Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)

  • Authors:
    • George Mihai Nitulescu
    • Horia Paunescu
    • Sterghios A. Moschos
    • Dimitrios Petrakis
    • Georgiana Nitulescu
    • George Nicolae Daniel Ion
    • Demetrios A. Spandidos
    • Taxiarchis Konstantinos Nikolouzakis
    • Nikolaos Drakoulis
    • Aristidis Tsatsakis
  • View Affiliations / Copyright

    Affiliations: Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle‑Upon‑Tyne NE1 8ST, UK, Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
    Copyright: © Nitulescu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 467-488
    |
    Published online on: May 18, 2020
       https://doi.org/10.3892/ijmm.2020.4608
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale. Drug repurposing, also known as drug repositioning, and target based methods are the most used strategies to advance therapeutic solutions into clinical practice. Current in silico, in vitro and in vivo evidence regarding proposed treatments are summarized providing strong support for future research efforts.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Lai CC, Shih TP, Ko WC, Tang HJ and Hsueh PR: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 55:1059242020. View Article : Google Scholar : PubMed/NCBI

2 

Fehr AR and Perlman S: Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Chen Y, Liu Q and Guo D: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 92:418–423. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M and Hernández AF: COVID-19 an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. In Press.

5 

Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI

6 

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Li X, Geng M, Peng Y, Meng L and Lu S: Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI

9 

Paules CI, Marston HD and Fauci AS: Coronavirus infections - more than just the common cold. JAMA. 323:7072020. View Article : Google Scholar

10 

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and divergence of the Novel Coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM and Snijder EJ: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6:e2262008. View Article : Google Scholar : PubMed/NCBI

14 

Alsaadi EA and Jones IM: Membrane binding proteins of coronaviruses. Future Virol. 14:275–286. 2019. View Article : Google Scholar

15 

Robbins M, Judge A, Liang L, McClintock K, Yaworski E and MacLachlan I: 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther. 15:1663–1669. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Kikkert M: Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 12:4–20. 2020. View Article : Google Scholar :

17 

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O′Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. https://doi.org/10.1038/s41586-020-2286-9.

18 

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367:1260–1263. 2020. View Article : Google Scholar : PubMed/NCBI

19 

To KF and Lo AWI: Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 203:740–743. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Sawicki SG, Sawicki DL and Siddell SG: A contemporary view of coronavirus transcription. J Virol. 81:20–29. 2007. View Article : Google Scholar :

23 

Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM and Al-Nasser AD: Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. 9:E2312020. View Article : Google Scholar : PubMed/NCBI

24 

Gribble J, Pruijssers AJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Stevens LJ, Routh AL and Denison MR: The coronavirus proofreading exoribonuclease mediates extensive viral recombination. bioRxiv: https://doi.org/10.1101/2020.04.23057786.

25 

Ferron F, Subissi L, Silveira De Morais AT, Le NTT, Sevajol M, Gluais L, Decroly E, Vonrhein C, Bricogne G, Canard B, et al: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA. 115:E162–E171. 2018. View Article : Google Scholar

26 

Forster P, Forster L, Renfrew C and Forster M: Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 117:9241–9243. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, et al: On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. nwaa0362020.

28 

Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Abfalterer W, Foley B, Giorgi EE, Bhattacharya T, Parker MD, et al: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv: https://.org/10.1101/2020.04.29069054.

29 

van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CCS, Boshier FAT, et al: Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. May 5–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

30 

Bilinska K, Jakubowska P, Von Bartheld CS and Butowt R: Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. May 7–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

31 

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J and Hauser BM: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. https://doi.org/10.1016/j.cell.2020.04.035.

32 

Moschos SA, Frick M, Taylor B, Turnpenny P, Graves H, Spink KG, Brady K, Lamb D, Collins D, Rockel TD, et al: Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense. Mol Ther. 19:2163–2168. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Di Pasquale G and Chiorini JA: AAV transcytosis through barrier epithelia and endothelium. Mol Ther. 13:506–516. 2006. View Article : Google Scholar

34 

Lin L, Lu L, Cao W and Li T: Hypothesis for potential pathogenesis of SARS-CoV-2 infection - a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 9:727–732. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, Yin H, Xiao Q, Tang Y, Qu X, et al: Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 5:434–435. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Xiao F, Tang M, Zheng X, Liu Y, Li X and Shan H: Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 158:1831–1833.e3. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Song C, Wang Y, Li W, Hu B, Chen G, Xia P, Wang W, Li C, Hu Z, Yang X, et al: Detection of 2019 novel coronavirus in semen and testicular biopsy specimen of COVID-19 patients. medRxiv: :https://doi.org/10.1101/2020.03.31.20042333.

38 

Chen Y and Li L: SARS-CoV-2: Virus dynamics and host response. Lancet Infect Dis. 20:515–516. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Yi Y, Lagniton PNP, Ye S, Li E and Xu RH: COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 16:1753–1766. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G and Melino G: COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27:1451–1454. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, et al: Profiling early humoral response to diagnose novel Coronavirus Disease (COVID-19). Clin Infect Dis ciaa. 310:2020.

42 

To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, Yip CC, Cai JP, Chan JM, Chik TS, et al: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect Dis. 20:565–574. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Cao Z, Liu L, Du L, Zhang C, Jiang S, Li T and He Y: Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol J. 7:2992010. View Article : Google Scholar : PubMed/NCBI

44 

Calina D, Docea AO, Petrakis D, Egorov A M, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020.

45 

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, Song S, Ma Z, Mo P and Zhang Y: Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 221:1762–1769. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, Lai WY, Yang DM, Chou SJ, Yang YP, et al: A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci. 21:212020. View Article : Google Scholar

48 

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, et al: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. Feb 27–2020.Epub ahead of print. View Article : Google Scholar

49 

Shojaei A and Salari P: COVID-19 and off label use of drugs: An ethical viewpoint. Daru. May 8–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

50 

Senanayake SL: Drug repurposing strategies for COVID-19. Future Drug Discov: fdd-2020-0010. 2020. View Article : Google Scholar

51 

Sanders JM, Monogue ML, Jodlowski TZ and Cutrell JB: Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A Review. JAMA. 323:1824–1836. 2020.

52 

Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J and Krähenbühl S: Pharmacokinetics and pharmacodynamics of recombinant human angio-tensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 52:783–792. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Wilkins MR, Aman J, Harbaum L, Ulrich A, Wharton J and Rhodes CJ: Recent advances in pulmonary arterial hypertension. F1000Research. 7:F1000 Faculty Rev- 1128. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et al: A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 21:2342017. View Article : Google Scholar : PubMed/NCBI

55 

Batlle D, Wysocki J and Satchell K: Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci (Lond). 134:543–545. 2020. View Article : Google Scholar

56 

US National Library of Medicine: Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With COVID-19 (APN01-COVID-19). http://ClinicalTrials.gov Identifier: NCT04335136. https://clinicaltrials.gov/ct2/show/NCT04335136?term=NCT04335136&draw=2amp;rank=1. Accessed April 6, 2020.

57 

Han Y and Král P: Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 14:5143–5147. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Heinemann L, Baughman R, Boss A and Hompesch M: Pharmacokinetic and pharmacodynamic properties of a novel inhaled insulin. J Diabetes Sci Technol. 11:148–156. 2017. View Article : Google Scholar :

59 

Deng J, Wang D-X, Deng W, Li C-Y and Tong J: The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury. Can Respir J. 19:311–318. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, et al: Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 51:1312–1317. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Qi Y, Zhang J, Cole-Jeffrey CT, Shenoy V, Espejo A, Hanna M, Song C, Pepine CJ, Katovich MJ and Raizada MK: Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension. 62:746–752. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom EE, Rodrigo L, Kruzliak P, et al: The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol. 47:751–758. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Gurwitz D: Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. Mar 4–2020.Epub ahead of print. View Article : Google Scholar

64 

Ishikura H, Nishimura S, Matsunami M, Tsujiuchi T, Ishiki T, Sekiguchi F, Naruse M, Nakatani T, Kamanaka Y and Kawabata A: The proteinase inhibitor camostat mesilate suppresses pancreatic pain in rodents. Life Sci. 80:1999–2004. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, et al: Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 116:76–84. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 86:6537–6545. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS, Garten W, Klenk HD, Gabriel G, et al: TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 88:4744–4751. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Fuwa M, Kageyama M, Ohashi K, Sasaoka M, Sato R, Tanaka M and Tashiro K: Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci Rep. 9:204092019. View Article : Google Scholar

69 

Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI and Matsuda Z: Identification of Nafamostat as a potent inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-mediated membrane fusion using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob Agents Chemother. 60:6532–6539. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Lee YK, Lee HW, Choi KH and Kim BS: Ability of nafamostat mesilate to prolong filter patency during continuous renal replacement therapy in patients at high risk of bleeding: A randomized controlled study. PLoS One. 9:e1087372014. View Article : Google Scholar : PubMed/NCBI

72 

Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, Morrissey C, Corey E, Montgomery B, Mostaghel E, et al: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4:1310–1325. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Laporte M and Naesens L: Airway proteases: An emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol. 24:16–24. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Maggio R and Corsini GU: Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol Res. 157:1048372020. View Article : Google Scholar : PubMed/NCBI

75 

Zhirnov OP, Matrosovich TY, Matrosovich MN and Klenk HD: Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir Chem Chemother. 21:169–174. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Bojkova D, McGreig JE, McLaughlin KM, Masterson SG, Widera M, Krähling V, Ciesek S, Wass MN, Michaelis M and Cinatl J Jr: SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. bioRxiv: :https://doi.org/10.1101/2020.04.03024257.

77 

Chen Z, Mi L, Xu J, Yu J, Wang X, Jiang J, Xing J, Shang P, Qian A, Li Y, et al: Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 191:755–760. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Watanabe A, Yoneda M, Ikeda F, Terao-Muto Y, Sato H and Kai C: CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol. 84:4183–4193. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Lythgoe MP and Middleton P: Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci. Apr 9–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

80 

Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T and Sugamura K: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 81:8722–8729. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 178:1047862020. View Article : Google Scholar : PubMed/NCBI

82 

Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D and Richardson P: COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 20:400–402. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Conner SD and Schmid SL: Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol. 156:921–929. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Sorrell FJ, Szklarz M, Abdul Azeez KR, Elkins JM and Knapp S: Family-wide structural analysis of human Numb-associated protein kinases. Structure. 24:401–411. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Eberl HC, Werner T, Reinhard FB, Lehmann S, Thomson D, Chen P, Zhang C, Rau C, Muelbaier M, Drewes G, et al: Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Sci Rep. 9:141592019. View Article : Google Scholar : PubMed/NCBI

86 

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 11:16202020. View Article : Google Scholar : PubMed/NCBI

87 

Dana D and Pathak SK: A review of small molecule inhibitors and functional probes of human Cathepsin L. Molecules. 25:6982020. View Article : Google Scholar :

88 

Cossart P and Helenius A: Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol. 6:a0169722014. View Article : Google Scholar : PubMed/NCBI

89 

Nicola AV, McEvoy AM and Straus SE: Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol. 77:5324–5332. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Touret F and de Lamballerie X: Of chloroquine and COVID-19. Antiviral Res. 177:1047622020. View Article : Google Scholar : PubMed/NCBI

91 

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. Mar 9–2020.Epub ahead of print. View Article : Google Scholar :

92 

Devaux CA, Rolain JM, Colson P and Raoult D: New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents. Mar 12–2020.Epub ahead of print. View Article : Google Scholar

93 

Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D and De Clercq E: Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 49:2845–2849. 2006. View Article : Google Scholar : PubMed/NCBI

94 

de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J and Snijder EJ: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 58:4875–4884. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI

96 

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A and Einav S: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. Mar 10–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

97 

Gao J, Tian Z and Yang X: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 14:72–73. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Guangdong Provincial Department of Science and Technology and Guangdong Provincial Health Commission Multi-center Collaborative Group of chloroquine phosphate for the treatment of New Coronavirus Pneumonia: Expert consensus on the treatment of new coronavirus pneumonia with chloroquine phosphate. Zhonghua Jie He He Hu Xi Za Zhi. 43:185–188. 2020.

99 

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6:162020. View Article : Google Scholar : PubMed/NCBI

100 

Chen Z, Hu J and Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B and Zhang Z: Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv: :https://doi.org/10.1101/2020.03.22.20040758.

101 

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. Mar 20–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

102 

Hickley NM, Al-Maskari A and McKibbin M: Chloroquine and hydroxychloroquine toxicity. Arch Ophthalmol. 129:1506–1507. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Taccone FS, Gorham J and Vincent JL: Hydroxychloroquine in the management of critically ill patients with COVID-19: The need for an evidence base. Lancet Respir Med. Apr 15–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

104 

Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS and Ambati J: Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv: :https://doi.org/10.1101/2020.04.16.20065920.

105 

Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, et al: Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol. 82:2515–2527. 2008. View Article : Google Scholar :

106 

Hall DC Jr and Ji HF: A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis. Apr 12–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

107 

Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, et al: α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J Med Chem. 63:4562–4578. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K and Hilgenfeld R: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 368:409–412. 2020.PubMed/NCBI

109 

Croxtall JD and Perry CM: Lopinavir/Ritonavir: A review of its use in the management of HIV-1 infection. Drugs. 70:1885–1915. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, Cheng VC, Tsui WH, Hung IF and Lee TS: In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 31:69–75. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Yamamoto N, Matsuyama S, Hoshino T and Yamamoto N: Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv: :https://doi.org/10.1101/2020.04.06026476.

112 

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, et al: A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 382:1787–1799. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Boopathi S, Poma AB and Kolandaivel P: Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. Apr 30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

114 

Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, Rabenau H, Doerr HW, Hunsmann G, Otaka A, et al: HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun. 318:719–725. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Fintelman-Rodrigues N, Sacramento CQ, Lima CR, da Silva FS, Ferreira AC, Mattos M, de Freitas CS, Soares VC, da Silva Gomes Dias S, Temerozo JR, et al: Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. bioRxiv: :https://doi.org/10.1101/2020.04.04020925.

116 

Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, et al: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio. 9:e00221–e18. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, et al: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. Apr 10–2020.Epub ahead of print. View Article : Google Scholar

118 

Smith EC: The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathog. 13:e1006254. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Smith EC, Blanc H, Surdel MC, Vignuzzi M and Denison MR: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics. PLoS Pathog. 9:e1003565. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L and Zuñiga S: Mutagenesis of Coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol. 90:5399–5414. 2016. View Article : Google Scholar : PubMed/NCBI

121 

De Clercq E and Li G: DC approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 29:695–747. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Elfiky AA: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 253:1175922020. View Article : Google Scholar : PubMed/NCBI

123 

Amirian ES and Levy JK: Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health. 9:1001282020. View Article : Google Scholar : PubMed/NCBI

124 

US Food and Drug Administration (FDA): Recommendations for Investigational COVID-19 Convalescent Plasma. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma. Accessed May 1, 2020.

125 

Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al; PALM Writing Group. PALM Consortium Study Team: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 381:2293–2303. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: Washington State 2019-nCoV Case Investigation Team: First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI

127 

COVID-19 Investigation Team: Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med. Apr 23–2020.Epub ahead of print.

128 

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, et al: Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 395:P1569–P1578. 2020. View Article : Google Scholar

129 

Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H and Shiraki K: Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 49:981–986. 2005. View Article : Google Scholar : PubMed/NCBI

130 

Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF and Barnard DL: Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 100:446–454. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Jordan PC, Stevens SK and Deval J: Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother. 26:20402066187644832018. View Article : Google Scholar : PubMed/NCBI

132 

Madelain V, Nguyen THT, Olivo A, de Lamballerie X, Guedj J, Taburet A-M and Mentré F: Ebola virus infection: Review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clin Pharmacokinet. 55:907–923. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Nagata T, Lefor AK, Hasegawa M and Ishii M: Favipiravir: A new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 9:79–81. 2015. View Article : Google Scholar

134 

Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, et al: Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing). Mar 18–2020.Epub ahead of print.

135 

Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, Dong L, Retterer CJ, Eaton BP, Pegoraro G, et al: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 508:402–405. 2014. View Article : Google Scholar : PubMed/NCBI

136 

Taylor R, Kotian P, Warren T, Panchal R, Bavari S, Julander J, Dobo S, Rose A, El-Kattan Y, Taubenheim B, et al: BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health. 9:220–226. 2016. View Article : Google Scholar : PubMed/NCBI

137 

De Clercq E: New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J. 14:3962–3968. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH III, Stevens LJ, et al: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 12:eabb58832020. View Article : Google Scholar : PubMed/NCBI

139 

Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, et al: Small-molecule antiviral β-d-N4-Hydroxycytidine inhibits a proofreading-intact Coronavirus with a high genetic barrier to resistance. J Virol. 93:e01348–e19. 2019. View Article : Google Scholar :

140 

Stockman LJ, Bellamy R and Garner P: SARS: Systematic review of treatment effects. PLoS Med. 3:e343. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Moens U and Macdonald A: Effect of the large and small T-antigens of human polyomaviruses on signaling pathways. Int J Mol Sci. 20:202019. View Article : Google Scholar

142 

Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, et al: SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun. 10:57702019. View Article : Google Scholar : PubMed/NCBI

143 

Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, Heinz DE, Heinemann N, Lennarz M, Richter A, et al: Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. bioRxiv: :https://doi.org/10.1101/2020.04.15.997254.

144 

Mizutani T, Fukushi S, Saijo M, Kurane I and Morikawa S: Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells. Virology. 327:169–174. 2004. View Article : Google Scholar : PubMed/NCBI

145 

Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DA, Libra M and Tsatsakis AM: Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol. 48:869–885. 2016. View Article : Google Scholar :

146 

Denisova OV, Söderholm S, Virtanen S, Von Schantz C, Bychkov D, Vashchinkina E, Desloovere J, Tynell J, Ikonen N, Theisen LL, et al: Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents Chemother. 58:3689–3696. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, et al: Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother. 59:1088–1099. 2015. View Article : Google Scholar :

148 

De Santi M, Baldelli G, Diotallevi A, Galluzzi L, Schiavano GF and Brandi G: Metformin prevents cell tumorigenesis through autophagy-related cell death. Sci Rep. 9:662019. View Article : Google Scholar : PubMed/NCBI

149 

Lehrer S: Inhaled biguanides and mTOR inhibition for influenza and coronavirus (Review). World Acad Sci J. 2:12020.PubMed/NCBI

150 

Chen W, Mook RA Jr, Premont RT and Wang J: Niclosamide: Beyond an antihelminthic drug. Cell Signal. 41:89–96. 2018. View Article : Google Scholar

151 

Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, et al: Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother. 48:2693–2696. 2004. View Article : Google Scholar : PubMed/NCBI

152 

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, et al: Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respi-ratory syndrome coronavirus. J Med Chem. 50:4087–4095. 2007. View Article : Google Scholar : PubMed/NCBI

153 

Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R and Greber UF: Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog. 8:e1002976. 2012. View Article : Google Scholar : PubMed/NCBI

154 

Schweizer MT, Haugk K, McKiernan JS, Gulati R, Cheng HH, Maes JL, Dumpit RF, Nelson PS, Montgomery B, McCune JS, et al: A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS One. 13:e01983892018. View Article : Google Scholar : PubMed/NCBI

155 

Pizzorno A, Terrier O, Nicolas de Lamballerie C, Julien T, Padey B, Traversier A, Roche M, Hamelin ME, Rhéaume C, Croze S, et al: Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Front Immunol. 10:602019. View Article : Google Scholar : PubMed/NCBI

156 

Rossignol J-F: Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 9:227–230. 2016. View Article : Google Scholar : PubMed/NCBI

157 

Shou J, Wang M, Cheng X, Wang X, Zhang L, Liu Y, Fei C, Wang C, Gu F, Xue F, et al: Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells. Arch Pharm Res. 43:257–270. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Blaising J, Polyak SJ and Pécheur E-I: Arbidol as a broad-spectrum antiviral: An update. Antiviral Res. 107:84–94. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Haviernik J, Štefánik M, Fojtíková M, Kali S, Tordo N, Rudolf I, Hubálek Z, Eyer L and Ruzek D: Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses. 10:1842018. View Article : Google Scholar :

160 

Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, Lu J and Xue Y: Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. Apr 10–2020.Epub ahead of print. View Article : Google Scholar

161 

Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z and Xia J: Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. Mar 11–2020.Epub ahead of print. View Article : Google Scholar

162 

Lian N, Xie H, Lin S, Huang J, Zhao J and Lin Q: Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect. Apr 25–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

163 

Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, et al: The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 6:282020. View Article : Google Scholar : PubMed/NCBI

164 

Crump A: Ivermectin: Enigmatic multifaceted ′wonder′ drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 70:495–505. 2017. View Article : Google Scholar

165 

Caly L, Druce JD, Catton MG, Jans DA and Wagstaff KM: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 178:1047872020. View Article : Google Scholar : PubMed/NCBI

166 

Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA and Jans DA: The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 177:1047602020. View Article : Google Scholar

167 

Juarez M, Schcolnik-Cabrera A and Dueñas-Gonzalez A: The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 8:317–331. 2018.PubMed/NCBI

168 

Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, Deng Y, Wang H, Ye F, Cen S, et al: High-throughput screening and identification of potent broad-spectrum inhibitors of Coronaviruses. J Virol. 93:e00023–e19. 2019. View Article : Google Scholar : PubMed/NCBI

169 

Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L and Wang XJ: The natural compound Homoharringtonine presents broad antiviral activity in Vitro and in Vivo. Viruses. 10:6012018. View Article : Google Scholar :

170 

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O′Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. Apr 30–2020.Epub ahead of print. View Article : Google Scholar

171 

D′Elia RV, Harrison K, Oyston PC, Lukaszewski RA and Clark GC: Targeting the 'cytokine storm' for therapeutic benefit. Clin Vaccine Immunol. 20:319–327. 2013. View Article : Google Scholar

172 

Tay MZ, Poh CM, Rénia L, MacAry PA and Ng LFP: The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. Apr 28–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

173 

Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI

174 

Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL and Borca MV: The role of interleukin 6 during viral infections. Front Microbiol. 10:10572019. View Article : Google Scholar : PubMed/NCBI

175 

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, UK: COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI

176 

Betts BC, St Angelo ET, Kennedy M and Young JW: Anti-IL6-receptor-alpha (tocilizumab) does not inhibit human monocyte-derived dendritic cell maturation or alloreactive T-cell responses. Blood. 118:5340–5343. 2011. View Article : Google Scholar : PubMed/NCBI

177 

Reichert JM: Which are the antibodies to watch in 2013? MAbs. 5:1–4. 2013. View Article : Google Scholar :

178 

Chinese Clinical Trial Registry (ChiCTR): A clinical study for the efficacy and safety of Adalimumab Injection in the treatment of patients with severe novel coronavirus pneumonia (COVID-19). Registration number: ChiCTR2000030089. http://www.chictr.org.cn/showprojen.aspx?proj=49889. Accessed February 22, 2020.

179 

Kamimura D, Ishihara K and Hirano T: IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev Physiol Biochem Pharmacol. 149:1–38. 2003.PubMed/NCBI

180 

Kaur S, Bansal Y, Kumar R and Bansal G: A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic Med Chem. 28:1153272020. View Article : Google Scholar

181 

Rose-John S: IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 8:1237–1247. 2012. View Article : Google Scholar : PubMed/NCBI

182 

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI

183 

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W and Tian DS: Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. Mar 12–2020.Epub ahead of print.

184 

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 395:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI

185 

Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B and Sève P: Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. May 4–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

186 

Srirangan S and Choy EH: The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2:247–256. 2010. View Article : Google Scholar : PubMed/NCBI

187 

Alzghari SK and Acuña VS: Supportive treatment with Tocilizumab for COVID-19: A systematic review. J Clin Virol. 127:1043802020. View Article : Google Scholar : PubMed/NCBI

188 

Sciascia S, Aprà F, Baffa A, Baldovino S, Boaro D, Boero R, Bonora S, Calcagno A, Cecchi I, Cinnirella G, et al: Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. May 1–2020.Epub ahead of print.

189 

Bae SC and Lee YH: Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: A Bayesian network meta-analysis of randomized controlled trials. Clin Rheumatol. 37:1471–1479. 2018. View Article : Google Scholar : PubMed/NCBI

190 

Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S and Van Hemelrijck M: Associations between immune-suppressive and stimulating drugs and novel COVID-19 - a systematic review of current evidence. Ecancermedicalscience. 14:10222020. View Article : Google Scholar

191 

Dinarello CA: The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 20(Suppl 27): S1–S13. 2002.

192 

Sichelstiel A, Yadava K, Trompette A, Salami O, Iwakura Y, Nicod LP and Marsland BJ: Targeting IL-1β and IL-17A driven inflammation during influenza-induced exacerbations of chronic lung inflammation. PLoS One. 9:e984402014. View Article : Google Scholar

193 

Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M, Richards D and Hussell T: Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 395:1407–1409. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. Apr 30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

195 

Berlin I, Thomas D, Le Faou AL and Cornuz J: COVID-19 and smoking. Nicotine Tob Res. Apr 3–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

196 

Arimori Y, Nakamura R, Yamada H, Shibata K, Maeda N, Kase T and Yoshikai Y: Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antiviral Res. 99:230–237. 2013. View Article : Google Scholar : PubMed/NCBI

197 

Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R and Menachery VD: SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv: :https://doi.org/10.1101/2020.03.07.982264.

198 

Mantlo E, Bukreyeva N, Maruyama J, Paessler S and Huang C: Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 179:1048112020. View Article : Google Scholar : PubMed/NCBI

199 

Deftereos S, Giannopoulos G, Vrachatis DA, Siasos G, Giotaki SG, Cleman M, Dangas G and Stefanadis C: Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks. Eur Hear J Cardiovasc Pharmacother. Apr 27–2020.Epub ahead of print. View Article : Google Scholar

200 

Hemilä H: Vitamin C and Infections. Nutrients. 9:3392017. View Article : Google Scholar :

201 

Cheng RZ: Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med drug Discov. 5:1000282020. View Article : Google Scholar : PubMed/NCBI

202 

Marik PE, Kory P and Varon J: Does vitamin D status impact mortality from SARS-CoV-2 infection? Med drug Discov. Apr 29–2020.Epub ahead of print. View Article : Google Scholar :

203 

Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int J Mol Med. 46:17–26. 2020.

204 

Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C and Ranasinghe P: Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 14:367–382. 2020. View Article : Google Scholar : PubMed/NCBI

205 

Langsted A and Nordestgaard BG: Antisense oligonucleotides targeting lipoprotein(a). Curr Atheroscler Rep. 21:302019. View Article : Google Scholar : PubMed/NCBI

206 

Li Q: Nusinersen as a therapeutic agent for spinal muscular atrophy. Yonsei Med J. 61:273–283. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, Pendergast MK, Goldkind SF, Lee EA, Kuniholm A, et al: Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 381:1644–1652. 2019. View Article : Google Scholar : PubMed/NCBI

208 

Moschos SA, Usher L and Lindsay MA: Clinical potential of oligonucleotide-based therapeutics in the respiratory system. Pharmacol Ther. 169:83–103. 2017. View Article : Google Scholar

209 

Ng B, Cash-Mason T, Wang Y, Seitzer J, Burchard J, Brown D, Dudkin V, Davide J, Jadhav V, Sepp-Lorenzino L, et al: Intratracheal administration of siRNA triggers mRNA silencing in the lung to modulate T cell immune response and lung inflammation. Mol Ther Nucleic Acids. 16:194–205. 2019. View Article : Google Scholar : PubMed/NCBI

210 

Le ATH, Krylova SM, Kanoatov M, Desai S and Krylov SN: Ideal-filter capillary electrophoresis (IFCE) facilitates the one-step selection of aptamers. Angew Chem Int Ed Engl. 58:2739–2743. 2019. View Article : Google Scholar

211 

Yufa R, Krylova SM, Bruce C, Bagg EA, Schofield CJ and Krylov SN: Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: Allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein. Anal Chem. 87:1411–1419. 2015. View Article : Google Scholar

212 

Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, et al: Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza. bioRxiv: :https://doi.org/10.1101/2020.03.13991307.

213 

Schopman NCT, ter Brake O and Berkhout B: Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs. Retrovirology. 7:522010. View Article : Google Scholar : PubMed/NCBI

214 

Duncan GA, Kim N, Colon-Cortes Y, Rodriguez J, Mazur M, Birket SE, Rowe SM, West NE, Livraghi-Butrico A, Boucher RC, et al: An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. Mol Ther Methods Clin Dev. 9:296–304. 2018. View Article : Google Scholar : PubMed/NCBI

215 

Kurosaki F, Uchibori R, Mato N, Sehara Y, Saga Y, Urabe M, Mizukami H, Sugiyama Y and Kume A: Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Ther. 24:290–297. 2017. View Article : Google Scholar : PubMed/NCBI

216 

Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, et al: CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight. 1:e887282016. View Article : Google Scholar :

217 

Suhy DA, Kao SC, Mao T, Whiteley L, Denise H, Souberbielle B, Burdick AD, Hayes K, Wright JF, Lavender H, et al: Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model. Mol Ther. 20:1737–1749. 2012. View Article : Google Scholar : PubMed/NCBI

218 

Denise H, Moschos SA, Sidders B, Burden F, Perkins H, Carter N, Stroud T, Kennedy M, Fancy SA, Lapthorn C, et al: Deep sequencing insights in therapeutic shRNA processing and siRNA target cleavage precision. Mol Ther Nucleic Acids. 3:e1452014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GN, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A, Tsatsakis A, et al: Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 46: 467-488, 2020.
APA
Nitulescu, G.M., Paunescu, H., Moschos, S.A., Petrakis, D., Nitulescu, G., Ion, G.N. ... Tsatsakis, A. (2020). Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). International Journal of Molecular Medicine, 46, 467-488. https://doi.org/10.3892/ijmm.2020.4608
MLA
Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N., Spandidos, D. A., Nikolouzakis, T. K., Drakoulis, N., Tsatsakis, A."Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)". International Journal of Molecular Medicine 46.2 (2020): 467-488.
Chicago
Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N., Spandidos, D. A., Nikolouzakis, T. K., Drakoulis, N., Tsatsakis, A."Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 467-488. https://doi.org/10.3892/ijmm.2020.4608
Copy and paste a formatted citation
x
Spandidos Publications style
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GN, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A, Tsatsakis A, et al: Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 46: 467-488, 2020.
APA
Nitulescu, G.M., Paunescu, H., Moschos, S.A., Petrakis, D., Nitulescu, G., Ion, G.N. ... Tsatsakis, A. (2020). Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). International Journal of Molecular Medicine, 46, 467-488. https://doi.org/10.3892/ijmm.2020.4608
MLA
Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N., Spandidos, D. A., Nikolouzakis, T. K., Drakoulis, N., Tsatsakis, A."Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)". International Journal of Molecular Medicine 46.2 (2020): 467-488.
Chicago
Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N., Spandidos, D. A., Nikolouzakis, T. K., Drakoulis, N., Tsatsakis, A."Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 467-488. https://doi.org/10.3892/ijmm.2020.4608
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team