Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2020 Volume 45 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2020 Volume 45 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway

  • Authors:
    • Weihua Zhang
    • Liming Yu
    • Xinxin Han
    • Jie Pan
    • Jiajia Deng
    • Luying Zhu
    • Yun Lu
    • Wei Huang
    • Shangfeng Liu
    • Qiang Li
    • Yuehua Liu
  • View Affiliations / Copyright

    Affiliations: Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China, Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1501-1513
    |
    Published online on: March 4, 2020
       https://doi.org/10.3892/ijmm.2020.4525
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Human dental pulp stem cells (hDPSCs) present several advantages, including their ability to be non‑invasively harvested without ethical concern. The secretome of hDPSCs can promote the functional recovery of various tissue injuries. However, the protective effects on hypoxia‑induced skeletal muscle injury remain to be explored. The present study demonstrated that C2C12 myoblast coculture with hDPSCs attenuated CoCl2‑induced hypoxic injury compared with C2C12 alone. The hDPSC secretome increased cell viability and differentiation and decreased G2/M cell cycle arrest under hypoxic conditions. These results were further verified using hDPSC‑conditioned medium (hDPSC‑CM). The present data revealed that the protective effects of hDPSC‑CM depend on the concentration ratio of the CM. In terms of the underlying molecular mechanism, hDPSC‑CM activated the Wnt/β‑catenin pathway, which increased the protein levels of Wnt1, phosphorylated‑glycogen synthase kinase‑3β and β‑catenin and the mRNA levels of Wnt target genes. By contrast, an inhibitor (XAV939) of Wnt/β‑catenin diminished the protective effects of hDPSC‑CM. Taken together, the findings of the present study demonstrated that the hDPSC secretome alleviated the hypoxia‑induced myoblast injury potentially through regulating the Wnt/β‑catenin pathway. These findings may provide new insight into a therapeutic alternative using the hDPSC secretome in skeletal muscle hypoxia‑related diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Koh MY and Powis G: Passing the baton: The HIF switch. Trends Biochem Sci. 37:364–372. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Chaillou T: Skeletal muscle fiber type in hypoxia: Adaptation to high-altitude exposure and under conditions of pathological hypoxia. Front Physiol. 9:14502018. View Article : Google Scholar : PubMed/NCBI

3 

Adams V, Linke A and Winzer E: Skeletal muscle alterations in HFrEF vs. HFpEF Current Heart Failure Reports. 14:489–497. 2017. View Article : Google Scholar

4 

Gea J, Agusti A and Roca J: Pathophysiology of muscle dysfunction in COPD. J Appl Physiol. 1985. 114:1222–1234. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Putti R, Migliaccio V, Sica R and Lionetti L: Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: Focus on dietary fat source. Front Physiol. 6:4262016. View Article : Google Scholar : PubMed/NCBI

6 

Lu Y, Liu Y and Li Y: Comparison of natural estrogens and synthetic derivative on genioglossus function and estrogen receptors expression in rats with chronic intermittent hypoxia. J Steroid Biochem Mol Biol. 140:71–79. 2014. View Article : Google Scholar

7 

Williams R, Lemaire P, Lewis P, McDonald FB, Lucking E, Hogan S, Sheehan D, Healy V and O’Halloran KD: Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress. Front Physiol. 6:152015. View Article : Google Scholar : PubMed/NCBI

8 

Beaudry M, Hidalgo M, Launay T, Bello V and Darribère T: Regulation of myogenesis by environmental hypoxia. J Cell Sci. 129:2887–2896. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Chaillou T, Koulmann N, Meunier A, Chapot R, Serrurier B, Beaudry M and Bigard X: Effect of hypoxia exposure on the recovery of skeletal muscle phenotype during regeneration. Mol Cell Biochem. 390:31–40. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Favier FB, Britto FA, Freyssenet DG, Bigard XA and Benoit H: HIF-1-driven skeletal muscle adaptations to chronic hypoxia: Molecular insights into muscle physiology. Cell Mol Life Sci. 72:4681–4696. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Quadrilatero J, Alway SE and Dupont-Versteegden EE: Skeletal muscle apoptotic response to physical activity: Potential mechanisms for protection. Appl Physiol Nutr Metab. 36:608–617. 2011. View Article : Google Scholar : PubMed/NCBI

12 

L’honoré A, Commère PH, Ouimette JF, Montarras D, Drouin J and Buckingham M: Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Dev Cell. 39:7562016. View Article : Google Scholar

13 

Muñoz-Sánchez J and Chánez-Cárdenas ME: The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 39:556–570. 2019. View Article : Google Scholar

14 

Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Goret L, Obert P, Candau R and Bonnieu A: Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol. 332:38–47. 2011. View Article : Google Scholar

15 

Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H and Li C: Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med. 41:2565–2572. 2018.PubMed/NCBI

16 

Baskaran R, Kalaiselvi P, Huang CY and Padma VV: Neferine, a bisbenzylisoquinoline alkaloid, offers protection against cobalt chloride-mediated hypoxia-induced oxidative stress in muscle cells. Integr Med Res. 4:231–241. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Chen R, Jiang T, She Y, Xu J, Li C, Zhou S, Shen H, Shi H and Liu S: Effects of cobalt chloride, a hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12 myotubes. Biomed Res Int. 2017:7097580. 2017.

18 

Rovetta F, Stacchiotti A, Faggi F, Catalani S, Apostoli P, Fanzani A and Aleo MF: Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol. 271:196–205. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Jaitovich A and Barreiro E: Skeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patients. Am J Respir Crit Care Med. 198:175–186. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Hirai DM, Musch TI and Poole DC: Exercise training in chronic heart failure: Improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol. 309:H1419–H1439. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Guimarães KC, Drager LF, Genta PR, Marcondes BF and Lorenzi-Filho G: Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 179:962–966. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Chaudhary P, Sharma YK, Sharma S, Singh SN and Suryakumar G: High altitude mediated skeletal muscle atrophy: Protective role of curcumin. Biochimie. 156:138–147. 2019. View Article : Google Scholar

23 

Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, et al: Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic. J Transl Med. 6:352008. View Article : Google Scholar

24 

Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K and Sonoda Y: 5-Aza-2′-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol. 55:350–357. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, Mancini M, Mitsiadis TA, Vivarelli E, Naro F, Filippini A and Papaccio G: Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med. 14:1635–1644. 2010. View Article : Google Scholar

26 

Kichenbrand C, Velot E, Menu P and Moby V: Dental pulp stem cell-derived conditioned medium: An attractive alternative for regenerative therapy. Tissue Eng Part B Rev. 25:78–88. 2019. View Article : Google Scholar

27 

Madrigal M, Rao KS and Riordan NH: A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 12:2602014. View Article : Google Scholar : PubMed/NCBI

28 

Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, Mitne-Neto M, Carvalho VM and Zatz M: Different donors mesenchymal stromal cells secretomes reveal heterogeneous profile of relevance for therapeutic use. Stem Cells Dev. 26:206–214. 2017. View Article : Google Scholar

29 

Liang X, Ding Y, Zhang Y, Tse HF and Lian Q: Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplant. 23:1045–1059. 2014. View Article : Google Scholar

30 

Park CM, Kim MJ, Kim SM, Park JH, Kim ZH and Choi YS: Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ROS generation. In Vitro Cell Dev Biol Anim. 52:68–76. 2016. View Article : Google Scholar

31 

Kim MJ, Kim ZH, Kim SM and Choi YS: Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell. 48:533–543. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Cho KA, Park M, Kim YH, Woo SY and Ryu KH: Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL-1Ra activity. J Cell Mol Med. 21:130–141. 2017. View Article : Google Scholar

33 

Mouse Genome Sequencing Consortium. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520–562. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Naskar S, Kumaran V, Markandeya YS, Mehta B and Basu B: Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials. 226:1195222020. View Article : Google Scholar

35 

Zhao Y, Li N, Li Z, Zhang D, Chen L, Yao Z and Niu W: Conditioned medium from contracting skeletal muscle cells reverses insulin resistance and dysfunction of endothelial cells. Metabolism. 82:36–46. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Kwon S, Ki SM, Park SE, Kim MJ, Hyung B, Lee NK, Shim S, Choi BO, Na DL, Lee JE and Chang JW: Anti-apoptotic effects of human Wharton’s Jelly-derived mesenchymal stem cells on skeletal muscle cells mediated via secretion of XCL1. Mol Ther. 24:1550–1560. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Girardi F and Le Grand F: Wnt signaling in skeletal muscle development and regeneration. Prog Mol Biol Transl Sci. 153:157–179. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

39 

Comai G and Tajbakhsh S: Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol. 110:1–73. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Cho OH, Mallappa C, Hernández-Hernández JM, Rivera-Pérez JA and Imbalzano AN: Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development. Dev Dyn. 244:43–55. 2015. View Article : Google Scholar

41 

Zhu X and Lu X: MiR-423-5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β-catenin signaling pathway via targeting MYBL2. J Cell Physiol. 234:22034–22043. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Majmundar AJ, Lee DS, Skuli N, Mesquita RC, Kim MN, Yodh AG, Nguyen-McCarty M, Li B and Simon MC: HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo. Development. 142:2405–2412. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N and Grenier G: Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle. 9:182019. View Article : Google Scholar : PubMed/NCBI

44 

Rahar B, Chawla S, Pandey S, Bhatt AN and Saxena S: Sphingosine-1-phosphate pretreatment amends hypoxia-induced metabolic dysfunction and impairment of myogenic potential in differentiating C2C12 myoblasts by stimulating viability, calcium homeostasis and energy generation. J Physiol Sci. 68:137–151. 2018. View Article : Google Scholar

45 

Pagé M, Maheux C, Langlois A, Brassard J, Bernatchez É, Martineau S, Henry C, Beaulieu MJ, Bossé Y, Morissette MC, et al: CD34 regulates the skeletal muscle response to hypoxia. J Muscle Res Cell Motil. 40:309–318. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC and Germani A: Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem. 279:16332–16338. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Aziz A, Sebastian S and Dilworth FJ: The origin and fate of muscle satellite cells. Stem Cell Rev. 8:609–622. 2012. View Article : Google Scholar

48 

Leroux L, Descamps B, Tojais NF, Séguy B, Oses P, Moreau C, Daret D, Ivanovic Z, Boiron JM, Lamazière JM, et al: Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther. 18:1545–1552. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Gao T, Yu Y, Cong Q, Wang Y, Sun M, Yao L, Xu C and Jiang W: Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: The role of platelet-activating factor. BMC Cancer. 18:9992018. View Article : Google Scholar : PubMed/NCBI

50 

Chen B, Ni Y, Liu J, Zhang Y and Yan F: Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells Int. 2018:8348121. 2018. View Article : Google Scholar

51 

Azhdari Tafti Z, Mahmoodi M, Hajizadeh MR, Ezzatizadeh V, Baharvand H, Vosough M and Piryaei A: Conditioned media derived from human adipose tissue mesenchymal stromal cells improves primary hepatocyte maintenance. Cell J. 20:377–387. 2018.PubMed/NCBI

52 

Periasamy R, Surbek DV and Schoeberlein A: In vitro-microenvironment directs preconditioning of human chorion derived MSC promoting differentiation of OPC-like cells. Tissue Cell. 52:65–70. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y and Morita I: Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A. 23:367–377. 2017. View Article : Google Scholar :

54 

von Maltzahn J, Chang NC, Bentzinger CF and Rudnicki MA: Wnt signaling in myogenesis. Trends Cell Biol. 22:602–609. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Wang L, Qing L, Liu H, Liu N, Qiao J, Cui C, He T, Zhao R, Liu F, Yan F, et al: Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling. Stem Cell Res Ther. 8:1882017. View Article : Google Scholar

56 

Guo X, Gu X, Hareshwaree S, Rong X, Li L and Chu M: Induced pluripotent stem cell-conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β-catenin pathway. J Cell Mol Med. 23:4358–4374. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Guo X, Chen Y, Hong T, Chen X, Duan Y, Li C and Ge R: Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway. J Cell Mol Med. 22:3614–3626. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Lim JH, Chun YS and Park JW: Hypoxia-inducible factor-1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin. Cancer Res. 68:5177–5184. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Rochat A, Fernandez A, Vandromme M, Molès JP, Bouschet T, Carnac G and Lamb NJ: Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell. 15:4544–4555. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang W, Yu L, Han X, Pan J, Deng J, Zhu L, Lu Y, Huang W, Liu S, Li Q, Li Q, et al: The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. Int J Mol Med 45: 1501-1513, 2020.
APA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L. ... Liu, Y. (2020). The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. International Journal of Molecular Medicine, 45, 1501-1513. https://doi.org/10.3892/ijmm.2020.4525
MLA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45.5 (2020): 1501-1513.
Chicago
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45, no. 5 (2020): 1501-1513. https://doi.org/10.3892/ijmm.2020.4525
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang W, Yu L, Han X, Pan J, Deng J, Zhu L, Lu Y, Huang W, Liu S, Li Q, Li Q, et al: The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. Int J Mol Med 45: 1501-1513, 2020.
APA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L. ... Liu, Y. (2020). The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway. International Journal of Molecular Medicine, 45, 1501-1513. https://doi.org/10.3892/ijmm.2020.4525
MLA
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45.5 (2020): 1501-1513.
Chicago
Zhang, W., Yu, L., Han, X., Pan, J., Deng, J., Zhu, L., Lu, Y., Huang, W., Liu, S., Li, Q., Liu, Y."The secretome of human dental pulp stem cells protects myoblasts from hypoxia‑induced injury via the Wnt/β‑catenin pathway". International Journal of Molecular Medicine 45, no. 5 (2020): 1501-1513. https://doi.org/10.3892/ijmm.2020.4525
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team