|
1
|
Groot RJ, Baker SC, Baric R, et al: Family
- Coronaviridae. Virus Taxonomy Ninth Report of the International
Committee on Taxonomy of Viruses King AMQ. Lefkowitz EJ, Adams MJ
and Carstens EB: Elsevier; pp. 806–828. 2011
|
|
2
|
van Doremalen N, Bushmaker T, Morris DH,
et al: Aerosol and Surface Stability of SARS-CoV-2 as Compared with
SARS-CoV-1. N Engl J Med. Mar 17–2020.Epub ahead of print.
View Article : Google Scholar :
|
|
3
|
Geller C, Varbanov M and Duval RE: Human
coronaviruses: Insights into environmental resistance and its
influence on the development of new antiseptic strategies. Viruses.
4:3044–3068. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Anthony SJ, Johnson CK, Greig DJ, Kramer
S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, et al:
PREDICT Consortium: Global patterns in coronavirus diversity. Virus
Evol. 3:vex0122017. View Article : Google Scholar
|
|
5
|
Goumenou M, Spandidos DA and Tsatsakis A:
[Editorial] Possibility of transmission through dogs being a
contributing factor to the extreme Covid 19 outbreak in North
Italy. Mol Med Rep. In Press.
|
|
6
|
World Health Organization: Summary of
probable SARS cases with onset of illness from 1 November 2002 to
31 July 2003. https://www.who.int/csr/sars/country/table2004_04_21/en/.
Accesed July 24, 2015.
|
|
7
|
World Health Organization: Middle East
respiratory syndrome coronavirus (MERS-CoV). MERS Monthly Summary.
2013, https://www.who.int/emergencies/mers-cov/en/.
Accessed July 9, 2013.
|
|
8
|
World Health Organization: Coronavir us
disease (COVID-2019) situation reports. https://www.who.int/emer-gencies/diseases/novel-coronavirus-2019/situation-reports.
|
|
9
|
Movert E, Wu Y, Lambeau G, Kahn F, Touqui
L and Areschoug T: Using Patient Pathways to Accelerate the Drive
to Ending Tuberculosis. J Infect Dis. 208:2025–2035. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chan-Yeung M and Xu RH: SARS:
Epidemiology. Respirology. 8(Suppl): S9–S14. 2003. View Article : Google Scholar
|
|
11
|
Xu RH, He JF, Evans MR, Peng GW, Field HE,
Yu DW, Lee CK, Luo HM, Lin WS, Lin P, et al: Epidemiologic clues to
SARS origin in China. Emerg Infect Dis. 10:1030–1037. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mobaraki K and Ahmadzadeh J: Current
epidemiological status of Middle East respiratory syndrome
coronavirus in the world from 1.1.2017 to 17.1.2018: A
cross-sectional study. BMC Infect Dis. 19:3512019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen N, Zhou M, Dong X, et al:
Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: a descriptive study.
Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Livingston E and Bucher K: Coronavirus
Disease 2019 (COVID-19) in Italy. JAMA. Mar 17–2020.Epub ahead of
print. View Article : Google Scholar
|
|
15
|
Novel coronavirus (COVID-19) situation.
https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd.
|
|
16
|
Remuzzi A and Remuzzi G: COVID-19 and
Italy: what next? Lancet. Mar 13–2020.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lv L, Li G, Chen J, Liang X and Li Y:
Comparative genomic analysis revealed specific mutation pattern
between human coronavirus SARS-CoV-2 and Bat-SARSr-CoV RaTG13.
bioRxiv. In Press.
|
|
18
|
Pradhan P, Pandey AK, Mishra A, et al:
Uncanny similarity of unique inserts in the 2019-nCoV spike protein
to HIV-1 gp120 and Gag. bioRxiv. In Press.
|
|
19
|
Ren LL, Wang YM, Wu ZQ, et al:
Identification of a novel coro-navirus causing severe pneumonia in
human: a descriptive study. Chin Med J. Feb 11–2020.Epub ahead of
print. View Article : Google Scholar
|
|
20
|
Fan Y, Zhao K, Shi ZL and Zhou P: Bat
Coronaviruses in China. Viruses. 11:2102019. View Article : Google Scholar :
|
|
21
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Leroy EM, Rouquet P, Formenty P, et al:
Multiple Ebola Virus Transmission Events and Rapid Decline of
Central African Wildlife. Science. 303:387–390. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li W, Wong SK, Li F, Kuhn JH, Huang IC,
Choe H and Farzan M: Animal origins of the severe acute respiratory
syndrome coronavirus: Insight from ACE2-S-protein interactions. J
Virol. 80:4211–4219. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Drosten C, Günther S, Preiser W, et al:
Identification of a novel coronavirus in patients with severe acute
respiratory syndrome. N Engl J Med. 348:1967–1976. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lam TTY, Shum MHH, Zhu HC, et al:
Identification of 2019-nCoV related coronaviruses in Malayan
pangolins in southern China. bioRxiv. In Press.
|
|
26
|
Liu P, Jiang JZ, Hua Y, et al: Are
pangolins the intermediate host of the 2019 novel coronavirus
(2019-nCoV)? bioRxiv. In Press.
|
|
27
|
Zhang T, Wu Q and Zhang Z: Pangolin
homology associated with 2019-nCoV. bioRxiv. In Press.
|
|
28
|
Wang LF and Cowled C: Bats and Viruses: A
New Frontier of Emerging Infectious Diseases. John Wiley & Sons
Inc; 2015, https://doi.org/10.1002/9781118818824.
View Article : Google Scholar
|
|
29
|
Guan Y, Zheng BJ, He YQ, et al: Isolation
and characterization of viruses related to the SARS coronavirus
from animals in Southern China. Science. 302:276–278. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huang C, Wang Y, Li X, et al: Clinical
features of patients infected with 2019 novel coronavirus in Wuhan,
China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Smiley Evans T, Tutaryebwa L, Gilardi KV,
Barry PA, Marzi A, Eberhardt M, Ssebide B, Cranfield MR, Mugisha O,
Mugisha E, et al: Suspected Exposure to Filoviruses Among People
Contacting Wildlife in Southwestern Uganda. J Infect Dis. 218(Suppl
5): S277–S286. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Azhar EI, El-Kafrawy SA, Farraj SA, Hassan
AM, Al-Saeed MS, Hashem AM and Madani TA: Evidence for
camel-to-human transmission of MERS coronavirus. N Engl J Med.
370:2499–2505. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Haagmans BL, Al Dhahiry SH, Reusken CB, et
al: Middle East respiratory syndrome coronavirus in dromedary
camels: an outbreak investigation. Lancet Infect Dis. 14:140–145.
2014. View Article : Google Scholar
|
|
34
|
Du L, He Y, Zhou Y, Liu S, Zheng BJ and
Jiang S: The spike protein of SARS-CoV - a target for vaccine and
therapeutic development. Nat Rev Microbiol. 7:226–236. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li F: Evidence for a common evolutionary
origin of coronavirus spike protein receptor-binding subunits. J
Virol. 86:2856–2858. 2012. View Article : Google Scholar :
|
|
36
|
Simmons G, Gosalia DN, Rennekamp AJ,
Reeves JD, Diamond SL and Bates P: Inhibitors of cathepsin L
prevent severe acute respiratory syndrome coronavirus entry. Proc
Natl Acad Sci U S A. 102:11876–11881. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Narayanan K, Huang C and Makino S: SARS
coronavirus accessory proteins. Virus Res. 133:113–121. 2008.
View Article : Google Scholar
|
|
38
|
Schoeman D and Fielding BC: Coronavirus
envelope protein: Current knowledge. Virol J. 16:692019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu C, Zhou Q, Li Y, et al: Research and
Development on Therapeutic Agents and Vaccines for COVID-19 and
Related Human Coronavirus Diseases. ACS Cent Sci. 6:315–331. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hoffmann M, Kleine-Weber H, Schroeder S,
et al: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor Article
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by
a Clinically Proven Protease Inhibitor. Cell. 181:1–10. 2020.
View Article : Google Scholar
|
|
41
|
Jeffers SA, Tusell SM, Gillim-Ross L, et
al: CD209L (L-SIGN) is a receptor for severe acute respiratory
syndrome coronavirus. Proc Natl Acad Sci USA. 101:15748–15753.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Leung WK, To KF, Chan PK, et al: Enteric
involvement of severe acute respiratory syndrome-associated
coronavirus infection. Gastroenterology. 125:1011–1017. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xu X, Chen P, Wang J, Feng J, Zhou H, Li
X, Zhong W and Hao P: Evolution of the novel coronavirus from the
ongoing Wuhan outbreak and modeling of its spike protein for risk
of human transmission. Sci China Life Sci. 63:457–460. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C,
Sun T, He P, Chen J, Shen J, et al: Nucleocapsid protein of SARS
coronavirus tightly binds to human cyclophilin A. Biochem Biophys
Res Commun. 321:557–565. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang C, Horby PW, Hayden FG and Gao GF: A
novel coronavirus outbreak of global health concern. Lancet.
395:470–473. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kuba K, Imai Y, Rao S, et al: A crucial
role of angiotensin converting enzyme 2 (ACE2) in SARS
coronavirus-induced lung injury. Nat Med. 11:875–879. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fred Hutchinson Cancer Research Center:
INTERIM guidelines for COVID-19 management in hematopoietic cell
transplant and cellular therapy patients, Version 1, 2020.
https://www.fredhutch.org/content/dam/www/coronavirus/COVID-19_Interim_Patient_Guidelines_3_9_20.pdf.
Accessed March 8 2020.
|
|
48
|
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G and
Tan W: Detection of SARS-CoV-2 in Different Types of Clinical
Specimens. JAMA. Mar 11–2020.Epub ahead of print. View Article : Google Scholar
|
|
49
|
Fang L, Karakiulakis G and Roth M: Are
patients with hyper-tension and diabetes mellitus at increased risk
for COVID-19 infection? Lancet Respir Med. 2600:301162020.
|
|
50
|
Kui L, Fang YY, Deng Y, et al: Clinical
characteristics of novel coronavirus cases in tertiary hospitals in
Hubei Province. Chin Med J (Engl). Feb 7–2020.Epub ahead of
print.
|
|
51
|
Qinfen Z, Jinming C, Xiaojun H, et al: The
life cycle of SARS coronavirus in Vero E6 cells. J Med Virol.
73:332-7. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ding Y, He L, Zhang Q, et al: Organ
distribution of severe acute respiratory syndrome (SARS) associated
coronavirus (SARS-CoV) in SARS patients: implications for
pathogenesis and virus transmission pathways. J Pathol.
203:622–630. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Watkins J: Preventing a covid-19 pandemic.
BMJ. 368:m8102020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gruber-Bzura BM: Vitamin D and
Influenza-Prevention or Therapy? Int J Mol Sci. 19:24192018.
View Article : Google Scholar
|
|
55
|
Lau EH, Hsiung CA, Cowling BJ, Chen CH, Ho
LM, Tsang T, Chang CW, Donnelly CA and Leung GM: A comparative
epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan.
BMC Infect Dis. 10:502010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Guan W, Ni Z, Hu Y, et al: Clinical
Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.
Feb 28–2020.Epub ahead of print. View Article : Google Scholar
|
|
57
|
Ng DL, Al Hosani F, Keating MK, et al:
Clinicopathologic, Immunohistochemical, and Ultrastructural
Findings of a Fatal Case of Middle East Respiratory Syndrome
Coronavirus Infection in the United Arab Emirates. Am J Pathol.
186:652–658. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Alsaad KO, Hajeer AH, Al Balwi M, et al:
Histopathology of Middle East respiratory syndrome coronovirus
(MERS-CoV) infection - clinicopathological and ultrastructural
study. Histopathology. 72:516–524. 2018. View Article : Google Scholar
|
|
59
|
Shah K, Bentley E, Tyler A, Richards KSR,
Wright E, Easterbrook L, Lee D, Cleaver C, Usher L, Burton JE, et
al: Field-deployable, quantitative, rapid identification of active
Ebola virus infection in unprocessed blood. Chem Sci (Camb).
8:7780–7797. 2017. View Article : Google Scholar
|
|
60
|
World Health Organization: Country &
Technical Guidance - Coronavirus disease (COVID-19). https://www.who.int/emer-gencies/diseases/novel-coronavirus-2019/technical-guidance.
|
|
61
|
Du Z, Xu X, Wu Y, Wang L, Cowling BJ and
Meyers LA: Serial Interval of COVID-19 Among Publicly Reported
Confirmed Cases. Emerg Infect Dis. Mar 19–2020.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Crisanti A and Cassone A: In one Italian
town, we showed mass testing could eradicate the coronavirus
Opinion. The Guardian; 2020, https://www.theguardian.com/comment-isfree/2020/mar/20/eradicated-coronavirus-mass-testing-covid-19-italy-vo.
Accessed March 20 2020.
|
|
63
|
Chiu WK, Cheung PC, Ng KL, et al: Severe
acute respiratory syndrome in children: experience in a regional
hospital in Hong Kong. Pediatr Crit Care Med. 4:279–283. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Donnelly CA, Ghani AC, Leung GM, et al:
Epidemiological determinants of spread of causal agent of severe
acute respiratory syndrome in Hong Kong. Lancet. 361:1761–1766.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Leung GM, Hedley AJ, Ho LM, et al: The
epidemiology of severe acute respiratory syndrome in the 2003 Hong
Kong epidemic: an analysis of all 1755 patients. Ann Intern Med.
141:662–673. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Booth CM, Matukas LM, Tomlinson GA, et al:
Clinical features and short-term outcomes of 144 patients with SARS
in the greater Toronto area. JAMA. 289:2801–2809. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chan JW, Ng CK, Chan YH, et al: Short term
outcome and risk factors for adverse clinical outcomes in adults
with severe acute respiratory syndrome (SARS). Thorax. 58:686–689.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hon KL, Leung CW, Cheng WT, et al:
Clinical presentations and outcome of severe acute respiratory
syndrome in children. Lancet. 361:1701–1703. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hui DS and Sung JJ: Severe acute
respiratory syndrome. Chest. 124:12–15. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Assiri A, McGeer A, Perl TM, et al: KSA
MERS-CoV Investigation Team, 2013b. Hospital outbreak of Middle
East respiratory syndrome coronavirus. N Engl J Med. 369:407–416.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et
al: Epidemiological, demographic, and clinical characteristics of
47 cases of Middle East respiratory syndrome coronavirus disease
from Saudi Arabia: a descriptive study. Lancet Infect Dis.
13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Memish ZA, Zumla AI, Al-Hakeem RF,
Al-Rabeeah AA and Stephens GM: Family cluster of Middle East
respiratory syndrome coronavirus infections. N Engl J Med.
368:2487–2494. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ki M: 2015 MERS Outbreak in Korea:
Hospital-To-Hospital Transmission. Epidemiol Heal. 37:e20150332015.
View Article : Google Scholar
|
|
74
|
Arabi YM, Balkhy HH, Hayden FG, et al:
Middle East Respiratory Syndrome. N Engl J Med. 376:584–594. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Desforges M, Le Coupanec A, Stodola JK,
Meessen-Pinard M and Talbot PJ: Human coronaviruses: viral and
cellular factors involved in neuroinvasiveness and
neuropathogenesis. Virus Res. 194:145–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Saad M, Omrani AS, Baig K, et al: Clinical
aspects and outcomes of 70 patients with Middle East respiratory
syndrome coronavirus infection: a single-center experience in Saudi
Arabia. Int J Infect Dis. 29:301–306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Al-Hameed FM: Spontaneous intracranial
hemorrhage in a patient with Middle East respiratory syndrome
corona virus. Saudi Med J. 38:196–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Algahtani H, Subahi A and Shirah B:
Neurological complications of Middle East respiratory syndrome
coronavirus: A report of two cases and review of the literature.
Case Rep Neurol Med. 2016:35026832016.PubMed/NCBI
|
|
79
|
Kim JE, Heo JH, Kim HO, et al:
Neurological Complications during Treatment of Middle East
Respiratory Syndrome. J Clin Neurol. 13:227–233. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cha RH, Yang SH, Moon KC, et al: A Case
Report of a Middle East Respiratory Syndrome Survivor with Kidney
Biopsy Results. J Korean Med Sci. 31:635–640. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lu H, Stratton CW and Tang YW: Outbreak of
pneumonia of unknown etiology in Wuhan China: the mystery and the
miracle. J Med Virol. 92:401–402. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hui DS, Azhar I, Madani E, et al: The
continuing 2019-nCoV epidemic threat of novel coronaviruses to
global health - The latest 2019 novel coronavirus outbreak in
Wuhan, China. Int J Infect Dis. 91:264–266. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng
Q, Meredith HR, Azman AS, Reich NG and Lessler J: The Incubation
Period of Coronavirus Disease 2019 (COVID-19) From Publicly
Reported Confirmed Cases: Estimation and Application. Ann Intern
Med. Mar 10–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lin X, Gong Z, Xiao Z, Xiong J, Fan B and
Liu J: Novel Coronavirus Pneumonia Outbreak in 2019: Computed
Tomographic Findings in Two Cases. Korean J Radiol. 21:365–368.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Warren TK, Wells J, Panchal RG, et al:
Protection against filovirus diseases by a novel broad-spectrum
nucleoside analogue BCX4430. Nature. 508:402–405. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pan Y, Guan H, Zhou S, et al: Initial CT
findings and temporal changes in patients with the novel
coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan,
China. Eur Radiol. Feb 13–2020.Epub ahead of print. View Article : Google Scholar
|
|
87
|
Pan F, Ye T, Sun P, Gui S, Liang B, Li L,
Zheng D, Wang J, Hesketh RL, Yang L, et al: Time Course of Lung
Changes On Chest CT During Recovery From 2019 Novel Coronavirus
(COVID-19) Pneumonia. Radiology. Feb 13–2020.Epub ahead of print.
View Article : Google Scholar
|
|
88
|
Zheng YY, Ma YT, Zhang JY and Xie X:
COVID-19 and the cardiovascular system. Nat Rev Cardiol. Mar
5–2020.Epub ahead of print. View Article : Google Scholar
|
|
89
|
Sung JJ, Wu A, Joynt GM, et al: Severe
acute respiratory syndrome: report of treatment and outcome after a
major outbreak. Thorax. 59:414–420. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chu CM, Cheng VC, Hung IF, et al: Role of
lopinavir/ritonavir in the treatment of SARS: initial virological
and clinical findings. Thorax. 59:252–256. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Loutfy MR, Blatt LM, Siminovitch KA, et
al: Interferon alfacon-1 plus corticosteroids in severe acute
respiratory syndrome: a preliminary study. JAMA. 290:3222–3228.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tsui PT, Kwok ML, Yuen H and Lai ST:
Severe acute respiratory syndrome: clinical outcome and prognostic
correlates. Emerg Infect Dis. 9:1064–1069. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cheng Y, Wong R, Soo YO, et al: Use of
convalescent plasma therapy in SARS patients in Hong Kong. Eur J
Clin Microbiol Infect Dis. 24:44–46. 2005. View Article : Google Scholar
|
|
94
|
Omrani AS, Saad MM, Baig K, et al:
Ribavirin and interferon alfa-2a for severe Middle East respiratory
syndrome coronavirus infection: a retrospective cohort study.
Lancet Infect Dis. 14:1090–1095. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Widagdo W, Okba NMA, Stalin Raj V and
Haagmans BL: MERS-coronavirus: From discovery to intervention. One
Heal. 3:11–16. 2016. View Article : Google Scholar
|
|
96
|
Calina D, Rosu L, Rosu AF, et al:
Etiological diagnosis and pharmacotherapeutic management of
parapneumonic pleuresy. Farmacia. 64:946-52. 2016.
|
|
97
|
Cowling BJ, Lam TTY, Yen HL, Poon LLM and
Peiris M: Evidence-Based Options for Controlling Respiratory Virus
Transmission. Emerg Infect Dis. 23:1712312017. View Article : Google Scholar
|
|
98
|
Zhao Z, Zhang F, Xu M, et al: Description
and clinical treatment of an early outbreak of severe acute
respiratory syndrome (SARS) in Guangzhou, PR China. J Med
Microbiol. 52:715–720. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Al-Qahtani AA, Lyroni K, Aznaourova M, et
al: Middle east respiratory syndrome corona virus spike
glycoprotein suppresses macrophage responses via DPP4-mediated
induction of IRAK-M and PPARγ. Oncotarget. 8:9053–9066. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lim J, Jeon S, Shin HY, Kim MJ, Seong YM,
Lee WJ, Choe KW, Kang YM, Lee B and Park SJ: Case of the Index
Patient Who Caused Tertiary Transmission of COVID-19 Infection in
Korea: The Application of Lopinavir/Ritonavir for the Treatment of
COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J
Korean Med Sci. 35:e792020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Agostini ML, Andres EL, Sims AC, et al:
Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is
Mediated by the Viral Polymerase and the Proofreading
Exoribonuclease. mBio. 9:e00221–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cho A, Saunders OL, Butler T, et al:
Synthesis and antiviral activity of a series of 1′-substituted
4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett.
22:2705-7. 2012. View Article : Google Scholar
|
|
103
|
Sheahan TP, Sims AC, Graham RL, Menachery
VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I,
et al: Broad-spectrum antiviral GS-5734 inhibits both epidemic and
zoonotic coronaviruses. Sci Transl Med. 9:36532017. View Article : Google Scholar
|
|
104
|
Sun ML, Yang JM, Sun YP and Su GH:
Inhibitors of RAS Might Be a Good Choice for the Therapy of
COVID-19 Pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 43:142020.
|
|
105
|
Colson P, Rolain JM, Lagier JC, Brouqui P
and Raoult D: Chloroquine and hydroxychloroquine as available
weapons to fight COVID-19. Int J Antimicrob Agents. Mar 4–2020.Epub
ahead of print. View Article : Google Scholar
|
|
106
|
Gao J, Tian Z and Yang X: Breakthrough:
Chloroquine phosphate has shown apparent efficacy in treatment of
COVID-19 asso-ciated pneumonia in clinical studies. Biosci Trends.
14:72–73. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Clinical Trials Arena: ROCHE to start
Phase III trial of Actemra in Covid-19 patients. https://www.clinicaltrialsarena.com/news/roche-actemra-covid-19-trial/.
Accessed March 19 2020.
|
|
108
|
Healio: Sarilumab enters clinical trial
for COVID-19, spotlighting 'key role' for IL-6. https://www.healio.com/rheu-matology/rheumatoid-arthritis/news/online/%7B1957db6e-f7a2-4e5d-939e-d4b5964b2dd3%7D/sarilumab-enters-clinical-trial-for-covid-19-spotlighting-key-role-for-il-6.
Accessed March 19, 2020.
|
|
109
|
Zhitomirsky B and Assaraf YG: Lysosomes as
mediators of drug resistance in cancer. Drug Resist Updat.
24:23–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kazmi F, Hensley T, Pope C, Funk RS,
Loewen GJ, Buckley DB and Parkinson A: Lysosomal sequestration
(trapping) of lipophilic amine (cationic amphiphilic) drugs in
immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos.
41:897–905. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Adar Y, Stark M, Bram EE, Nowak-Sliwinska
P, van den Bergh H, Szewczyk G, Sarna T, Skladanowski A, Griffioen
AW and Assaraf YG: Imidazoacridinone-dependent lysosomal
photodestruction: A pharmacological Trojan horse approach to
eradicate multidrug-resistant cancers. Cell Death Dis. 3:e293.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ashfaq UA, Javed T, Rehman S, Nawaz Z and
Riazuddin S: Lysosomotropic agents as HCV entry inhibitors. Virol
J. 8:1632011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kaufmann AM and Krise JP: Lysosomal
sequestration of amine-containing drugs: Analysis and therapeutic
implications. J Pharm Sci. 96:729–746. 2007. View Article : Google Scholar
|
|
114
|
WHO: SARS risk assessment and preparedness
framework. 2004, https://www.who.int/csr/resources/publications/CDS_CSR_ARO_2004_2.pdf.
|
|
115
|
Craven J: COVID-19 Vaccine Tracker.
Regulatory Affairs Professionals Society (RAPS); 2020, https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker.
Accessed March 21, 2020.
|
|
116
|
Martin JE, Louder MK, Holman LA, et al:
VRC 301 Study Team. Vaccine. 26:6338–6343. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lin JT, Zhang JS, Su N, et al: Safety and
immunogenicity from a phase I trial of inactivated severe acute
respiratory syndrome coronavirus vaccine. Antivir Ther.
12:1107–1113. 2007.PubMed/NCBI
|
|
118
|
Beigel JH, Voell J, Kumar P, et al: Safety
and tolerability of a novel, polyclonal human anti-MERS coronavirus
antibody produced from transchromosomic cattle: a phase 1
randomised, double-blind, single-dose-escalation study. Lancet
Infect Dis. 18:410–418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Janice Oh HL, Ken-En Gan S, Bertoletti A
and Tan YJ: Understanding the T cell immune response in SARS
coronavirus infection. Emerg Microbes Infect. 1:e232012. View Article : Google Scholar : PubMed/NCBI
|