|
1
|
Ishino Y, Shinagawa H, Makino K, Amemura M
and Nakata A: Nucleotide sequence of the iap gene, responsible for
alkaline phosphatase isozyme conversion in Escherichia coli, and
identification of the gene product. J Bacteriol. 169:5429–5433.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sorek R, Lawrence CM and Wiedenheft B:
CRISPR-mediated adaptive immune systems in bacteria and archaea.
Annu Rev Biochem. 82:237–266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Karginov FV and Hannon GJ: The CRISPR
system: Small RNA-guided defense in bacteria and archaea. Mol Cell.
37:7–19. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Barrangou R and Marraffini LA: CRISPR-Cas
systems: Prokaryotes upgrade to adaptive immunity. Mol Cell.
54:234–244. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cong L, Ran FA, Cox D, Lin S, Barretto R,
Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F:
Multiplex genome engineering using CRISPR/Cas systems. Science.
339:819–823. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Barrangou R, Fremaux C, Deveau H, Richards
M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides
acquired resistance against viruses in prokaryotes. Science.
315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tang TH, Bachellerie JP, Rozhdestvensky T,
Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J and
Hüttenhofer A: Identification of 86 candidates for small
non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc
Natl Acad Sci USA. 99:7536–7541. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hefferin ML and Tomkinson AE: Mechanism of
DNA double-strand break repair by non-homologous end joining. DNA
Repair (Amst). 4:639–648. 2005. View Article : Google Scholar
|
|
9
|
Davis AJ and Chen DJ: DNA double strand
break repair via non-homologous end-joining. Transl Cancer Res.
2:130–143. 2013.PubMed/NCBI
|
|
10
|
Bibikova M, Golic M, Golic KG and Carroll
GD: Targeted chromosomal cleavage and mutagenesis in Drosophila
using zinc-finger nucleases. Genetics. 161:1169–1175.
2002.PubMed/NCBI
|
|
11
|
Takata M, Sasaki MS, Sonoda E, Morrison C,
Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A and Takeda S:
Homologous recombination and non-homologous end-joining pathways of
DNA double-strand break repair have overlapping roles in the
maintenance of chromosomal integrity in vertebrate cells. EMBO J.
17:5497–5508. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Long C, McAnally JR, Shelton JM, Mireault
AA, Bassel-Duby R and Olson EN: Prevention of muscular dystrophy in
mice by CRISPR/Cas9-mediated editing of germline DNA. Science.
345:1184–1188. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hoban MD, Cost GJ, Mendel MC, Romero Z,
Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR, et al:
Correction of the sickle cell disease mutation in human
hematopoietic stem/progenitor cells. Blood. 125:2597–2604. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L,
Wang L, Zeng L, Shao Y, Chen Y, et al: CRISPR/Cas9-mediated somatic
correction of a novel coagulator factor IX gene mutation
ameliorates hemophilia in mouse. EMBO Mol Med. 8:477–488. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Guo Q, Mintier G, Ma-Edmonds M, Storton D,
Wang X, Xiao X, Kienzle B, Zhao D and Feder JN: 'Cold shock'
increases the frequency of homology directed repair gene editing in
induced pluripotent stem cells. Sci Rep. 8:20802018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zetsche B, Gootenberg JS, Abudayyeh OO,
Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van
der Oost J, Regev A, et al: Cpf1 is a single RNA-guided
endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Miller J, McLachlan AD and Klug A:
Repetitive zinc-binding domains in the protein transcription factor
IIIA from Xenopus oocytes. EMBO J. 4:1609–1614. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pavletich NP and Pabo CO: Zinc finger-DNA
recognition: Crystal structure of a Zif268-DNA complex at 2.1 A.
Science. 252:809–817. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wolfe SA, Nekludova L and Pabo CO: DNA
recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys
Biomol Struct. 29:183–212. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Maeder ML, Thibodeau-Beganny S, Osiak A,
Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ,
Townsend JA, et al: Rapid 'open-source' engineering of custom-ized
zinc-finger nucleases for highly efficient gene modification. Mol
Cell. 31:294–301. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Maeder ML, Thibodeau-Beganny S, Sander JD,
Voytas DF and Joung JK: Oligomerized pool engineering (OPEN): An
'open-source' protocol for making customized zinc-finger arrays.
Nat Protoc. 4:1471–1501. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pattanayak V, Ramirez CL, Joung JK and Liu
DR: Revealing off-target cleavage specificities of zinc-finger
nucleases by in vitro selection. Nat Methods. 8:765–770. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gabriel R, Lombardo A, Arens A, Miller JC,
Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman
G, et al: An unbiased genome-wide analysis of zinc-finger nuclease
specificity. Nat Biotechnol. 29:816–823. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Doyon Y, Vo TD, Mendel MC, Greenberg SG,
Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD and Holmes MC:
Enhancing zinc-finger-nuclease activity with improved obligate
heterodimeric architectures. Nat Methods. 8:74–79. 2011. View Article : Google Scholar
|
|
25
|
Szczepek M, Brondani V, Buchel J, Serrano
L, Segal DJ and Cathomen T: Structure-based redesign of the
dimerization interface reduces the toxicity of zinc-finger
nucleases. Nat Biotechnol. 25:786–793. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Miller JC, Holmes MC, Wang J, Guschin DY,
Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, et
al: An improved zinc-finger nuclease architecture for highly
specific genome editing. Nat Biotechnol. 25:778–785. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bogdanove AJ, Schornack S and Lahaye T:
TAL effectors: Finding plant genes for disease and defense. Curr
Opin Plant Biol. 13:394–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Scholze H and Boch J: TAL effectors are
remote controls for gene activation. Curr Opin Microbiol. 14:47–53.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Christian M, Cermak T, Doyle EL, Schmidt
C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF: Targeting DNA
double-strand breaks with TAL effector nucleases. Genetics.
186:757–761. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Miller JC, Tan S, Qiao G, Barlow KA, Wang
J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE
nuclease archi-tecture for efficient genome editing. Nat
Biotechnol. 29:143–148. 2011. View Article : Google Scholar
|
|
31
|
Zhu H, Lau CH, Goh SL, Liang Q, Chen C, Du
S, Phang RZ, Tay FC, Tan WK, Li Z, et al: Baculoviral transduction
facilitates TALEN-mediated targeted transgene integration and
Cre/LoxP cassette exchange in human-induced pluripotent stem cells.
Nucleic Acids Res. 41:e1802013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mussolino C, Alzubi J, Fine EJ, Morbitzer
R, Cradick TJ, Lahaye T, Bao G and Cathomen T: TALENs facilitate
targeted genome editing in human cells with high specificity and
low cytotoxicity. Nucleic Acids Res. 42:6762–6773. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gupta RM and Musunuru K: Expanding the
genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin
Invest. 124:4154–4161. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Deltcheva E, Chylinski K, Sharma CM,
Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier
E: CRISPR RNA maturation by trans-encoded small RNA and host factor
RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA
endonu-clease in adaptive bacterial immunity. Science. 337:816–821.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liang P, Xu Y, Zhang X, Ding C, Huang R,
Zhang Z, Lv J, Xie X, Chen Y, Li Y, et al: CRISPR/Cas9-mediated
gene editing in human tripronuclear zygotes. Protein Cell.
6:363–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shmakov S, Smargon A, Scott D, Cox D,
Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf
YI, et al: Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 15:169–182. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shabbir MA, Hao H, Shabbir MZ, Hussain HI,
Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J and Yuan Z: Survival and
evolution of CRISPR-Cas system in prokaryotes and its applications.
Front Immunol. 7:3752016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sander JD and Joung JK: CRISPR-Cas systems
for editing, regulating and targeting genomes. Nat Biotechnol.
32:347–355. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Makarova KS, Haft DH, Barrangou R, Brouns
SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI,
Yakunin AF, et al: Evolution and classification of the CRISPR/Cas
systems. Nat Rev Microbiol. 9:467–477. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Makarova KS, Wolf YI, Alkhnbashi OS, Costa
F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E,
Haft DH, et al: An updated evolutionary classification of
CRISPR/Cas systems. Nat Rev Microbiol. 13:722–736. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brouns SJ, Jore MM, Lundgren M, Westra ER,
Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV and
van der Oost J: Small CRISPR RNAs guide antiviral defense in
prokaryotes. Science. 321:960–964. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K
and Doudna JA: Sequence- and structure-specific RNA processing by a
CRISPR endonuclease. Science. 329:1355–1358. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sashital DG, Wiedenheft B and Doudna JA:
Mechanism of foreign DNA selection in a bacterial adaptive immune
system. Mol Cell. 46:606–615. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sinkunas T, Gasiunas G, Waghmare SP,
Dickman MJ, Barrangou R, Horvath P and Siksnys V: In vitro
reconstitution of Cascade-mediated CRISPR immunity in Streptococcus
thermophilus. EMBO J. 32:385–394. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Westra ER, van Erp PB, Künne T, Wong SP,
Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K,
et al: CRISPR immunity relies on the consecutive binding and
degradation of negatively supercoiled invader DNA by Cascade and
Cas3. Mol Cell. 46:595–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Szczelkun MD, Tikhomirova MS, Sinkunas T,
Gasiunas G, Karvelis T, Pschera P, Siksnys V and Seidel R: Direct
observation of R-loop formation by single RNA-guided Cas9 and
Cascade effector complexes. Proc Natl Acad Sci USA. 111:9798–9803.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Semenova E, Jore MM, Datsenko KA, Semenova
A, Westra ER, Wanner B, van der Oost J, Brouns SJ and Severinov K:
Interference by clustered regularly interspaced short palindromic
repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad
Sci USA. 108:10098–11103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hochstrasser ML, Taylor DW, Bhat P,
Guegler CK, Sternberg SH, Nogales E and Doudna JA: CasA mediates
Cas3-catalyzed target degradation during CRISPR RNA-guided
interference. Proc Natl Acad Sci USA. 111:6618–6623. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nishimasu H, Ran FA, Hsu PD, Konermann S,
Shehata SI, Dohmae N, Ishitani R, Zhang F and Nureki O: Crystal
structure of Cas9 in complex with guide RNA and target DNA. Cell.
156:935–949. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gasiunas G, Barrangou R, Horvath P and
Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific
DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci
USA. 109:E2579–E2586. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jiang W, Bikard D, Cox D, Zhang F and
Marraffini LA: RNA-guided editing of bacterial genomes using
CRISPR/Cas systems. Nat Biotechnol. 31:233–239. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sternberg SH, Redding S, Jinek M, Greene
EC and Doudna JA: DNA interrogation by the CRISPR RNA-guided
endonuclease Cas9. Nature. 507:62–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Carte J, Wang R, Li H, Terns RM and Terns
MP: Cas6 is an endoribonuclease that generates guide RNAs for
invader defense in prokaryotes. Genes Dev. 22:3489–3496. 2008.
View Article : Google Scholar
|
|
55
|
Chen F, Ding X, Feng Y, Seebeck T, Jiang Y
and Davis GD: Targeted activation of diverse CRISPR-Cas systems for
mammalian genome editing via proximal CRISPR targeting. Nat Commun.
8:149582017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hatoum-Aslan A, Maniv I and Marraffini LA:
Mature clustered, regularly interspaced, short palindromic repeats
RNA (crRNA) length is measured by a ruler mechanism anchored at the
precursor processing site. Proc Natl Acad Sci USA. 108:21218–21222.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Peng W, Feng M, Feng X, Liang YX and She
Q: An archaeal CRISPR type III-B system exhibiting distinctive RNA
targeting features and mediating dual RNA and DNA interference.
Nucleic Acids Res. 43:406–417. 2015. View Article : Google Scholar :
|
|
58
|
Samai P, Pyenson N, Jiang W, Goldberg GW,
Hatoum-Aslan A and Marraffini LA: Co-transcriptional DNA and RNA
Cleavage during Type III CRISPR/Cas Immunity. Cell. 161:1164–1174.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Staals RH, Zhu Y, Taylor DW, Kornfeld JE,
Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau
K, et al: RNA targeting by the type III-A CRISPR/Cas Csm complex of
thermus thermophilus. Mol Cell. 56:518–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tamulaitis G, Kazlauskiene M, Manakova E,
Venclovas Č, Nwokeoji AO, Dickman MJ, Horvath P and Siksnys V:
Programmable RNA shredding by the type III-A CRISPR-Cas system of
streptococcus thermophilus. Mol Cell. 56:506–517. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cicero CE, Mostile G, Vasta R, Rapisarda
V, Signorelli SS, Ferrante M, Zappia M and Nicoletti A: Metals and
neurodegenerative diseases. A systematic review. Environ Res.
159:82–94. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bertram L, McQueen MB, Mullin K, Blacker D
and Tanzi RE: Systematic meta-analyses of Alzheimer disease genetic
association studies: The AlzGene database. Nat Genet. 39:17–23.
2007. View
Article : Google Scholar
|
|
63
|
Armstrong RA: What causes Alzheimer's
disease? Folia Neuropathol. 51:169–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Heidenreich M and Zhang F: Applications of
CRISPR/Cas systems in neuroscience. Nat Rev Neurosci. 17:36–44.
2016. View Article : Google Scholar
|
|
65
|
Levy-Lahad E, Wasco W, Poorkaj P, Romano
DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K,
et al: Candidate gene for the chromosome 1 familial Alzheimer's
disease locus. Science. 269:973–977. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tomita T, Maruyama K, Saido TC, Kume H,
Shinozaki K, Tokuhiro S, Capell A, Walter J, Grünberg J, Haass C,
et al: The presenilin 2 mutation (N141I) linked to familial
Alzheimer disease (Volga German families) increases the secretion
of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc
Natl Acad Sci USA. 94:2025–2030. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sachse CC, Kim YH, Agsten M, Huth T,
Alzheimer C, Kovacs DM and Kim DY: BACE1 and presenilin/γ-secretase
regulate proteolytic processing of KCNE1 and 2, auxiliary subunits
of voltage-gated potassium channels. FASEB J. 27:2458–2467. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stutzmann GE, Caccamo A, LaFerla FM and
Parker I: Dysregulated IP3 signaling in cortical neurons of
knock-in mice expressing an Alzheimer's-linked mutation in
presenilin1 results in exaggerated Ca2+ signals and
altered membrane excitability. J Neurosci. 24:508–513. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yue W, Li Y, Zhang T, Jiang M, Qian Y,
Zhang M, Sheng N, Feng S, Tang K, Yu X, et al: ESC-derived basal
forebrain cholinergic neurons ameliorate the cognitive symptoms
associated with Alzheimer's disease in mouse models. Stem Cell
Reports. 5:776–790. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Paull D, Sevilla A, Zhou H, Hahn AK, Kim
H, Napolitano C, Tsankov A, Shang L, Krumholz K, Jagadeesan P, et
al: Automated, high-throughput derivation, characterization and
differentiation of induced pluripotent stem cells. Nat Methods.
12:885–892. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ortiz-Virumbrales M, Moreno CL, Kruglikov
I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B,
Schadt EE, et al: CRISPR/Cas9-Correctable mutation-related
molecular and phys-iological phenotypes in iPSC-derived Alzheimer's
PSEN2N141I neurons. Acta Neuropathol Commun. 5:772017.
View Article : Google Scholar
|
|
72
|
Liu C, Zhang L, Liu H and Cheng K:
Delivery strategies of the CRISPR/Cas9 gene-editing system for
therapeutic applications. J Control Release. 266:17–26. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
György B, Lööv C, Zaborowski MP, Takeda S,
Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis
V, et al: CRISPR/Cas9 mediated disruption of the swedish app allele
as a therapeutic approach for early-onset Alzheimer's disease. Mol
Ther Nucleic Acids. 11:429–440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mirzaei HR, Sahebkar A and Salehi R,
Nahand JS, Karimi E, Jaafari MR, Mirzaei H, Sahebkar A and Salehi
R: Boron neutron capture therapy: Moving toward targeted cancer
therapy. J Cancer Res Ther. 12:520–525. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pourhanifeh MH, Mohammadi R, Noruzi S,
Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei
HR, Salarinia R and Mirzaei H: The role of fibromodulin in cancer
pathogenesis: Implications for diagnosis and therapy. Cancer Cell
Int. 19:1572019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR,
Sahebkar A, Asemi Z and Mirzaei H: Targeting regulatory T cells by
curcumin: A potential for cancer immunotherapy. Pharmacol Res.
147:1043532019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Scott A: How CRISPR is transforming drug
discovery. Nature. 555:S10–S11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Walton J, Blagih J, Ennis D, Leung E,
Dowson S, Farquharson M, Tookman LA, Orange C, Athineos D, Mason S,
et al: CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate
improved murine models of ovarian high-grade serous carcinoma.
Cancer Res. 76:6118–6129. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cruz C, Castroviejo-Bermejo M,
Gutiérrez-Enríquez S, Llop-Guevara A, Ibrahim YH, Gris-Oliver A,
Bonache S, Morancho B, Bruna A, Rueda OM, et al: RAD51 foci as a
functional biomarker of homologous recombination repair and PARP
inhibitor resistance in germline BRCA-mutated breast cancer. Ann
Oncol. 29:1203–1210. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen B, Gilbert LA, Cimini BA,
Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS,
Qi LS and Huang B: Dynamic imaging of genomic loci in living human
cells by an optimized CRISPR/Cas system. Cell. 155:1479–1491. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Klann TS, Black JB, Chellappan M, Safi A,
Song L, Hilton IB, Crawford GE, Reddy TE and Gersbach CA:
CRISPR-Cas9 epigenome editing enables high-throughput screening for
functional regulatory elements in the human genome. Nat Biotechnol.
35:561–568. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brabetz O, Alla V, Angenendt L, Schliemann
C, Berdel WE, Arteaga MF and Mikesch JH: RNA-guided CRISPR/Cas9
system-mediated engineering of acute myeloid leukemia mutations.
Mol Ther Nucleic Acids. 6:243–248. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xu J, Zwaigenbaum L, Szatmari P and
Scherer SW: Molecular cytogenetics of autism. Curr Genomics.
5:347–364. 2004. View Article : Google Scholar
|
|
84
|
Peña-Martínez P, Eriksson M, Ramakrishnan
R, Chapellier M, Högberg C, Orsmark-Pietras C, Richter J, Andersson
A, Fioretos T and Järås M: Interleukin 4 induces apoptosis of acute
myeloid leukemia cells in a Stat6-dependent manner. Leukemia.
32:588–596. 2018. View Article : Google Scholar :
|
|
85
|
Patel SJ, Sanjana NE, Kishton RJ,
Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM,
Yamamoto TN, et al: Identification of essential genes for cancer
immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mirzaei H, Yazdi F, Salehi R and Mirzaei
HR: SiRNA and epigenetic aberrations in ovarian cancer. J Canc Res
Ther. 12:498–508. 2016. View Article : Google Scholar
|
|
87
|
Mirzaei HR, Pourghadamyari H, Rahmati M,
Mohammadi A, Nahand JS, Rezaei A, Mirzaei H and Hadjati J:
Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up
for the next generation cancer immunotherapy. Cancer Lett.
423:95–104. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dai WJ, Zhu LY, Yan ZY, Xu Y, Wang QL and
Lu XJ: CRISPR-Cas9 for in vivo gene therapy: Promise and hurdles.
Mol Ther Nucleic Acids. 5:e3492016. View Article : Google Scholar :
|
|
89
|
Mirzaei HR, Jamali A, Jafarzadeh L,
Masoumi E, Alishah K, Fallah Mehrjardi K, Emami SAH, Noorbakhsh F,
Till BG and Hadjati J: Construction and functional characterization
of a fully human anti-CD19 chimeric antigen receptor
(huCAR)-expressing primary human T cells. J Cell Physiol.
234:9207–9215. 2019. View Article : Google Scholar
|
|
90
|
Gomes-Silva D, Mukherjee M, Srinivasan M,
Krenciute G, Dakhova O, Zheng Y, Cabral JMS, Rooney CM, Orange JS,
Brenner MK and Mamonkin M: Tonic 4-1BB costimulation in chimeric
antigen receptors impedes T Cell survival and is vector-dependent.
Cell Rep. 21:17–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J
and Till BG: Prospects for chimeric antigen receptor (CAR) γδ T
cells: A potential game changer for adoptive T cell cancer
immunotherapy. Cancer Lett. 380:413–423. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mirzaei HR, Mirzaei H, Namdar A, Rahmati
M, Till BG and Hadjati J: Predictive and therapeutic biomarkers in
chimeric antigen receptor T-cell therapy: A clinical perspective. J
Cell Physiol. 234:5827–5841. 2019. View Article : Google Scholar
|
|
93
|
Mirzaei HR, Rodriguez A, Shepphird J,
Brown CE and Badie B: Corrigendum: Chimeric antigen receptors T
cell therapy in solid tumor: Challenges and clinical applications.
Front Immunol. 10:7802019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mah JK: Current and emerging treatment
strategies for Duchenne muscular dystrophy. Neuropsychiatr Dis
Treat. 12:1795–1807. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lee SH, Lee JH, Lee KA and Choi YC:
Clinical and genetic characterization of female dystrophinopathy. J
Clin Neurol. 11:248–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Bladen CL, Salgado D, Monges S, Foncuberta
ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, et
al: The TREAT-NMD DMD Global Database: Analysis of more than 7,000
Duchenne muscular dystrophy mutations. Hum Mutat. 36:395–402. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mendell JR, Kissel J, Amato AA, King W,
Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, et
al: Myoblast transfer in the treatment of Duchenne's muscular
dystrophy. N Engl J Med. 333:832–838. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Montarras D, Morgan J, Collins C, Relaix
F, Zaffran S, Cumano A, Partridge T and Buckingham M: Direct
isolation of satellite cells for skeletal muscle regeneration.
Science. 309:2064–2067. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Darabi R, Arpke RW, Irion S, Dimos JT,
Grskovic M, Kyba M and Perlingeiro RC: Human ES- and iPS-derived
myogenic progenitors restore DYSTROPHIN and improve contractility
upon transplantation in dystrophic mice. Cell Stem Cell.
10:610–619. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shimizu-Motohashi Y, Miyatake S, Komaki H,
Takeda S and Aoki Y: Recent advances in innovative therapeutic
approaches for Duchenne muscular dystrophy: From discovery to
clinical trials. Am J Transl Res. 8:2471–2489. 2016.PubMed/NCBI
|
|
101
|
Li HL, Fujimoto N, Sasakawa N, Shirai S,
Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, et
al: Precise correction of the dystrophin gene in duchenne muscular
dystrophy patient induced pluripotent stem cells by TALEN and
CRISPR-Cas9. Stem Cell Reports. 4:143–154. 2015. View Article : Google Scholar :
|
|
102
|
Young CS, Hicks MR, Ermolova NV, Nakano H,
Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack
JA, et al: A single CRISPR/Cas9 deletion strategy that targets the
majority of DMD patients restores dystrophin function in
hiPSC-derived muscle cells. Cell Stem Cell. 18:533–540. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cacchiarelli D, Incitti T, Martone J,
Cesana M, Cazzella V, Santini T, Sthandier O and Bozzoni I: miR-31
modulates dystro-phin expression: New implications for Duchenne
muscular dystrophy therapy. EMBO Rep. 12:136–114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Marmor M, Sheppard HW, Donnell D, Bozeman
S, Celum C, Buchbinder S and Koblin B: Homozygous and heterozygous
CCR5-Delta32 genotypes are associated with resistance to HIV
infection. J Acquir Immune Defic Syndr. 27:472–481. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu R, Paxton WA, Choe S, Ceradini D,
Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA and Landau
NR: Homozygous defect in HIV-1 coreceptor accounts for resistance
of some multiply-exposed individuals to HIV-1 infection. Cell.
86:367–377. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hütter G, Nowak D, Mossner M, Ganepola S,
Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, et
al: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell
transplantation. N Engl J Med. 360:692–698. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tebas P, Stein D, Tang WW, Frank I, Wang
SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al: Gene
editing of CCR5 in autologous CD4 T cells of persons infected with
HIV. N Engl J Med. 370:901–910. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
DiGiusto DL, Cannon PM, Holmes MC, Li L,
Rao A, Wang J, Lee G, Gregory PD, Kim KA, Hayward SB, et al:
Preclinical development and qualification of ZFN-mediated CCR5
disruption in human hematopoietic stem/progenitor cells. Mol Ther
Methods Clin Dev. 3:160672016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li L, Krymskaya L, Wang J, Henley J, Rao
A, Cao LF, Tran C A, Torres-Coronado M, Gardner A, Gonzalez N, et
al: Genomic editing of the HIV-1 coreceptor CCR5 in adult
hematopoietic stem and progenitor cells using zinc finger
nucleases. Mol Ther. 21:1259–1269. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Holt N, Wang J, Kim K, Friedman G, Wang X,
Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC and Cannon PM:
Human hematopoietic stem/progenitor cells modified by zinc-finger
nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol.
28:839–847. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kumar P, Ban HS, Kim SS, Wu H, Pearson T,
Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, et al: T
cell-specific siRNA delivery suppresses HIV-1 infection in
humanized mice. Cell. 134:577–586. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ishikawa F, Yasukawa M, Lyons B, Yoshida
S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD and
Harada M: Development of functional human blood and immune systems
in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood.
106:1565–1573. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Cavazzana-Calvo M, Payen E, Negre O, Wang
G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, et al:
Transfusion independence and HMGA2 activation after gene therapy of
human β-thalassaemia. Nature. 467:318–322. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ye L, Wang J, Beyer AI, Teque F, Cradick
TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, et al: Seamless
modification of wild-type induced pluripotent stem cells to the
natural CCR5Δ32 mutation confers resistance to HIV infection. Proc
Natl Acad Sci USA. 111:9591–9596. 2014. View Article : Google Scholar
|
|
115
|
Hsu PD, Lander ES and Zhang F: Development
and applications of CRISPR/Cas9 for genome engineering. Cell.
157:1262–1278. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hütter G: Stem cell transplantation in
strategies for curing HIV/AIDS. AIDS Res Ther. 13:312016.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kaminski R, Chen Y, Fischer T, Tedaldi E,
Napoli A, Zhang Y, Karn J, Hu W and Khalili K: Elimination of HIV-1
genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing.
Sci Rep. 6:225552016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Huang Z and Nair M: A CRISPR/Cas9 guidance
RNA screen platform for HIV provirus disruption and HIV/AIDS gene
therapy in astrocytes. Sci Rep. 7:59552017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lervolino LG, Baldin PE, Picado SM, Calil
KB, Viel AA and Campos LA: Prevalence of sickle cell disease and
sickle cell trait in national neonatal screening studies. Rev Bras
Hematol Hemoter. 33:49–54. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Cradick TJ, Fine EJ, Antico CJ and Bao G:
CRISPR/Cas9 systems targeting β-globin and CCR5 genes have
substantial off-target activity. Nucleic Acids Res. 41:9584–9592.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
DeWitt MA, Magis W, Bray NL, Wang T,
Berman JR, Urbinati F, Heo SJ, Mitros T, Muñoz DP, Boffelli D, et
al: Selection-free genome editing of the sickle mutation in human
adult hematopoietic stem/progenitor cells. Sci Transl Med.
8:360ra1342016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Stephens CJ, Kashentseva E, Everett W,
Kaliberova L and Curiel DT: Targeted in vivo knock-in of human
alpha-1-anti-trypsin cDNA using adenoviral delivery of CRISPR/Cas9.
Gene Ther. 25:139–156. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ohmori T, Nagao Y, Mizukami H, Sakata A,
Muramatsu SI, Ozawa K, Tominaga SI, Hanazono Y, Nishimura S, Nureki
O and Sakata Y: CRISPR/Cas9-mediated genome editing via post-natal
administration of AAV vector cures haemophilia B mice. Sci Rep.
7:41592017. View Article : Google Scholar
|
|
124
|
Bergmann T, Ehrke-Schulz E, Gao J, Schiwon
M, Schildgen V, David S, Schildgen O and Ehrhardt A: Designer
nuclease-medi-ated gene correction via homology-directed repair in
an in vitro model of canine hemophilia. B J Gene Med. 20:e30202018.
View Article : Google Scholar
|
|
125
|
Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue
F, Liu X, Liu W, Fu R, Zhang L, et al: Targeted genome engineering
in human induced pluripotent stem cells from patients with
hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther.
9:922018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Jacquemont ML, Sanlaville D, Redon R,
Raoul O, Cormier-Daire V, Lyonnet S, Amiel J, Le Merrer M, Heron D,
de Blois MC, et al: Array-based comparative genomic hybridisation
identifies high frequency of cryptic chromosomal rearrangements in
patients with syndromic autism spectrum disorders. J Med Genet.
43:843–849. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Gray SJ, Matagne V, Bachaboina L, Yadav S,
Ojeda SR and Samulski RJ: Preclinical differences of intravascular
AAV9 delivery to neurons and glia: A comparative study of adult
mice and nonhuman primates. Mol Ther. 19:1058–1069. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Amir RE, Van den Veyver IB, Wan M, Tran
CQ, Francke U and Zoghbi HY: Rett syndrome is caused by mutations
in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat
Genet. 23:185–188. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
129
|
Matagne V, Ehinger Y, Saidi L,
Borges-Correia A, Barkats M, Bartoli M, Villard L and Roux JC: A
codon-optimized Mecp2 transgene corrects breathing deficits and
improves survival in a mouse model of Rett syndrome. Neurobiol Dis.
99:1–11. 2017. View Article : Google Scholar
|
|
130
|
Kyle SM, Saha PK, Brown HM, Chan LC and
Justice MJ: MeCP2 co-ordinates liver lipid metabolism with the
NCoR1/HDAC3 corepressor complex. Hum Mol Genet. 25:3029–3041.
2016.PubMed/NCBI
|
|
131
|
Pignataro D, Sucunza D, Vanrell L,
Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ,
Lanciego JL and Gonzalez-Aseguinolaza G: Adeno-associated viral
vectors serotype 8 for cell-specific delivery of therapeutic genes
in the central nervous system. Front Neuroanat. 11:122017.
View Article : Google Scholar
|
|
132
|
Staahl BT, Benekareddy M, Coulon-Bainier
C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A and
Doudna JA: Efficient genome editing in the mouse brain by local
delivery of engineered Cas9 ribonucleoprotein complexes. Nat
Biotechnol. 35:431–434. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yang S, Chang R, Yang H, Zhao T, Hong Y,
Kong HE, Sun X, Qin Z, Jin P, Li S and Li XJ: CRISPR/Cas9-mediated
gene editing ameliorates neurotoxicity in mouse model of
Huntington's disease. J Clin Invest. 127:2719–2724. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lee B, Lee K, Panda S, Gonzales-Rojas R,
Chong A, Bugay V, Park HM, Brenner R, Murthy N and Lee HY:
Nanoparticle delivery of CRISPR into the brain rescues a mouse
model of fragile X syndrome from exaggerated repetitive behaviours.
Nat Biomed Eng. 2:497–507. 2018. View Article : Google Scholar
|
|
135
|
Silverman JL, Smith DG, Rizzo SJ, Karras
MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH and
Crawley JN: Negative allosteric modulation of the mGluR5 receptor
reduces repetitive behaviors and rescues social deficits in mouse
models of autism. Sci Transl Med. 4:131ra512012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Tao J, Wu H, Coronado AA, de Laittre E,
Osterweil EK, Zhang Y and Bear MF: Negative allosteric modulation
of mGluR5 partially corrects pathophysiology in a mouse model of
Rett syndrome. J Neurosci. 36:11946–11958. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Almad AA and Maragakis NJ: Glia: An
emerging target for neurological disease therapy. Stem Cell Res
Ter. 3:372012. View Article : Google Scholar
|
|
138
|
Alagoz M, Kherad N, Gavaz M and Yuksel A:
New genetic approaches for early diagnosis and treatment of autism
spectrum disorders. Rev J Autism Dev Disoed. 6:367–380. 2019.
View Article : Google Scholar
|
|
139
|
Kim S, Kim D, Cho SW, Kim J and Kim JS:
Highly efficient RNA-guided genome editing in human cells via
delivery of purified Cas9 ribonucleoproteins. Genome Res.
24:1012–1019. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Klein M, Eslami-Mossallam B, Arroyo DG and
Depken M: Hybridization kinetics explains CRISPR/Cas Off-targeting
rules. Cell Rep. 22:1413–1423. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Chari R, Mali P, Moosburner M and Church
GM: Unraveling CRISPR-Cas9 genome engineering parameters via a
library-on-library approach. Nat Methods. 12:823–826. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Matsoukas IG: Commentary: CRISPR-Cas
encoding of a digital movie into the genomes of a population of
living bacteria. Front Bioeng Biotechnol. 5:572017. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Moreno-Mateos MA, Vejnar CE, Beaudoin JD,
Fernandez JP, Mis EK, Khokha MK and Giraldez AJ: CRISPRscan:
Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in
vivo. Nat Methods. 12:982–988. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Kleinstiver BP, Prew MS, Tsai SQ, Topkar
VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et
al: Engineered CRISPR/Cas9 nucleases with altered PAM
specificities. Nature. 523:481–485. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Rutkauskas M, Sinkunas T, Songailiene I,
Tikhomirova MS, Siksnys V and Seidel R: Directional R-Loop
formation by the CRISPR-Cas surveillance complex cascade provides
efficient Off-target site rejection. Cell Rep. 10:1534–1543. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Bengtsson NE, Hall JK, Odom GL, Phelps MP,
Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR and Chamberlain
JS: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates
pathophysiology in a mouse model for Duchenne muscular dystrophy.
Nat Commun. 8:144542017. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Morsy SG, Tonne JM, Zhu Y, Lu B, Budzik K,
Krempski JW, Ali SA, El-Feky MA and Ikeda Y: Divergent
susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing
in a single-cell-derived cell population. BMC Res Notes.
10:7202017. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Fu Y, Foden JA, Khayter C, Maeder ML,
Reyon D, Joung JK and Sander JD: High-frequency off-target
mutagenesis induced by CRISPR-Cas nucleases in human cells.
Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated
genome-editing in a single-cell-derived cell population. Nat
Biotechnol. 31:822–826. 2013. View Article : Google Scholar : PubMed/NCBI
|