity and recruitment to DNA double-strand
breaks. Genes Dev. 23:740–754. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang B, Hurov K, Hofmann K and Elledge SJ:
NBA1, a new player in the Brca1 A complex, is required for DNA
damage resistance and checkpoint control. Genes Dev. 23:729–739.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Feng L, Huang J and Chen J: MERIT40
facilitates BRCA1 localization and DNA damage repair. Genes Dev.
23:719–728. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lawrenson K, Kar S, McCue K, Kuchenbaeker
K, Michailidou K, Tyrer J, Beesley J, Ramus SJ, Li Q, Delgado MK,
et al: Functional mechanisms underlying pleiotropic risk alleles at
the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun.
7:126752016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben
KK, Anton-Culver H, Antonenkova N, Chenevix-Trench G; Australian
Cancer Study; Australian Ovarian Cancer Study Group; et al:
Network-based integration of GWAS and gene expression identifies a
HOX-Centric network associated with serous ovarian cancer risk.
Cancer Epidemiol Biomarkers Prev. 24:1574–1584. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lawrenson K, Li Q, Kar S, Seo JH, Tyrer J,
Spindler TJ, Lee J, Chen Y, Karst A, Drapkin R, et al: Cis-eQTL
analysis and functional validation of candidate susceptibility
genes for high-grade serous ovarian cancer. Nat Commun. 6:82342015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ghoussaini M, Song H, Koessler T, Al Olama
AA, Kote-Jarai Z, Driver KE, Pooley KA, Ramus SJ, Kjaer SK, Hogdall
E, et al: Multiple loci with different cancer specificities within
the 8q24 gene desert. J Natl Cancer Inst. 100:962–966. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Panagiotou OA, Evangelou E and Ioannidis
JP: Genome-wide significant associations for variants with minor
allele frequency of 5% or less-an overview: A HuGE review. Am J
Epidemiol. 172:869–889. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Stephens M and Balding DJ: Bayesian
statistical methods for genetic association studies. Nat Rev Genet.
10:681–690. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
International HapMap Consortium: A
haplotype map of the human genome. Nature. 437:1299–1320. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pe'er I, Yelensky R, Altshuler D and Daly
MJ: Estimation of the multiple testing burden for genomewide
association studies of nearly all common variants. Genet Epidemiol.
32:381–385. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fadista J, Manning AK, Florez JC and Groop
L: The (in)famous GWAS P-value threshold revisited and updated for
low-frequency variants. Eur J Hum Genet. 24:1202–1205. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kar SP, Berchuck A, Gayther SA, Goode EL,
Moysich KB, Pearce CL, Ramus SJ, Schildkraut JM, Sellers TA and
Pharoah PDP: Common genetic variation and susceptibility to ovarian
cancer: Current insights and future directions. Cancer Epidemiol
Biomarkers Prev. 27:395–404. 2018. View Article : Google Scholar
|
|
64
|
Jones MR, Kamara D, Karlan BY, Pharoah PDP
and Gayther SA: Genetic epidemiology of ovarian cancer and
prospects for poly-genic risk prediction. Gynecol Oncol.
147:705–713. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Elmas A, Ou Yang TH, Wang X and
Anastassiou D: Discovering genome-wide tag SNPs based on the mutual
information of the variants. PLoS One. 11:e01679942016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Johnson GC, Esposito L, Barratt BJ, Smith
AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge
F, et al: Haplotype tagging for the identification of common
disease genes. Nat Genet. 29:233–237. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Earp M, Winham SJ, Larson N, Permuth JB,
Sicotte H, Chien J, Anton-Culver H, Bandera EV, Berchuck A, Cook
LS, et al: A targeted genetic association study of epithelial
ovarian cancer susceptibility. Oncotarget. 7:7381–7389. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Song H, Ramus SJ, Tyrer J, Bolton KL,
Gentry-Maharaj A, Wozniak E, Anton-Culver H, Chang-Claude J, Cramer
DW, DiCioccio R, et al: A genome‑wide association study identifies
a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet.
41:996–1000. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
69
|
Goode EL, Chenevix-Trench G, Song H, Ramus
SJ, Notaridou M, Lawrenson K, Widschwendter M, Vierkant RA, Larson
MC, Kjaer SK, et al: A genome-wide association study identifies
susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet.
42:874–879. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
70
|
Permuth-Wey J, Lawrenson K, Shen HC,
Velkova A, Tyrer JP, Chen Z, Lin HY, Chen YA, Tsai YY, Qu X, et al:
Identification and molecular characterization of a new ovarian
cancer susceptibility locus at 17q21.31. Nat Commun. 4:16272013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen K, Ma H, Li L, Zang R, Wang C, Song
F, Shi T, Yu D, Yang M, Xue W, et al: Genome-wide association study
identifies new susceptibility loci for epithelial ovarian cancer in
Han Chinese women. Nat Commun. 5:46822014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Romano RA, Li H, Tummala R, Maul R and
Sinha S: Identification of Basonuclin2, a DNA‑binding zinc‑finger
protein expressed in germ tissues and skin keratinocytes. Genomics.
83:821–833. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Buckley MA, Woods NT, Tyrer JP,
Mendoza-Fandiño G, Lawrenson K, Hazelett DJ, Najafabadi HS, Gjyshi
A, Carvalho RS, Lyra PC Jr, et al: Functional analysis and fine
mapping of the 9p22.2 ovarian cancer susceptibility locus. Cancer
Res. 79:467–481. 2019. View Article : Google Scholar
|
|
74
|
Wentzensen N, Black A, Jacobs K, Yang HP,
Berg CD, Caporaso N, Peters U, Ragard L, Buys SS, Chanock S and
Hartge P: Genetic variation on 9p22 is associated with abnormal
ovarian ultrasound results in the prostate, lung, colorectal, and
ovarian cancer screening trial. PLoS One. 6:e217312011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Vigorito E, Kuchenbaecker KB, Beesley J,
Adlard J, Agnarsson BA, Andrulis IL, Arun BK, Barjhoux L, Belotti
M, Benitez J, et al: Fine‑scale mapping at 9p22.2 identifies
candidate causal variants that modify ovarian cancer risk in BRCA1
and BRCA2 mutation carriers. PLoS One. 11:e01588012016. View Article : Google Scholar
|
|
76
|
Carter H, Marty R, Hofree M, Gross AM,
Jensen J, Fisch KM, Wu X, DeBoever C, Van Nostrand EL, Song Y, et
al: Interaction landscape of inherited polymorphisms with somatic
events in cancer. Cancer Discov. 7:410–423. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Permuth JB, Pirie A, Ann Chen Y, Lin HY,
Reid BM, Chen Z, Monteiro A, Dennis J, Mendoza-Fandino G; AOCS
Study Group; et al: Exome genotyping arrays to identify rare and
low frequency variants associated with epithelial ovarian cancer
risk. Hum Mol Genet. 25:3600–3612. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fong PC, Boss DS, Yap TA, Tutt A, Wu P,
Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, et
al: Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA
mutation carriers. N Engl J Med. 361:123–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Venter JC, Adams MD, Myers EW, Li PW,
Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al:
The sequence of the human genome. Science. 291:1304–1351. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Vaser R, Adusumalli S, Leng SN, Sikic M
and Ng PC: SIFT missense predictions for genomes. Nat Protoc.
11:1–9. 2016. View Article : Google Scholar
|
|
81
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kang UB, Ahn Y, Lee JW, Kim YH, Kim J, Yu
MH, Noh DY and Lee C: Differential profiling of breast cancer
plasma proteome by isotope‑coded affinity tagging method reveals
biotinidase as a breast cancer biomarker. BMC Cancer. 10:1142010.
View Article : Google Scholar
|
|
83
|
Huang L, Zheng M, Zhou QM, Zhang MY, Jia
WH, Yun JP and Wang HY: Identification of a gene‑expression
signature for predicting lymph node metastasis in patients with
early stage cervical carcinoma. Cancer. 117:3363–3373. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sun X, Frierson HF, Chen C, Li C, Ran Q,
Otto KB, Cantarel BL, Vessella RL, Gao AC, Petros J, et al:
Frequent somatic mutations of the transcription factor ATBF1 in
human prostate cancer. Nat Genet. 37:407–412. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Walker CJ, Miranda MA, O'Hern MJ, McElroy
JP, Coombes KR, Bundschuh R, Cohn DE, Mutch DG and Goodfellow PJ:
Patterns of CTCF and ZFHX3 mutation and associated outcomes in
endo-metrial cancer. J Natl Cancer Inst. 107:djv2492015. View Article : Google Scholar
|
|
86
|
Rafnar T, Gudbjartsson DF, Sulem P,
Jonasdottir A, Sigurdsson A, Jonasdottir A, Besenbacher S, Lundin
P, Stacey SN, Gudmundsson J, et al: Mutations in BRIP1 confer high
risk of ovarian cancer. Nat Genet. 43:1104–1107. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Landrum MJ, Lee JM, Benson M, Brown GR,
Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, et al:
ClinVar: Improving access to variant interpretations and supporting
evidence. Nucleic Acids Res. 46:D1062–D1067. 2018. View Article : Google Scholar :
|
|
88
|
Henderson BE and Feigelson HS: Hormonal
carcinogenesis. Carcinogenesis. 21:427–433. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Henderson BE, Ross RK, Pike MC and
Casagrande JT: Endogenous hormones as a major factor in human
cancer. Cancer Res. 42:3232–3239. 1982.PubMed/NCBI
|
|
90
|
Couch FJ, Wang X, McGuffog L, Lee A,
Olswold C, Kuchenbaecker KB, Soucy P, Fredericksen Z, Barrowdale D,
Dennis J, et al: Genome-wide association study in BRCA1 mutation
carriers identifies novel loci associated with breast and ovarian
cancer risk. PLoS Genet. 9:e10032122013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Al Olama AA, Kote-Jarai Z, Berndt SI,
Conti DV, Schumacher F, Han Y, Benlloch S, Hazelett DJ, Wang Z,
Saunders E, et al: A meta‑analysis of 87,040 individuals identifies
23 new susceptibility loci for prostate cancer. Nat Genet.
46:1103–1109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kar SP, Beesley J, Amin Al Olama A,
Michailidou K, Tyrer J, Kote-Jarai Z, Lawrenson K, Lindstrom S,
Ramus SJ, Thompson DJ, et al: Genome-wide meta-analyses of breast,
ovarian, and prostate cancer association studies identify multiple
new susceptibility loci shared by at least two cancer types. Cancer
Discov. 6:1052–1067. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Schildkraut JM, Goode EL, Clyde MA,
Iversen ES, Moorman PG, Berchuck A, Marks JR, Lissowska J, Brinton
L, Peplonska B, et al: Single nucleotide polymorphisms in the TP53
region and susceptibility to invasive epithelial ovarian cancer.
Cancer Res. 69:2349–2357. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Johnatty SE, Tyrer JP, Kar S, Beesley J,
Lu Y, Gao B, Fasching PA, Hein A, Ekici AB, Beckmann MW, et al:
Genome-wide analysis identifies novel loci associated with ovarian
cancer outcomes: Findings from the ovarian cancer association
consortium. Clin Cancer Res. 21:5264–5276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lu Y, Beeghly-Fadiel A, Wu L, Guo X, Li B,
Schildkraut JM, Im HK, Chen YA, Permuth JB, Reid BM, et al: A
transcrip-tome-wide association study among 97,898 women to
identify candidate susceptibility genes for epithelial ovarian
cancer risk. Cancer Res. 78:5419–5430. 2018. View Article : Google Scholar : PubMed/NCBI
|