Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review)

  • Authors:
    • Meryem Alagoz
    • Nasim Kherad
  • View Affiliations / Copyright

    Affiliations: Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
    Copyright: © Alagoz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 521-534
    |
    Published online on: May 19, 2020
       https://doi.org/10.3892/ijmm.2020.4609
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off‑target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)‑associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 169:5429–5433. 1987. View Article : Google Scholar : PubMed/NCBI

2 

Sorek R, Lawrence CM and Wiedenheft B: CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 82:237–266. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Karginov FV and Hannon GJ: The CRISPR system: Small RNA-guided defense in bacteria and archaea. Mol Cell. 37:7–19. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Barrangou R and Marraffini LA: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 54:234–244. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J and Hüttenhofer A: Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA. 99:7536–7541. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Hefferin ML and Tomkinson AE: Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst). 4:639–648. 2005. View Article : Google Scholar

9 

Davis AJ and Chen DJ: DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2:130–143. 2013.PubMed/NCBI

10 

Bibikova M, Golic M, Golic KG and Carroll GD: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161:1169–1175. 2002.PubMed/NCBI

11 

Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A and Takeda S: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R and Olson EN: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 345:1184–1188. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, et al: Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 125:2597–2604. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, et al: CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med. 8:477–488. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Guo Q, Mintier G, Ma-Edmonds M, Storton D, Wang X, Xiao X, Kienzle B, Zhao D and Feder JN: 'Cold shock' increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Sci Rep. 8:20802018. View Article : Google Scholar : PubMed/NCBI

16 

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Miller J, McLachlan AD and Klug A: Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614. 1985. View Article : Google Scholar : PubMed/NCBI

18 

Pavletich NP and Pabo CO: Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A. Science. 252:809–817. 1991. View Article : Google Scholar : PubMed/NCBI

19 

Wolfe SA, Nekludova L and Pabo CO: DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 29:183–212. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, et al: Rapid 'open-source' engineering of custom-ized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 31:294–301. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF and Joung JK: Oligomerized pool engineering (OPEN): An 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc. 4:1471–1501. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Pattanayak V, Ramirez CL, Joung JK and Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 8:765–770. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, et al: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 29:816–823. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD and Holmes MC: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 8:74–79. 2011. View Article : Google Scholar

25 

Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ and Cathomen T: Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 25:786–793. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, et al: An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25:778–785. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Bogdanove AJ, Schornack S and Lahaye T: TAL effectors: Finding plant genes for disease and defense. Curr Opin Plant Biol. 13:394–401. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Scholze H and Boch J: TAL effectors are remote controls for gene activation. Curr Opin Microbiol. 14:47–53. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF: Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186:757–761. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE nuclease archi-tecture for efficient genome editing. Nat Biotechnol. 29:143–148. 2011. View Article : Google Scholar

31 

Zhu H, Lau CH, Goh SL, Liang Q, Chen C, Du S, Phang RZ, Tay FC, Tan WK, Li Z, et al: Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res. 41:e1802013. View Article : Google Scholar : PubMed/NCBI

32 

Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G and Cathomen T: TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 42:6762–6773. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Gupta RM and Musunuru K: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 124:4154–4161. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonu-clease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, et al: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 6:363–372. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, et al: Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 15:169–182. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Shabbir MA, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J and Yuan Z: Survival and evolution of CRISPR-Cas system in prokaryotes and its applications. Front Immunol. 7:3752016. View Article : Google Scholar : PubMed/NCBI

39 

Sander JD and Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 32:347–355. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al: Evolution and classification of the CRISPR/Cas systems. Nat Rev Microbiol. 9:467–477. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, et al: An updated evolutionary classification of CRISPR/Cas systems. Nat Rev Microbiol. 13:722–736. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV and van der Oost J: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 321:960–964. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Haurwitz RE, Jinek M, Wiedenheft B, Zhou K and Doudna JA: Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science. 329:1355–1358. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Sashital DG, Wiedenheft B and Doudna JA: Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. 46:606–615. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P and Siksnys V: In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32:385–394. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Westra ER, van Erp PB, Künne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, et al: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell. 46:595–605. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V and Seidel R: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA. 111:9798–9803. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJ and Severinov K: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA. 108:10098–11103. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E and Doudna JA: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA. 111:6618–6623. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F and Nureki O: Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156:935–949. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Gasiunas G, Barrangou R, Horvath P and Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 109:E2579–E2586. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA: RNA-guided editing of bacterial genomes using CRISPR/Cas systems. Nat Biotechnol. 31:233–239. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Sternberg SH, Redding S, Jinek M, Greene EC and Doudna JA: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507:62–67. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Carte J, Wang R, Li H, Terns RM and Terns MP: Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22:3489–3496. 2008. View Article : Google Scholar

55 

Chen F, Ding X, Feng Y, Seebeck T, Jiang Y and Davis GD: Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat Commun. 8:149582017. View Article : Google Scholar : PubMed/NCBI

56 

Hatoum-Aslan A, Maniv I and Marraffini LA: Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci USA. 108:21218–21222. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Peng W, Feng M, Feng X, Liang YX and She Q: An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res. 43:406–417. 2015. View Article : Google Scholar :

58 

Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A and Marraffini LA: Co-transcriptional DNA and RNA Cleavage during Type III CRISPR/Cas Immunity. Cell. 161:1164–1174. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, et al: RNA targeting by the type III-A CRISPR/Cas Csm complex of thermus thermophilus. Mol Cell. 56:518–530. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas Č, Nwokeoji AO, Dickman MJ, Horvath P and Siksnys V: Programmable RNA shredding by the type III-A CRISPR-Cas system of streptococcus thermophilus. Mol Cell. 56:506–517. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M and Nicoletti A: Metals and neurodegenerative diseases. A systematic review. Environ Res. 159:82–94. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Bertram L, McQueen MB, Mullin K, Blacker D and Tanzi RE: Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat Genet. 39:17–23. 2007. View Article : Google Scholar

63 

Armstrong RA: What causes Alzheimer's disease? Folia Neuropathol. 51:169–188. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Heidenreich M and Zhang F: Applications of CRISPR/Cas systems in neuroscience. Nat Rev Neurosci. 17:36–44. 2016. View Article : Google Scholar

65 

Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, et al: Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 269:973–977. 1995. View Article : Google Scholar : PubMed/NCBI

66 

Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J, Grünberg J, Haass C, et al: The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA. 94:2025–2030. 1997. View Article : Google Scholar : PubMed/NCBI

67 

Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM and Kim DY: BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J. 27:2458–2467. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Stutzmann GE, Caccamo A, LaFerla FM and Parker I: Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci. 24:508–513. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Yue W, Li Y, Zhang T, Jiang M, Qian Y, Zhang M, Sheng N, Feng S, Tang K, Yu X, et al: ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer's disease in mouse models. Stem Cell Reports. 5:776–790. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, Tsankov A, Shang L, Krumholz K, Jagadeesan P, et al: Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods. 12:885–892. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, et al: CRISPR/Cas9-Correctable mutation-related molecular and phys-iological phenotypes in iPSC-derived Alzheimer's PSEN2N141I neurons. Acta Neuropathol Commun. 5:772017. View Article : Google Scholar

72 

Liu C, Zhang L, Liu H and Cheng K: Delivery strategies of the CRISPR/Cas9 gene-editing system for therapeutic applications. J Control Release. 266:17–26. 2017. View Article : Google Scholar : PubMed/NCBI

73 

György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, et al: CRISPR/Cas9 mediated disruption of the swedish app allele as a therapeutic approach for early-onset Alzheimer's disease. Mol Ther Nucleic Acids. 11:429–440. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Mirzaei HR, Sahebkar A and Salehi R, Nahand JS, Karimi E, Jaafari MR, Mirzaei H, Sahebkar A and Salehi R: Boron neutron capture therapy: Moving toward targeted cancer therapy. J Cancer Res Ther. 12:520–525. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei HR, Salarinia R and Mirzaei H: The role of fibromodulin in cancer pathogenesis: Implications for diagnosis and therapy. Cancer Cell Int. 19:1572019. View Article : Google Scholar : PubMed/NCBI

76 

Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z and Mirzaei H: Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res. 147:1043532019. View Article : Google Scholar : PubMed/NCBI

77 

Scott A: How CRISPR is transforming drug discovery. Nature. 555:S10–S11. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, Tookman LA, Orange C, Athineos D, Mason S, et al: CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 76:6118–6129. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S, Llop-Guevara A, Ibrahim YH, Gris-Oliver A, Bonache S, Morancho B, Bruna A, Rueda OM, et al: RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann Oncol. 29:1203–1210. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS and Huang B: Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 155:1479–1491. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE and Gersbach CA: CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol. 35:561–568. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Brabetz O, Alla V, Angenendt L, Schliemann C, Berdel WE, Arteaga MF and Mikesch JH: RNA-guided CRISPR/Cas9 system-mediated engineering of acute myeloid leukemia mutations. Mol Ther Nucleic Acids. 6:243–248. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Xu J, Zwaigenbaum L, Szatmari P and Scherer SW: Molecular cytogenetics of autism. Curr Genomics. 5:347–364. 2004. View Article : Google Scholar

84 

Peña-Martínez P, Eriksson M, Ramakrishnan R, Chapellier M, Högberg C, Orsmark-Pietras C, Richter J, Andersson A, Fioretos T and Järås M: Interleukin 4 induces apoptosis of acute myeloid leukemia cells in a Stat6-dependent manner. Leukemia. 32:588–596. 2018. View Article : Google Scholar :

85 

Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, et al: Identification of essential genes for cancer immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Mirzaei H, Yazdi F, Salehi R and Mirzaei HR: SiRNA and epigenetic aberrations in ovarian cancer. J Canc Res Ther. 12:498–508. 2016. View Article : Google Scholar

87 

Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A, Mirzaei H and Hadjati J: Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett. 423:95–104. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Dai WJ, Zhu LY, Yan ZY, Xu Y, Wang QL and Lu XJ: CRISPR-Cas9 for in vivo gene therapy: Promise and hurdles. Mol Ther Nucleic Acids. 5:e3492016. View Article : Google Scholar :

89 

Mirzaei HR, Jamali A, Jafarzadeh L, Masoumi E, Alishah K, Fallah Mehrjardi K, Emami SAH, Noorbakhsh F, Till BG and Hadjati J: Construction and functional characterization of a fully human anti-CD19 chimeric antigen receptor (huCAR)-expressing primary human T cells. J Cell Physiol. 234:9207–9215. 2019. View Article : Google Scholar

90 

Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, Cabral JMS, Rooney CM, Orange JS, Brenner MK and Mamonkin M: Tonic 4-1BB costimulation in chimeric antigen receptors impedes T Cell survival and is vector-dependent. Cell Rep. 21:17–26. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Mirzaei HR, Mirzaei H, Lee SY, Hadjati J and Till BG: Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380:413–423. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG and Hadjati J: Predictive and therapeutic biomarkers in chimeric antigen receptor T-cell therapy: A clinical perspective. J Cell Physiol. 234:5827–5841. 2019. View Article : Google Scholar

93 

Mirzaei HR, Rodriguez A, Shepphird J, Brown CE and Badie B: Corrigendum: Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Front Immunol. 10:7802019. View Article : Google Scholar : PubMed/NCBI

94 

Mah JK: Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr Dis Treat. 12:1795–1807. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Lee SH, Lee JH, Lee KA and Choi YC: Clinical and genetic characterization of female dystrophinopathy. J Clin Neurol. 11:248–251. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, et al: The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 36:395–402. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Mendell JR, Kissel J, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, et al: Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med. 333:832–838. 1995. View Article : Google Scholar : PubMed/NCBI

98 

Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T and Buckingham M: Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309:2064–2067. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M and Perlingeiro RC: Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 10:610–619. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S and Aoki Y: Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: From discovery to clinical trials. Am J Transl Res. 8:2471–2489. 2016.PubMed/NCBI

101 

Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, et al: Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 4:143–154. 2015. View Article : Google Scholar :

102 

Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, et al: A single CRISPR/Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 18:533–540. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Cacchiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, Sthandier O and Bozzoni I: miR-31 modulates dystro-phin expression: New implications for Duchenne muscular dystrophy therapy. EMBO Rep. 12:136–114. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S and Koblin B: Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. 27:472–481. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA and Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 86:367–377. 1996. View Article : Google Scholar : PubMed/NCBI

106 

Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, et al: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 360:692–698. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 370:901–910. 2014. View Article : Google Scholar : PubMed/NCBI

108 

DiGiusto DL, Cannon PM, Holmes MC, Li L, Rao A, Wang J, Lee G, Gregory PD, Kim KA, Hayward SB, et al: Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Clin Dev. 3:160672016. View Article : Google Scholar : PubMed/NCBI

109 

Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, Tran C A, Torres-Coronado M, Gardner A, Gonzalez N, et al: Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 21:1259–1269. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC and Cannon PM: Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 28:839–847. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, et al: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 134:577–586. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD and Harada M: Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 106:1565–1573. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, et al: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 467:318–322. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, et al: Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA. 111:9591–9596. 2014. View Article : Google Scholar

115 

Hsu PD, Lander ES and Zhang F: Development and applications of CRISPR/Cas9 for genome engineering. Cell. 157:1262–1278. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Hütter G: Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Res Ther. 13:312016. View Article : Google Scholar : PubMed/NCBI

117 

Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W and Khalili K: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep. 6:225552016. View Article : Google Scholar : PubMed/NCBI

118 

Huang Z and Nair M: A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Sci Rep. 7:59552017. View Article : Google Scholar : PubMed/NCBI

119 

Lervolino LG, Baldin PE, Picado SM, Calil KB, Viel AA and Campos LA: Prevalence of sickle cell disease and sickle cell trait in national neonatal screening studies. Rev Bras Hematol Hemoter. 33:49–54. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Cradick TJ, Fine EJ, Antico CJ and Bao G: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41:9584–9592. 2013. View Article : Google Scholar : PubMed/NCBI

121 

DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Muñoz DP, Boffelli D, et al: Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 8:360ra1342016. View Article : Google Scholar : PubMed/NCBI

122 

Stephens CJ, Kashentseva E, Everett W, Kaliberova L and Curiel DT: Targeted in vivo knock-in of human alpha-1-anti-trypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther. 25:139–156. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu SI, Ozawa K, Tominaga SI, Hanazono Y, Nishimura S, Nureki O and Sakata Y: CRISPR/Cas9-mediated genome editing via post-natal administration of AAV vector cures haemophilia B mice. Sci Rep. 7:41592017. View Article : Google Scholar

124 

Bergmann T, Ehrke-Schulz E, Gao J, Schiwon M, Schildgen V, David S, Schildgen O and Ehrhardt A: Designer nuclease-medi-ated gene correction via homology-directed repair in an in vitro model of canine hemophilia. B J Gene Med. 20:e30202018. View Article : Google Scholar

125 

Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, et al: Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther. 9:922018. View Article : Google Scholar : PubMed/NCBI

126 

Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, Amiel J, Le Merrer M, Heron D, de Blois MC, et al: Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 43:843–849. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR and Samulski RJ: Preclinical differences of intravascular AAV9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates. Mol Ther. 19:1058–1069. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U and Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 23:185–188. 1999. View Article : Google Scholar : PubMed/NCBI

129 

Matagne V, Ehinger Y, Saidi L, Borges-Correia A, Barkats M, Bartoli M, Villard L and Roux JC: A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 99:1–11. 2017. View Article : Google Scholar

130 

Kyle SM, Saha PK, Brown HM, Chan LC and Justice MJ: MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet. 25:3029–3041. 2016.PubMed/NCBI

131 

Pignataro D, Sucunza D, Vanrell L, Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ, Lanciego JL and Gonzalez-Aseguinolaza G: Adeno-associated viral vectors serotype 8 for cell-specific delivery of therapeutic genes in the central nervous system. Front Neuroanat. 11:122017. View Article : Google Scholar

132 

Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A and Doudna JA: Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol. 35:431–434. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S and Li XJ: CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. J Clin Invest. 127:2719–2724. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, Park HM, Brenner R, Murthy N and Lee HY: Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2:497–507. 2018. View Article : Google Scholar

135 

Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH and Crawley JN: Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 4:131ra512012. View Article : Google Scholar : PubMed/NCBI

136 

Tao J, Wu H, Coronado AA, de Laittre E, Osterweil EK, Zhang Y and Bear MF: Negative allosteric modulation of mGluR5 partially corrects pathophysiology in a mouse model of Rett syndrome. J Neurosci. 36:11946–11958. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Almad AA and Maragakis NJ: Glia: An emerging target for neurological disease therapy. Stem Cell Res Ter. 3:372012. View Article : Google Scholar

138 

Alagoz M, Kherad N, Gavaz M and Yuksel A: New genetic approaches for early diagnosis and treatment of autism spectrum disorders. Rev J Autism Dev Disoed. 6:367–380. 2019. View Article : Google Scholar

139 

Kim S, Kim D, Cho SW, Kim J and Kim JS: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012–1019. 2014. View Article : Google Scholar : PubMed/NCBI

140 

Klein M, Eslami-Mossallam B, Arroyo DG and Depken M: Hybridization kinetics explains CRISPR/Cas Off-targeting rules. Cell Rep. 22:1413–1423. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Chari R, Mali P, Moosburner M and Church GM: Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. 12:823–826. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Matsoukas IG: Commentary: CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Front Bioeng Biotechnol. 5:572017. View Article : Google Scholar : PubMed/NCBI

143 

Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK and Giraldez AJ: CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 12:982–988. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al: Engineered CRISPR/Cas9 nucleases with altered PAM specificities. Nature. 523:481–485. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V and Seidel R: Directional R-Loop formation by the CRISPR-Cas surveillance complex cascade provides efficient Off-target site rejection. Cell Rep. 10:1534–1543. 2015. View Article : Google Scholar : PubMed/NCBI

146 

Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR and Chamberlain JS: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 8:144542017. View Article : Google Scholar : PubMed/NCBI

147 

Morsy SG, Tonne JM, Zhu Y, Lu B, Budzik K, Krempski JW, Ali SA, El-Feky MA and Ikeda Y: Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population. BMC Res Notes. 10:7202017. View Article : Google Scholar : PubMed/NCBI

148 

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK and Sander JD: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population. Nat Biotechnol. 31:822–826. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Alagoz M and Kherad N: Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 46: 521-534, 2020.
APA
Alagoz, M., & Kherad, N. (2020). Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 46, 521-534. https://doi.org/10.3892/ijmm.2020.4609
MLA
Alagoz, M., Kherad, N."Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review)". International Journal of Molecular Medicine 46.2 (2020): 521-534.
Chicago
Alagoz, M., Kherad, N."Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 521-534. https://doi.org/10.3892/ijmm.2020.4609
Copy and paste a formatted citation
x
Spandidos Publications style
Alagoz M and Kherad N: Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 46: 521-534, 2020.
APA
Alagoz, M., & Kherad, N. (2020). Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 46, 521-534. https://doi.org/10.3892/ijmm.2020.4609
MLA
Alagoz, M., Kherad, N."Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review)". International Journal of Molecular Medicine 46.2 (2020): 521-534.
Chicago
Alagoz, M., Kherad, N."Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review)". International Journal of Molecular Medicine 46, no. 2 (2020): 521-534. https://doi.org/10.3892/ijmm.2020.4609
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team