Open Access

The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway

  • Authors:
    • Weihua Zhang
    • Liming Yu
    • Xinxin Han
    • Jie Pan
    • Jiajia Deng
    • Luying Zhu
    • Yun Lu
    • Wei Huang
    • Shangfeng Liu
    • Qiang Li
    • Yuehua Liu
  • View Affiliations

  • Published online on: March 4, 2020     https://doi.org/10.3892/ijmm.2020.4525
  • Pages: 1501-1513
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Human dental pulp stem cells (hDPSCs) present several advantages, including their ability to be non‑invasively harvested without ethical concern. The secretome of hDPSCs can promote the functional recovery of various tissue injuries. However, the protective effects on hypoxia‑induced skeletal muscle injury remain to be explored. The present study demonstrated that C2C12 myoblast coculture with hDPSCs attenuated CoCl2‑induced hypoxic injury compared with C2C12 alone. The hDPSC secretome increased cell viability and differentiation and decreased G2/M cell cycle arrest under hypoxic conditions. These results were further verified using hDPSC‑conditioned medium (hDPSC‑CM). The present data revealed that the protective effects of hDPSC‑CM depend on the concentration ratio of the CM. In terms of the underlying molecular mechanism, hDPSC‑CM activated the Wnt/β‑catenin pathway, which increased the protein levels of Wnt1, phosphorylated‑glycogen synthase kinase‑3β and β‑catenin and the mRNA levels of Wnt target genes. By contrast, an inhibitor (XAV939) of Wnt/β‑catenin diminished the protective effects of hDPSC‑CM. Taken together, the findings of the present study demonstrated that the hDPSC secretome alleviated the hypoxia‑induced myoblast injury potentially through regulating the Wnt/β‑catenin pathway. These findings may provide new insight into a therapeutic alternative using the hDPSC secretome in skeletal muscle hypoxia‑related diseases.
View Figures
View References

Related Articles

Journal Cover

May-2020
Volume 45 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang W, Yu L, Han X, Pan J, Deng J, Zhu L, Lu Y, Huang W, Liu S, Li Q, Li Q, et al: The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. Int J Mol Med 45: 1501-1513, 2020
APA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L. ... Liu, Y. (2020). The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. International Journal of Molecular Medicine, 45, 1501-1513. https://doi.org/10.3892/ijmm.2020.4525
MLA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45.5 (2020): 1501-1513.
Chicago
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45, no. 5 (2020): 1501-1513. https://doi.org/10.3892/ijmm.2020.4525