|
1
|
Chan SH, Hung CH, Shih JY, Chu PM, Cheng
YH, Lin HC and Tsai KL: SIRT1 inhibition causes oxidative stress
and inflammation in patients with coronary artery disease. Redox
Biol. 13:301–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ibáñez B, Heusch G, Ovize M and Van de
Werf F: Evolving therapies for myocardial ischemia/reperfusion
injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ and
Chen Y: Protective role of melatonin in cardiac
ischemia-reperfusion injury: From pathogenesis to targeted therapy.
J Pineal Res. 64:2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mendes-Ferreira P, De Keulenaer GW,
Leite-Moreira AF and Brás-Silva C: Therapeutic potential of
neuregulin-1 in cardiovascular disease. Drug Discov Today.
18:836–842. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rupert CE and Coulombe KL: The roles of
neuregulin-1 in cardiac development, homeostasis, and disease.
Biomarker Insights. 10(Suppl 1): S1–S9. 2015.
|
|
6
|
Liu YQ, Yang M, Duan CH, Su GB, Wang JH,
Liu YF and Zhang J: Protective role of neuregulin-1 toward
doxorubicin-induced myocardial toxicity. Genet Mol Res.
13:4627–4634. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Galindo CL, Kasasbeh E, Murphy A, Ryzhov
S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y,
et al: Anti-remodeling and anti-fibrotic effects of the
neuregulin-1beta glial growth factor 2 in a large animal model of
heart failure. J Am Heart Assoc. 3:e0007732014. View Article : Google Scholar
|
|
8
|
Miao J, Huang S, Su YR, Lenneman CA,
Wright M, Harrell FE, Sawyer DB and Lenihan DJ: Effects of
endogenous serum neuregulin-1β on morbidity and mortality in
patients with heart failure and left ventricular systolic
dysfunction. Biomarkers. 23:704–708. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chou CF and Ozaki M: In silico analysis of
neuregulin 1 evolution in vertebrates. Biosci Rep. 30:267–275.
2010. View Article : Google Scholar
|
|
10
|
Kataria H, Alizadeh A and
Karimi-Abdolrezaee S: Neuregulin-1/ErbB network: An emerging
modulator of nervous system injury and repair. Prog Neurobiol.
180:1016432019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu X, Bates R, Yin DM, Shen C, Wang F, Su
N, Kirov SA, Luo Y, Wang JZ, Xiong WC and Mei L: Specific
regulation of NRG1 isoform expression by neuronal activity. J
Neurosci. 31:8491–8501. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tan W, Wang Y, Gold B, Chen J, Dean M,
Harrison PJ, Weinberger DR and Law AJ: Molecular cloning of a
brain-specific, developmentally regulated neuregulin 1 (NRG1)
isoform and identification of a functional promoter variant
associated with schizophrenia. J Biol Chem. 282:24343–24351. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hu X, Fan Q, Hou H and Yan R: Neurological
dysfunctions associated with altered BACE1-dependent Neuregulin-1
signaling. J Neurochem. 136:234–249. 2016. View Article : Google Scholar :
|
|
14
|
Zhang Z, Huang J, Shen Y and Li R:
BACE1-dependent Neuregulin-1 signaling: An implication for
schizophrenia. Front Mol Neurosci. 10:3022017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Willem M: Proteolytic processing of
Neuregulin-1. Brain Res Bull. 126:178–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mostaid MS, Lloyd D, Liberg B, Sundram S,
Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP and Bousman
CA: Neuregulin-1 and schizophrenia in the genome-wide association
study era. Neurosci Biobehav Rev. 68:387–409. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nagano T, Namba H, Abe Y, Aoki H, Takei N
and Nawa H: In vivo administration of epidermal growth factor and
its homologue attenuates developmental maturation of functional
excitatory synapses in cortical GABAergic neurons. Eur J Neurosci.
25:380–390. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Olayioye MA, Neve RM, Lane HA and Hynes
NE: The ErbB signaling network: Receptor heterodimerization in
development and cancer. EMBO J. 19:3159–3167. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schlessinger J: Ligand-induced,
receptor-mediated dimerization and activation of EGF receptor.
Cell. 110:669–672. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
D'Uva G and Lauriola M: Towards the
emerging crosstalk: ERBB family and steroid hormones. Semin Cell
Dev Biol. 50:143–152. 2016. View Article : Google Scholar
|
|
21
|
Li KX, Lu YM, Xu ZH, Zhang J, Zhu JM,
Zhang JM, Cao SX, Chen XJ, Chen Z, Luo JH, et al: Neuregulin 1
regulates excitability of fast-spiking neurons through Kv1.1 and
acts in epilepsy. Nat Neurosci. 15:267–273. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Falls D: Neuregulins: Functions, forms,
and signaling strategies. Exp Cell Res. 284:14–30. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Odiete O, Hill MF and Sawyer DB:
Neuregulin in cardiovascular development and disease. Circ Res.
111:1376–1385. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM,
Li XY, Lu LQ and Zhang JL: Neuregulin-1 preconditioning protects
the heart against ischemia/reperfusion injury through a
PI3K/Akt-dependent mechanism. Chin Med J (Engl). 123:3597–3604.
2010.
|
|
25
|
Morano M, Angotti C, Tullio F, Gambarotta
G, Penna C, Pagliaro P and Geuna S: Myocardial ischemia/reperfusion
upregulates the transcription of the Neuregulin1 receptor ErbB3,
but only postconditioning preserves protein translation: Role in
oxidative stress. Int J Cardiol. 233:73–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kuramochi Y, Cote GM, Guo X, Lebrasseur
NK, Cui L, Liao R and Sawyer DB: Cardiac endothelial cells regulate
reactive oxygen species-induced cardiomyocyte apoptosis through
neuregulin-1beta/erbB4 signaling. J Biol Chem. 279:51141–51147.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Iivanainen E, Paatero I, Heikkinen SM,
Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y and Elenius K:
Intra- and extracellular signaling by endothelial neuregulin-1. Exp
Cell Res. 313:2896–2909. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Griffiths HR, Gao D and Pararasa C: Redox
regulation in metabolic programming and inflammation. Redox Biol.
12:50–57. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nahrendorf M, Pittet MJ and Swirski FK:
Monocytes: Protagonists of infarct inflammation and repair after
myocardial infarction. Circulation. 121:2437–2445. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Vilahur G and Badimon L:
Ischemia/reperfusion activates myocardial innate immune response:
The key role of the toll-like receptor. Front Physiol. 5:4962014.
View Article : Google Scholar
|
|
31
|
Hoesel B and Schmid JA: The complexity of
NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013.
View Article : Google Scholar
|
|
32
|
Sun SC: Non-canonical NF-κB signaling
pathway. Cell Res. 21:71–85. 2011. View Article : Google Scholar
|
|
33
|
Sun SC: The non-canonical NF-κB pathway in
immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou Q, Wang L, Wang X, Xiong Q, Wei Y,
Dang S and Zhong L: Effect of neuregulin-1 on heart function and
inflammatory mediators in rats with sepsis. Zhonghua Wei Zhong Bing
Ji Jiu Yi Xue. 30:140–144. 2018.In Chinese. PubMed/NCBI
|
|
35
|
Simmons LJ, Surles-Zeigler MC, Li Y, Ford
GD, Newman GD and Ford BD: Regulation of inflammatory responses by
neureg-ulin-1 in brain ischemia and microglial cells in vitro
involves the NF-kappa B pathway. J Neuroinflammation. 13:2372016.
View Article : Google Scholar
|
|
36
|
Vermeulen Z, Hervent AS, Dugaucquier L,
Vandekerckhove L, Rombouts M, Beyens M, Schrijvers DM, De Meyer
GRY, Maudsley S, De Keulenaer GW and Segers VFM: Inhibitory actions
of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in
the heart, skin, and lung. Am J Physiol Heart Circ Physiol.
313:H934–H945. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu MQ, Chen Z and Chen LX: Endoplasmic
reticulum stress: A novel mechanism and therapeutic target for
cardiovascular diseases. Acta Pharmacol Sin. 37:425–443. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu M, Wu X, Jie B, Zhang X, Zhang J, Xin Y
and Guo Y: Neuregulin-1 protects myocardial cells against
H2O2-induced apoptosis by regulating
endoplasmic reticulum stress. Cell biochemistry and function.
32:464–469. 2014. View Article : Google Scholar
|
|
39
|
Fang SJ, Li PY, Wang CM, Xin Y, Lu WW,
Zhang XX, Zuo S, Ma CS, Tang CS, Nie SP and Qi YF: Inhibition of
endoplasmic reticulum stress by neuregulin-1 protects against
myocardial ischemia/reperfusion injury. Peptides. 88:196–207. 2017.
View Article : Google Scholar
|
|
40
|
Groenendyk J, Agellon LB and Michalak M:
Coping with endoplasmic reticulum stress in the cardiovascular
system. Annu Rev Physiol. 75:49–67. 2013. View Article : Google Scholar
|
|
41
|
Wu H, Ye M, Yang J, Ding J, Yang J, Dong W
and Wang X: Nicorandil protects the heart from ischemia/reperfusion
injury by attenuating endoplasmic reticulum response-induced
apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem.
35:2320–2332. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D,
Zhou H and Chen Y: Melatonin protected cardiac microvascular
endothelial cells against oxidative stress injury via suppression
of IP3R-[Ca2+] c/VDAC-[Ca2+]m axis by
activation of MAPK/ERK signaling pathway. Cell Stress Chaperones.
23:101–113. 2018. View Article : Google Scholar
|
|
43
|
Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T,
Ma Q, Han T, Zhang Y, Tian F and Chen Y: Liraglutide protects
cardiac microvascular endothelial cells against
hypoxia/reoxygenation injury through the suppression of the
SR-Ca(2+)-XO-ROS axis via activation of the
GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med. 95:278–292.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Förstermann U and Sessa WC: Nitric oxide
synthases: Regulation and function. Eur Heart J. 33:829–837.
837a–837d. 2012. View Article : Google Scholar :
|
|
45
|
Yu X, Ge L, Niu L, Lian X, Ma H and Pang
L: The dual role of inducible nitric oxide synthase in myocardial
ischemia/reperfu-sion injury: Friend or foe? Oxid Med Cell Longev.
2018:83648482018. View Article : Google Scholar
|
|
46
|
Brero A, Ramella R, Fitou A, Dati C,
Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly
modulates nitric oxide synthesis and calcium handling in rat
cardiomyocytes. Cardiovasc Research. 88:443–452. 2010. View Article : Google Scholar
|
|
47
|
Cadenas S: ROS and redox signaling in
myocardial ischemia-reperfusion injury and cardioprotection. Free
Radic Biol Med. 117:76–89. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lemmens K, Fransen P, Sys SU, Brutsaert DL
and De Keulenaer GW: Neuregulin-1 induces a negative inotropic
effect in cardiac muscle: Role of nitric oxide synthase.
Circulation. 109:324–326. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ebner B, Lange SA, Eckert T, Wischniowski
C, Ebner A, Braun-Dullaeus RC, Weinbrenner C, Wunderlich C, Simonis
G and Strasser RH: Uncoupled eNOS annihilates neuregulin-1β-induced
cardioprotection: A novel mechanism in pharmacological
postconditioning in myocardial infarction. Mol Cell Biochem.
373:115–123. 2013. View Article : Google Scholar
|
|
50
|
Giraud MN, Fluck M, Zuppinger C and Suter
TM: Expressional reprogramming of survival pathways in rat
cardiocytes by neuregulin-1beta. J Appl Physiol (1985). 99:313–322.
2005. View Article : Google Scholar
|
|
51
|
Timolati F, Ott D, Pentassuglia L, Giraud
MN, Perriard JC, Suter TM and Zuppinger C: Neuregulin-1 beta
attenuates doxorubicin-induced alterations of
excitation-contraction coupling and reduces oxidative stress in
adult rat cardiomyocytes. J Mol Cell Cardiol. 41:845–854. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Greer SN, Metcalf JL, Wang Y and Ohh M:
The updated biology of hypoxia-inducible factor. EMBO J.
31:2448–2460. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zimna A and Kurpisz M: Hypoxia-inducible
factor-1 in physiological and pathophysiological angiogenesis:
Applications and therapies. Biomed Res Int. 2015:5494122015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang W, Xu B, Xuan H, Ge Y, Wang Y, Wang
L, Huang J, Fu W, Michie SA and Dalman R: Hypoxia-inducible factor
1 in clinical and experimental aortic aneurysm disease. J Vasc
Surg. 68:1538–1550.e2. 2018. View Article : Google Scholar
|
|
55
|
Movafagh S, Crook S and Vo K: Regulation
of hypoxia-inducible factor-1a by reactive oxygen species: New
developments in an old debate. J Cell Biochem. 116:696–703. 2015.
View Article : Google Scholar
|
|
56
|
Wang J, Zhou J, Wang Y, Yang C, Fu M,
Zhang J, Han X, Li Z, Hu K and Ge J: Qiliqiangxin protects against
anoxic injury in cardiac microvascular endothelial cells via
NRG-1/ErbB-PI3K/Akt/mTOR pathway. J Cell Mol Med. 21:1905–1914.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lim CS, Kiriakidis S, Sandison A, Paleolog
EM and Davies AH: Hypoxia-inducible factor pathway and diseases of
the vascular wall. J Vasc Surg. 58:219–230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Humtsoe JO, Pham E, Louie RJ, Chan DA and
Kramer RH: ErbB3 upregulation by the HNSCC 3D microenvironment
modulates cell survival and growth. Oncogene. 35:1554–1564. 2016.
View Article : Google Scholar
|
|
59
|
Karar J and Maity A: PI3K/AKT/mTOR pathway
in angiogenesis. Front Mol Neurosci. 4:512011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kozlov AV, Lancaster JR Jr, Meszaros AT
and Weidinger A: Mitochondria-meditated pathways of organ failure
upon inflammation. Redox Biol. 13:170–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu XM, Yang ZM and Liu XK: Fas/FasL
induces myocardial cell apoptosis in myocardial
ischemia-reperfusion rat model. Eur Rev Med Pharmaco. 21:2913–2918.
2017.
|
|
62
|
Groenendyk J, Sreenivasaiah PK, Kim DH,
Agellon LB and Michalak M: Biology of endoplasmic reticulum stress
in the heart. Circ Res. 107:1185–1197. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang XX, Wu XS, Mi SH, Fang SJ, Liu S,
Xin Y and Zhao QM: Neuregulin-1 promotes mitochondrial biogenesis,
attenuates mitochondrial dysfunction, and prevents
hypoxia/reoxygenation injury in neonatal cardiomyocytes. Cell
Biochem Funct. Feb;10:2020.Epub ahead of print.
|
|
64
|
Wang X, Zhuo X, Gao J, Liu H, Lin F and Ma
A: Neuregulin-1β partially improves cardiac function in
volume-overload heart failure through regulation of abnormal
calcium handling. Front Pharmacol. 10:6162019. View Article : Google Scholar
|
|
65
|
Badalzadeh R, Mokhtari B and Yavari R:
Contribution of apoptosis in myocardial reperfusion injury and loss
of cardio-protection in diabetes mellitus. J Physiol Sci.
65:201–215. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Orogo AM and Gustafsson AB: Cell death in
the myocardium: My heart won't go on. IUBMB life. 65:651–656. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kleinbongard P, Schulz R and Heusch G:
TNFα in myocardial ischemia/reperfusion, remodeling and heart
failure. Heart Fail Rev. 16:49–69. 2011. View Article : Google Scholar
|
|
68
|
Rohrbach S, Muller-Werdan U, Werdan K,
Koch S, Gellerich NF and Holtz J: Apoptosis-modulating interaction
of the neuregulin/erbB pathway with anthracyclines in regulating
BclxS and Bcl-xL in cardiomyocytes. J Mol Cell Cardiol. 38:485–493.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kuramochi Y, Lim CC, Guo X, Colucci WS,
Liao R and Sawyer DB: Myocyte contractile activity modulates
norepi-nephrine cytotoxicity and survival effects of
neuregulin-1beta. Am J Physiol Cell Physiol. 286:C222–C229. 2004.
View Article : Google Scholar
|
|
70
|
Fukazawa R, Miller TA, Kuramochi Y, Frantz
S, Kim YD, Marchionni MA, Kelly RA and Sawyer DB: Neuregulin-1
protects ventricular myocytes from anthracycline-induced apoptosis
via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell
Cardiol. 35:1473–1479. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dong Y, Undyala VV, Gottlieb RA, Mentzer
RM Jr and Przyklenk K: Autophagy: Definition, molecular machinery,
and potential role in myocardial ischemia-reperfusion injury. J
Cardiovasc Pharmacol Ther. 15:220–230. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Aghaei M, Motallebnezhad M, Ghorghanlu S,
Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM
and Khori V: Targeting autophagy in cardiac ischemia/reperfu-sion
injury: A novel therapeutic strategy. J Cell Physiol.
234:16768–16778. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
An T, Huang Y, Zhou Q, Wei BQ, Zhang RC,
Yin SJ, Zou CH, Zhang YH and Zhang J: Neuregulin-1 attenuates
doxorubicin-induced autophagy in neonatal rat cardiomyocytes. J
Cardiovasc Pharmacol. 62:130–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Surviladze Z, Sterk RT, DeHaro SA and
Ozbun MA: Cellular entry of human papillomavirus type 16 involves
activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway
and inhibition of autophagy. J Virol. 87:2508–2517. 2013.
View Article : Google Scholar :
|
|
75
|
Sanada S, Komuro I and Kitakaze M:
Pathophysiology of myocardial reperfusion injury: Preconditioning,
postconditioning, and translational aspects of protective measures.
Am J Physiol Heart Circ Physiol. 301:H1723–H1741. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hausenloy DJ and Yellon DM: The
therapeutic potential of ischemic conditioning: An update. Nat Rev
Cardiol. 8:619–629. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Heusch G: Treatment of myocardial
ischemia/reperfusion injury by ischemic and pharmacological
postconditioning. Compr Physiol. 5:1123–1145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hausenloy DJ and Yellon DM: Ischaemic
conditioning and reperfusion injury. Nat Rev Cardiol. 13:193–209.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Heusch G: Molecular basis of
cardioprotection: Signal transduction in ischemic pre-, post-, and
remote conditioning. Circ Res. 116:674–699. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Stokfisz K, Ledakowicz-Polak A, Zagorski M
and Zielinska M: Ischaemic preconditioning-current knowledge and
potential future applications after 30 years of experience. Adv Med
Sci. 62:307–316. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Diaz RJ and Wilson GJ: Studying ischemic
preconditioning in isolated cardiomyocyte models. Cardiovasc Res.
70:286–296. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rossello X and Yellon DM: The RISK pathway
and beyond. Basic Res Cardiol. 113:22018. View Article : Google Scholar
|
|
83
|
Ovize M, Baxter GF, Di Lisa F, Ferdinandy
P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J,
Yellon DM and Schulz R; Working Group of Cellular Biology of Heart
of European Society of Cardiology: Postconditioning and protection
from reperfusion injury: Where do we stand? Position paper from the
Working Group of Cellular Biology of the Heart of the European
Society of Cardiology. Cardiovasc Res. 87:406–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hao M, Zhu S, Hu L, Zhu H, Wu X and Li Q:
Myocardial ischemic postconditioning promotes autophagy against
ischemia reperfusion injury via the activation of the
nNOS/AMPK/mTOR pathway. Int J Mol Sci. 18:6142017. View Article : Google Scholar :
|
|
85
|
Jivraj N, Liew F and Marber M: Ischaemic
postconditioning: Cardiac protection after the event. Anaesthesia.
70:598–612. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bice JS and Baxter GF: Postconditioning
signalling in the heart: Mechanisms and translatability. Br J
Pharmacol. 172:1933–1946. 2015. View Article : Google Scholar :
|
|
87
|
Pilz PM, Hamza O, Gidlöf O, Gonçalves IF,
Tretter EV, Trojanek S, Abraham D, Heber S, Haller PM, Podesser BK
and Kiss A: Remote ischemic perconditioning attenuates adverse
cardiac remodeling and preserves left ventricular function in a rat
model of reperfused myocardial infarction. Int J Cardiol.
285:72–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang F, Wang H, Liu X, Yu H, Zuo B, Song
Z, Wang N, Huang W and Wang G: Pharmacological postconditioning
with Neuregulin-1 mimics the cardioprotective effects of ischaemic
postconditioning via ErbB4-dependent activation of reperfusion
injury salvage kinase pathway. Mol Med. 24:392018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Khanabdali R, Rosdah AA, Dusting GJ and
Lim SY: Harnessing the secretome of cardiac stem cells as therapy
for ischemic heart disease. Biochem Pharmacol. 113:1–11. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu H, Lu K, Zhu J and Wang J: Stem cell
therapy for ischemic heart diseases. Br Med Bull. 121:135–154.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Barzegar M, Kaur G, Gavins FNE, Wang Y,
Boyer CJ and Alexander JS: Potential therapeutic roles of stem
cells in ischemia-reperfusion injury. Stem Cell Res. 37:1014212019.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sun M, Yan X, Bian Y, Caggiano AO and
Morgan JP: Improving murine embryonic stem cell differentiation
into cardiomyocytes with neuregulin-1: Differential expression of
microRNA. Am J Physiol Cell Physiol. 301:C21–C30. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B
and Laflamme MA: Neuregulin/ErbB signaling regulates cardiac
subtype specification in differentiating human embryonic stem
cells. Circ Res. 107:776–786. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang Z and Huang J: Neuregulin-1 increases
connexin-40 and connexin-45 expression in embryonic stem
cell-derived cardio-myocytes. Appl Biochem Biotechnol. 174:483–493.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Schulz R, Gorge PM, Gorbe A, Ferdinandy P,
Lampe PD and Leybaert L: Connexin 43 is an emerging therapeutic
target in ischemia/reperfusion injury, cardioprotection and
neuroprotection. Pharmacol Ther. 153:90–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ummarino D: Heart failure: Recombinant
neuregulin for HF treatment. Nat Rev Cardiol. 14:1282017.PubMed/NCBI
|
|
97
|
Cao Y, Tan YF, Wong YS, Liew MWJ and
Venkatraman S: Recent advances in chitosan-based carriers for gene
delivery. Mar Drugs. 17:3812019. View Article : Google Scholar :
|
|
98
|
Xiao J, Li B, Zheng Z, Wang M, Peng J, Li
Y and Li Z: Therapeutic effects of neuregulin-1 gene transduction
in rats with myocardial infarction. Coron Artery Dis. 23:460–468.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xiao S and Shaw RM: Cardiomyocyte protein
trafficking: Relevance to heart disease and opportunities for
therapeutic intervention. Trends Cardiovasc Med. 25:379–389. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang ZV and Hill JA: Protein quality
control and metabolism: Bidirectional control in the heart. Cell
Metab. 21:215–226. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pascual-Gil S, Abizanda G, Iglesias E,
Garbayo E, Prósper F and Blanco-Prieto MJ: NRG1 PLGA MP locally
induce macrophage polarisation toward a regenerative phenotype in
the heart after acute myocardial infarction. J Drug Target.
27:573–581. 2019. View Article : Google Scholar
|
|
102
|
Pascual-Gil S, Simon-Yarza T, Garbayo E,
Prosper F and Blanco-Prieto MJ: Cytokine-loaded PLGA and PEG-PLGA
microparticles showed similar heart regeneration in a rat
myocardial infarction model. Int J Pharm. 523:531–533. 2017.
View Article : Google Scholar
|
|
103
|
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth
S, Gumina RJ, Sawyer DB and Galindo CL: Neuregulin-1β induces
proliferation, survival and paracrine signaling in normal human
cardiac ventricular fibroblasts. J Mol Cell Cardiol. 105:59–69.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Garbayo E, Gavira JJ, de Yebenes MG,
Pelacho B, Abizanda G, Lana H, Blanco-Prieto MJ and Prosper F:
Catheter-based intra-myocardial injection of FGF1 or NRG1-loaded
MPs improves cardiac function in a preclinical model of
ischemia-reperfusion. Sci Rep. 6:259322016. View Article : Google Scholar
|
|
105
|
Díaz-Herráez P, Saludas L, Pascual-Gil S,
Simón-Yarza T, Abizanda G, Prósper F, Garbayo E and Blanco-Prieto
MJ: Transplantation of adipose-derived stem cells combined with
neuregulin-microparticles promotes efficient cardiac repair in a
rat myocardial infarction model. J Control Release. 249:23–31.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bhagra SK, Pettit S and Parameshwar J:
Cardiac transplantation: Indications, eligibility and current
outcomes. Heart. 105:252–260. 2019. View Article : Google Scholar
|
|
107
|
Liu X, Gu X, Li Z, Li X, Li H, Chang J,
Chen P, Jin J, Xi B, Chen D, et al: Neuregulin-1/erbB-activation
improves cardiac function and survival in models of ischemic,
dilated, and viral cardiomyopathy. J Am Coll Cardiol. 48:1438–1447.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gao R, Zhang J, Cheng L, Wu X, Dong W,
Yang X, Li T, Liu X, Xu Y, Li X and Zhou M: A Phase II, randomized,
double-blind, multicenter, based on standard therapy,
placebo-controlled study of the efficacy and safety of recombinant
human neuregulin-1 in patients with chronic heart failure. J Am
Coll Cardiol. 55:1907–1914. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jabbour A, Gao L, Kwan J, Watson A, Sun L,
Qiu MR, Liu X, Zhou MD, Graham RM, Hicks M and MacDonald PS: A
recombinant human neuregulin-1 peptide improves preservation of the
rodent heart after prolonged hypothermic storage. Transplantation.
91:961–967. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Harvey RP, Wystub-Lis K, del Monte-Nieto
G, Graham RM and Tzahor E: Cardiac regeneration therapies-targeting
neuregulin 1 signalling. Heart Lung Circ. 25:4–7. 2016. View Article : Google Scholar
|
|
111
|
Caillaud K, Boisseau N, Ennequin G,
Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A
and Sirvent P: Neuregulin 1 improves glucose tolerance in adult and
old rats. Diabetes Metab. 42:96–104. 2016. View Article : Google Scholar
|
|
112
|
Pentassuglia L, Heim P, Lebboukh S,
Morandi C, Xu L and Brink M: Neuregulin-1β promotes glucose uptake
via PI3K/Akt in neonatal rat cardiomyocytes. Am J Physiol
Endocrinol Metab. 310:E782–E794. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ennequin G, Boisseau N, Caillaud K,
Chavanelle V, Gerbaix M, Metz L, Etienne M, Walrand S, Masgrau A,
Guillet C, et al: Exercise training and return to a well-balanced
diet activate the neuregulin 1/ErbB pathway in skeletal muscle of
obese rats. J Physiol. 593:2665–2677. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ennequin G, Boisseau N, Caillaud K,
Chavanelle V, Etienne M, Li X, Montaurier C and Sirvent P:
Neuregulin 1 affects leptin levels, food intake and weight gain in
normal-weight, but not obese, db/db mice. Diabetes Metab.
41:168–172. 2015. View Article : Google Scholar : PubMed/NCBI
|