|
1
|
World Health Organization Cardiovascular
diseases (CVDs): Journal. 2017, https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)urisimplehttps://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Accessed June 10, 2020.
|
|
2
|
Spahis S, Borys JM and Levy E: Metabolic
syndrome as a multi-faceted risk factor for oxidative stress.
Antioxid Redox Signal. 26:445–461. 2017. View Article : Google Scholar
|
|
3
|
Vona R, Gambardella L, Cittadini C,
Straface E and Pietraforte D: Biomarkers of oxidative stress in
metabolic syndrome and associated diseases. Oxid Med Cell Longev.
2019:82672342019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Puddu P, Puddu GM, Galletti L, Cravero E
and Muscari A: Mitochondrial dysfunction as an initiating event in
atherogenesis: A plausible hypothesis. Cardiology. 103:137–141.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kishimoto Y, Yoshida H and Kondo K:
Potential anti-atherosclerotic properties of astaxanthin. Mar
Drugs. 14:352016. View Article : Google Scholar :
|
|
6
|
Guerin M, Huntley ME and Olaizola M:
Haematococcus astaxanthin: Applications for human health and
nutrition. Trends Biotechnol. 21:210–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hussein G, Sankawa U, Goto H, Matsumoto K
and Watanabe H: Astaxanthin, a carotenoid with potential in human
health and nutrition. J Nat Prod. 69:443–449. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang L and Wang H: Multiple mechanisms of
anti-cancer effects exerted by astaxanthin. Mar Drugs.
13:4310–4330. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maoka T and Etoh H: Some biological
functions of carotenoids in Japanese food. Functional Foods of the
East. Shi J, Ho CT and Shahidi F: CRC Press; Boca Raton, FL: pp.
85–97. 2010, View
Article : Google Scholar
|
|
10
|
Iwamoto T, Hosoda K, Hirano R, Kurata H,
Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S and Kondo K:
Inhibition of low-density lipoprotein oxidation by astaxanthin. J
Atheroscler Thromb. 7:216–222. 2000. View Article : Google Scholar
|
|
11
|
Choi HD, Youn YK and Shin WG: Positive
effects of astaxanthin on lipid profiles and oxidative stress in
overweight subjects. Plant Foods Hum Nutr. 66:363–369. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nakagawa K, Kiko T and Miyazawa T,
Carpentero Burdeos G, Kimura F, Satoh A and Miyazawa T: Antioxidant
effect of astaxanthin on phospholipid peroxidation in human
erythrocytes. Br J Nutr. 105:1563–1571. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Karppi J, Rissanen TH, Nyyssönen K,
Kaikkonen J, Olsson AG, Voutilainen S and Salonen JT: Effects of
astaxanthin supplementation on lipid peroxidation. Int J Vitam Nutr
Res. 77:3–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Iwabayashi M, Fujioka N, Nomoto K,
Miyazaki R, Takahashi H, Hibino S, Takahashi Y, Nishikawa K,
Nishida M and Yonei Y: Efficacy and safety of eight-week treatment
with astaxanthin in individuals screened for increased oxidative
stress burden. Anti Aging Med. 6:15–21. 2009. View Article : Google Scholar
|
|
15
|
Kim JH, Chang MJ, Choi HD, Youn YK, Kim
JT, Oh JM and Shin WG: Protective effects of Haematococcus
astaxanthin on oxidative stress in healthy smokers. J Med Food.
14:1469–1475. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Choi HD, Kim JH, Chang MJ, Kyu-Youn Y and
Shin WG: Effects of astaxanthin on oxidative stress in overweight
and obese adults. Phytother Res. 25:1813–1818. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Park JS, Chyun JH, Kim YK, Line LL and
Chew BP: Astaxanthin decreased oxidative stress and inflammation
and enhanced immune response in humans. Nutr Metab (Lond).
7:182010. View Article : Google Scholar
|
|
18
|
Miyawaki H, Takahashi J, Tsukahara H and
Takehara I: Effects of astaxanthin on human blood rheology. J Clin
Biochem Nutr. 43:69–74. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mashhadi NS, Zakerkish M, Mohammadiasl J,
Zarei M, Mohammadshahi M and Haghighizadeh MH: Astaxanthin improves
glucose metabolism and reduces blood pressure in patients with type
2 diabetes mellitus. Asia Pac J Clin Nutr. 27:341–346.
2018.PubMed/NCBI
|
|
20
|
Yoshida H, Yanai H, Ito K, Tomono Y,
Koikeda T, Tsukahara H and Tada N: Administration of natural
astaxanthin increases serum HDL-cholesterol and adiponectin in
subjects with mild hyperlipidemia. Atherosclerosis. 209:520–523.
2010. View Article : Google Scholar
|
|
21
|
Lorenz RT and Cysewski GR: Commercial
potential for Haematococcus microalgae as a natural source of
astaxanthin. Trends Biotechnol. 18:160–167. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hulbert AJ, Pamplona R, Buffenstein R and
Buttemer WA: Life and death: Metabolic rate, membrane composition,
and life span of animals. Physiol Rev. 87:1175–1213. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Barros MP, Pinto E, Colepicolo P and
Pedersén M: Astaxanthin and peridinin inhibit oxidative damage in
Fe(2+)-loaded liposomes: Scavenging oxyradicals or changing
membrane permeability? Biochem Biophys Res Commun. 288:225–232.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
McNulty HP, Byun J, Lockwood SF, Jacob RF
and Mason RP: Differential effects of carotenoids on lipid
peroxidation due to membrane interactions: X-ray diffraction
analysis. Biochim Biophys Acta. 1768:167–174. 2007. View Article : Google Scholar
|
|
25
|
Kidd P: Astaxanthin, cell membrane
nutrient with diverse clinical benefits and anti-aging potential.
Altern Med Rev. 16:355–364. 2011.
|
|
26
|
Liaudet L, Rosenblatt-Velin N and Pacher
P: Role of peroxynitrite in the cardiovascular dysfunction of
septic shock. Curr Vasc Pharmacol. 11:196–207. 2013.PubMed/NCBI
|
|
27
|
Halliwell B: Free radicals and
antioxidants: A personal view. Nutr Rev. 52:253–265. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Maoka T, Tokuda H, Suzuki N, Kato H and
Etoh H: Anti-oxidative, anti-tumor-promoting, and
anti-carcinogensis activities of nitroastaxanthin and nitrolutein,
the reaction prod-ucts of astaxanthin and lutein with
peroxynitrite. Mar Drugs. 10:1391–1399. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Donahoe SM, Stewart GC, McCabe CH,
Mohanavelu S, Murphy SA, Cannon CP and Antman EM: Diabetes and
mortality following acute coronary syndromes. JAMA. 298:765–775.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cai H and Harrison DG: Endothelial
dysfunction in cardiovas-cular diseases: The role of oxidant
stress. Circ Res. 87:840–844. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xu X, Gao X, Potter BJ, Cao JM and Zhang
C: Anti-LOX-1 rescues endothelial function in coronary arterioles
in atheroscle-rotic ApoE knockout mice. Arterioscler Thromb Vasc
Biol. 27:871–877. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhao ZW, Cai W, Lin YL, Lin QF, Jiang Q,
Lin Z and Chen LL: Ameliorative effect of astaxanthin on
endothelial dysfunction in streptozotocin-induced diabetes in male
rats. Arzneimittelforschung. 61:239–246. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
da Silva Garrote-Filho M, Bernardino-Neto
M and Penha-Silva N: Influence of erythrocyte membrane stability in
atherosclerosis. Curr Atheroscler Rep. 19:172017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pasterkamp G and Virmani R: The
erythrocyte: A new player in atheromatous core formation. Heart.
88:115–116. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hussein G, Goto H, Oda S, Iguchi T,
Sankawa U, Matsumoto K and Watanabe H: Antihypertensive potential
and mechanism of action of astaxanthin: II. Vascular reactivity and
hemorheology in spontaneously hypertensive rats. Biol Pharm Bull.
28:967–971. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Becker RC: The role of blood viscosity in
the development and progression of coronary artery disease. Cleve
Clin J Med. 60:353–358. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hussein G, Goto H, Oda S, Sankawa U,
Matsumoto K and Watanabe H: Antihypertensive potential and
mechanism of action of astaxanthin: III. Antioxidant and
histopathological effects in spontaneously hypertensive rats. Biol
Pharm Bull. 29:684–688. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Monroy-Ruiz J, Sevilla MÁ, Carrón R and
Montero MJ: Astaxanthin-enriched-diet reduces blood pressure and
improves cardiovascular parameters in spontaneously hypertensive
rats. Pharmacol Res. 63:44–50. 2011. View Article : Google Scholar
|
|
39
|
Chen Y, Li S, Guo Y, Yu H, Bao Y, Xin X,
Yang H, Ni X, Wu N and Jia D: Astaxanthin attenuates hypertensive
vascular remodeling by protecting vascular smooth muscle cells from
oxidative stress-induced mitochondrial dysfunction. Oxid Med Cell
Longev. 2020:46291892020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sasaki Y, Kobara N, Higashino S, Giddings
JC and Yamamoto J: Astaxanthin inhibits thrombosis in cerebral
vessels of stroke-prone spontaneously hypertensive rats. Nutr Res.
31:784–789. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Khan SK, Malinski T, Mason RP, Kubant R,
Jacob RF, Fujioka K, Denstaedt SJ, King TJ, Jackson HL, Hieber AD,
et al: Novel astaxanthin prodrug (CDX-085) attenuates thrombosis in
a mouse model. Thromb Res. 126:299–305. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nordberg J and Arnér ES: Reactive oxygen
species, antioxidants, and the mammalian thioredoxin system. Free
Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jekell A, Hossain A, Alehagen U, Dahlström
U and Rosén A: Elevated circulating levels of thioredoxin and
stress in chronic heart failure. Eur J Heart Fail. 6:883–890. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aviram M: Introduction to the serial
review on paraoxonases, oxidative stress, and cardiovascular
diseases. Free Radic Biol Med. 37:1301–1303. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Augusti PR, Quatrin A, Somacal S,
Conterato GM, Sobieski R, Ruviaro AR, Maurer LH, Duarte MM, Roehrs
M and Emanuelli T: Astaxanthin prevents changes in the activities
of thioredoxin reductase and paraoxonase in hypercholesterolemic
rabbits. J Clin Biochem Nutr. 51:42–49. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cui G, Li L, Xu W, Wang M, Jiao D, Yao B,
Xu K, Chen Y, Yang S, Long M, et al: Astaxanthin protects
ochratoxin a-induced oxidative stress and apoptosis in the heart
via the Nrf2 pathway. Oxid Med Cell Longev. 2020:76391092020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xue Y, Sun C, Hao Q and Cheng J:
Astaxanthin ameliorates cardiomyocyte apoptosis after coronary
microembolization by inhibiting oxidative stress via Nrf2/HO-1
pathway in rats. Naunyn Schmiedebergs Arch Pharmacol. 392:341–348.
2019. View Article : Google Scholar
|
|
48
|
Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li
W, Zhou ML and Wang XL: Astaxanthin activates nuclear factor
erythroid-related factor 2 and the antioxidant responsive element
(Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in
rats and attenuates early brain injury. Mar Drugs. 12:6125–6141.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kavitha K, Thiyagarajan P, Rathna Nandhini
J, Mishra R and Nagini S: Chemopreventive effects of diverse
dietary phyto-chemicals against DMBA-induced hamster buccal pouch
carcinogenesis via the induction of Nrf2-mediated cytoprotective
antioxidant, detoxification, and DNA repair enzymes. Biochimie.
95:1629–1639. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tripathi DN and Jena GB: Astaxanthin
intervention ameliorates cyclophosphamide-induced oxidative stress,
DNA damage and early hepatocarcinogenesis in rat: Role of Nrf2,
p53, p38 and phase-II enzymes. Mutat Res. 696:69–80. 2010.
View Article : Google Scholar
|
|
51
|
Saw CL, Yang AY, Guo Y and Kong AN:
Astaxanthin and omega-3 fatty acids individually and in combination
protect against oxidative stress via the Nrf2-ARE pathway. Food
Chem Toxicol. 62:869–875. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wen X, Huang A, Hu J, Zhong Z, Liu Y, Li
Z, Pan X and Liu Z: Neuroprotective effect of astaxanthin against
glutamate-induced cytotoxicity in HT22 cells: Involvement of the
Akt/GSK-3β pathway. Neuroscience. 303:558–568. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Visioli F and Artaria C: Astaxanthin in
cardiovascular health and disease: Mechanisms of action,
therapeutic merits, and knowledge gaps. Food Funct. 8:39–63. 2017.
View Article : Google Scholar
|
|
54
|
Li J, Dai W, Xia Y, Chen K, Li S, Liu T,
Zhang R, Wang J, Lu W, Zhou Y, et al: Astaxanthin inhibits
proliferation and induces apoptosis of human hepatocellular
carcinoma cells via inhibition of NF-κB P65 and Wnt/B-catenin in
vitro. Mar Drugs. 13:6064–6081. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kochi T, Shimizu M, Sumi T, Kubota M,
Shirakami Y, Tanaka T and Moriwaki H: Inhibitory effects of
astaxanthin on azoxymethane-induced colonic preneoplastic lesions
in C57/BL/KsJ-db/db mice. BMC Gastroenterol. 14:2122014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kavitha K, Kowshik J, Kishore TK, Baba AB
and Nagini S: Astaxanthin inhibits NF-κB and Wnt/β-catenin
signaling path-ways via inactivation of Erk/MAPK and PI3K/Akt to
induce intrinsic apoptosis in a hamster model of oral cancer.
Biochim Biophys Acta. 1830:4433–4444. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yasui Y, Hosokawa M, Mikami N, Miyashita K
and Tanaka T: Dietary astaxanthin inhibits colitis and
colitis-associated colon carcinogenesis in mice via modulation of
the inflammatory cyto-kines. Chem Biol Interact. 193:79–87. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Nagendraprabhu P and Sudhandiran G:
Astaxanthin inhibits tumor invasion by decreasing extracellular
matrix production and induces apoptosis in experimental rat colon
carcinogenesis by modulating the expressions of ERK-2, NFkB and
COX-2. Invest New Drugs. 29:207–224. 2011. View Article : Google Scholar
|
|
59
|
Moroni F, Ammirati E, Norata GD, Magnoni M
and Camici PG: The role of monocytes and macrophages in human
atherosclerosis, plaque neoangiogenesis, and atherothrombosis.
Mediators Inflamm. 2019:74343762019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hashizume M and Mihara M: Blockade of IL-6
and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger
receptor induction. Eur J Pharmacol. 689:249–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zou TB, Zhu SS, Luo F, Li WQ, Sun XR and
Wu HF: Effects of astaxanthin on reverse cholesterol transport and
atherosclerosis in mice. Biomed Res Int. 2017:46259322017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kishimoto Y, Tani M, Uto-Kondo H, Iizuka
M, Saita E, Sone H, Kurata H and Kondo K: Astaxanthin suppresses
scavenger receptor expression and matrix metalloproteinase activity
in macrophages. Eur J Nutr. 49:119–126. 2010. View Article : Google Scholar
|
|
63
|
Santos SD, Cahú TB, Firmino GO, de Castro
CC, Carvalho LB Jr, Bezerra RS and Filho JL: Shrimp waste extract
and astaxanthin: Rat alveolar macrophage, oxidative stress and
inflammation. J Food Sci. 77:H141–H146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee SJ, Bai SK, Lee KS, Namkoong S, Na HJ,
Ha KS, Han JA, Yim SV, Chang K, Kwon YG, et al: Astaxanthin
inhibits nitric oxide production and inflammatory gene expression
by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol
Cells. 16:97–105. 2003.PubMed/NCBI
|
|
65
|
Franceschelli S, Pesce M, Ferrone A, De
Lutiis MA, Patruno A, Grilli A, Felaco M and Speranza L:
Astaxanthin treatment confers protection against oxidative stress
in U937 cells stimulated with lipopolysaccharide reducing
O2-production. PLoS One. 9:e883592014. View Article : Google Scholar
|
|
66
|
Macedo RC, Bolin AP, Marin DP and Otton R:
Astaxanthin addition improves human neutrophils function: In vitro
study. Eur J Nutr. 49:447–457. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Choi SK, Park YS, Choi DK and Chang HI:
Effects of astaxanthin on the production of NO and the expression
of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J
Microbiol Biotechnol. 18:1990–1996. 2008.
|
|
68
|
Kim YJ, Kim YA and Yokozawa T: Protection
against oxidative stress, inflammation, and apoptosis of
high-glucose-exposed proximal tubular epithelial cells by
astaxanthin. J Agric Food Chem. 57:8793–8797. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Abdelzaher LA, Imaizumi T, Suzuki T,
Tomita K, Takashina M and Hattori Y: Astaxanthin alleviates
oxidative stress insults-related derangements in human vascular
endothelial cells exposed to glucose fluctuations. Life Sci.
150:24–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Speranza L, Pesce M, Patruno A,
Franceschelli S, de Lutiis MA, Grilli A and Felaco M: Astaxanthin
treatment reduced oxidative induced pro-inflammatory cytokines
secretion in U937: SHP-1 as a novel biological target. Mar Drugs.
10:890–899. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jones WK, Brown M, Wilhide M, He S and Ren
X: NF-kappaB in cardiovascular disease: Diverse and specific
effects of a 'general' transcription factor? Cardiovasc Toxicol.
5:183–202. 2005. View Article : Google Scholar
|
|
72
|
Pashkow FJ, Watumull DG and Campbell CL:
Astaxanthin: A novel potential treatment for oxidative stress and
inflammation in cardiovascular disease. Am J Cardiol. 101:58D–68D.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ghosh S, May MJ and Kopp EB: NF-kappa B
and Rel proteins: Evolutionarily conserved mediators of immune
responses. Annu Rev Immunol. 16:225–260. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Woronicz JD, Gao X, Cao Z, Rothe M and
Goeddel DV: IkappaB kinase-beta: NF-kappaB activation and complex
formation with IkappaB kinase-alpha and NIK. Science. 278:866–869.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mercurio F, Zhu H, Murray BW, Shevchenko
A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A and Rao
A: IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential
for NF-kappaB activation. Science. 278:860–866. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zandi E, Rothwarf DM, Delhase M, Hayakawa
M and Karin M: The IkappaB kinase complex (IKK) contains two kinase
subunits, IKKalpha and IKKbeta, necessary for IkappaB
phosphorylation and NF-kappaB activation. Cell. 91:243–252. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
DiDonato JA, Hayakawa M, Rothwarf DM,
Zandi E and Karin M: A cytokine-responsive IkappaB kinase that
activates the transcription factor NF-kappaB. Nature. 388:548–554.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ghosh S and Karin M: Missing pieces in the
NF-kappaB puzzle. Cell. 109(Suppl): S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang HH, Garruti G, Liu M, Portincasa P
and Wang DQ: Cholesterol and lipoprotein metabolism and
atherosclerosis: Recent advances in reverse cholesterol transport.
Ann Hepatol. 16(Suppl 1): S27–S42. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Khera AV and Rader DJ: Future therapeutic
directions in reverse cholesterol transport. Curr Atheroscler Rep.
12:73–81. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tall AR and Yvan-Charvet L: Cholesterol,
inflammation and innate immunity. Nat Rev Immunol. 15:104–116.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shao B, Tang C, Sinha A, Mayer PS,
Davenport GD, Brot N, Oda MN, Zhao XQ and Heinecke JW: Humans with
atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced
high-density lipoprotein oxidation by myeloperoxidase. Circ Res.
114:1733–1742. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Clarke MC and Bennett MR: Cause or
consequence: What does macrophage apoptosis do in atherosclerosis?
Arterioscler Thromb Vasc Biol. 29:153–155. 2009. View Article : Google Scholar
|
|
84
|
Monteiro R and Azevedo I: Chronic
inflammation in obesity and the metabolic syndrome. Mediators
Inflamm. 2010:2896452010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev
Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sanderson TH, Reynolds CA, Kumar R,
Przyklenk K and Hüttemann M: Molecular mechanisms of
ischemia-reperfusion injury in brain: Pivotal role of the
mitochondrial membrane potential in reactive oxygen species
generation. Mol Neurobiol. 47:9–23. 2013. View Article : Google Scholar :
|
|
87
|
Curek GD, Cort A, Yucel G, Demir N, Ozturk
S, Elpek GO, Savas B and Aslan M: Effect of astaxanthin on
hepatocellular injury following ischemia/reperfusion. Toxicology.
267:147–153. 2010. View Article : Google Scholar
|
|
88
|
Li J, Wang F, Xia Y, Dai W, Chen K, Li S,
Liu T, Zheng Y, Wang J, Lu W, et al: Astaxanthin pretreatment
attenuates hepatic ischemia reperfusion-induced apoptosis and
autophagy via the ROS/MAPK pathway in mice. Mar Drugs.
13:3368–3387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cai X, Chen Y, Xie X, Yao D, Ding C and
Chen M: Astaxanthin prevents against lipopolysaccharide-induced
acute lung injury and sepsis via inhibiting activation of
MAPK/NF-κB. Am J Transl Res. 11:1884–1894. 2019.
|
|
90
|
Lauver DA, Lockwood SF and Lucchesi BR:
Disodium disuccinate astaxanthin (Cardax) attenuates complement
activation and reduces myocardial injury following
ischemia/reperfusion. J Pharmacol Exp Ther. 314:686–692. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ni Y, Nagashimada M, Zhuge F, Zhan L,
Nagata N, Tsutsui A, Nakanuma Y, Kaneko S and Ota T: Astaxanthin
prevents and reverses diet-induced insulin resistance and
steatohepatitis in mice: A comparison with vitamin E. Sci Rep.
5:171922015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu H, Liu M, Fu X, Zhang Z, Zhu L, Zheng
X and Liu J: Astaxanthin prevents alcoholic fatty liver disease by
modulating mouse gut microbiota. Nutrients. 10:12982018. View Article : Google Scholar :
|
|
93
|
Lyu Y, Wu L, Wang F, Shen X and Lin D:
Carotenoid supple-mentation and retinoic acid in immunoglobulin A
regulation of the gut microbiota dysbiosis. Exp Biol Med (Maywood).
243:613–620. 2018. View Article : Google Scholar
|
|
94
|
Tang WH, Kitai T and Hazen SL: Gut
microbiota in cardiovascular health and disease. Circ Res.
120:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Saad MJ, Santos A and Prada PO: Linking
gut microbiota and inflammation to obesity and insulin resistance.
Physiology (Bethesda). 31:283–293. 2016.
|
|
96
|
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B,
Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, et al:
Astaxanthin-shifted gut microbiota is associated with inflammation
and metabolic homeostasis in mice. J Nutr. 150:2687–2698. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ou W, Liao Z, Yu G, Xu H, Liang M, Mai K
and Zhang Y: The effects of dietary astaxanthin on intestinal
health of juvenile tiger puffer takifugu rubripes in terms of
antioxidative status, inflammatory response and microbiota.
Aquaculture Nutrition. 25:466–476. 2018.
|
|
98
|
Zhang L, Cao W, Gao Y, Yang R, Zhang X, Xu
J and Tang Q: Astaxanthin (ATX) enhances the intestinal mucosal
functions in immunodeficient mice. Food Funct. 11:3371–3381. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gao Y, Yang L, Chin Y, Liu F, Li RW, Yuan
S, Xue C, Xu J and Tang Q: Astaxanthin n-octanoic acid diester
ameliorates insulin resistance and modulates gut microbiota in
high-fat and high-sucrose dietfed mice. Int J Mol Sci. 21:21492020.
View Article : Google Scholar
|
|
100
|
Wang J, Liu S, Wang H, Xiao S, Li C, Li Y
and Liu B: Xanthophyllomyces dendrorhous-derived astaxanthin
regulates lipid metabolism and gut microbiota in obese mice induced
by a high-fat diet. Mar Drugs. 17:3372019. View Article : Google Scholar :
|
|
101
|
Linton MRF, Yancey PG, Davies SS, Jerome
WG, Linton EF, Song WL, Doran AC and Vickers KC: The role of lipids
and lipoproteins in atherosclerosis. Endotext Feingold KR, Anawalt
B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas
G, Koch C, Kopp P, et al: MDText Com, Inc; South Dartmouth, MA:
2000
|
|
102
|
Strassheim D, Dempsey EC, Gerasimovskaya
E, Stenmark K and Karoor V: Role of inflammatory cell subtypes in
heart failure. J Immunol Res. 2019:21640172019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gröschel C, Sasse A, Röhrborn C, Monecke
S, Didié M, Elsner L, Kruse V, Bunt G, Lichtman AH, Toischer K, et
al: T helper cells with specificity for an antigen in
cardiomyocytes promote pressure overload-induced progression from
hypertrophy to heart failure. Sci Rep. 7:159982017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fukunaga T, Soejima H, Irie A, Sugamura K,
Oe Y, Tanaka T, Nagayoshi Y, Kaikita K, Sugiyama S, Yoshimura M, et
al: Relation between CD4+ T-cell activation and severity of chronic
heart failure secondary to ischemic or idiopathic dilated
cardio-myopathy. Am J Cardiol. 100:483–488. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kallikourdis M, Martini E, Carullo P,
Sardi C, Roselli G, Greco CM, Vignali D, Riva F, Ormbostad Berre
AM, Stølen TO, et al: T cell costimulation blockade blunts pressure
overload-induced heart failure. Nat Commun. 8:146802017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gisterå A and Hansson GK: The immunology
of atherosclerosis. Nat Rev Nephrol. 13:368–380. 2017. View Article : Google Scholar
|
|
107
|
Swirski FK and Nahrendorf M: Leukocyte
behavior in athero-sclerosis, myocardial infarction, and heart
failure. Science. 339:161–166. 2013. View Article : Google Scholar
|
|
108
|
Stemme S, Faber B, Holm J, Wiklund O,
Witztum JL and Hansson GK: T lymphocytes from human atherosclerotic
plaques recognize oxidized low density lipoprotein. Proc Natl Acad
Sci USA. 92:3893–3897. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Frostegård J, Ulfgren AK, Nyberg P, Hedin
U, Swedenborg J, Andersson U and Hansson GK: Cytokine expression in
advanced human atherosclerotic plaques: Dominance of
pro-inflammatory (Th1) and macrophage-stimulating cytokines.
Atherosclerosis. 145:33–43. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tripathi DN and Jena GB: Intervention of
astaxanthin against cyclophosphamide-induced oxidative stress and
DNA damage: A study in mice. Chem Biol Interact. 180:398–406. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Bolin AP, Guerra BA, Nascimento SJ and
Otton R: Changes in lymphocyte oxidant/antioxidant parameters after
carbonyl and antioxidant exposure. Int Immunopharmacol. 14:690–697.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bolin AP, Macedo RC, Marin DP, Barros MP
and Otton R: Astaxanthin prevents in vitro auto-oxidative injury in
human lymphocytes. Cell Biol Toxicol. 26:457–467. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Campoio TR, Oliveira FA and Otton R:
Oxidative stress in human lymphocytes treated with fatty acid
mixture: Role of carotenoid astaxanthin. Toxicol In Vitro.
25:1448–1456. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Pilinska MA, capital Ka CD, Rushkovsky SR
and Dybska OB: Genoprotective properties of astaxanthin revealed by
ionizing radiation exposure in vitro on human peripheral blood
lymphocytes. Probl Radiac Med Radiobiol. 21:141–148. 2016.In
English, Ukrainian. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Otton R, Marin DP, Bolin AP, de Cássia
Santos Macedo R, Campoio TR, Fineto C Jr, Guerra BA, Leite JR,
Barros MP and Mattei R: Combined fish oil and astaxanthin
supplementation modulates rat lymphocyte function. Eur J Nutr.
51:707–718. 2012. View Article : Google Scholar
|
|
116
|
Mahmoud FF, Haines DD, Abul HT, Abal AT,
Onadeko BO and Wise JA: In vitro effects of astaxanthin combined
with ginkgolide B on T lymphocyte activation in peripheral blood
mononuclear cells from asthmatic subjects. J Pharmacol Sci.
94:129–136. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lin KH, Lin KC, Lu WJ, Thomas PA,
Jayakumar T and Sheu JR: Astaxanthin, a carotenoid, stimulates
immune responses by enhancing IFN-γ and IL-2 secretion in primary
cultured lymphocytes in vitro and ex vivo. Int J Mol Sci.
17:442015. View Article : Google Scholar
|
|
118
|
Diao W, Chen W, Cao W, Yuan H, Ji H, Wang
T, Chen W, Zhu X, Zhou H, Guo H and Zhao X: Astaxanthin protects
against renal fibrosis through inhibiting myofibroblast activation
and promoting CD8+ T cell recruitment. Biochim Biophys
Acta Gen Subj. 1863:1360–1370. 2019. View Article : Google Scholar
|
|
119
|
Park JS, Mathison BD, Hayek MG, Massimino
S, Reinhart GA and Chew BP: Astaxanthin stimulates cell-mediated
and humoral immune responses in cats. Vet Immunol Immunopathol.
144:455–461. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chew BP, Wong MW, Park JS and Wong TS:
Dietary beta-carotene and astaxanthin but not canthaxanthin
stimulate splenocyte function in mice. Anticancer Res.
19:5223–5227. 1999.
|
|
121
|
Jyonouchi H, Hill RJ, Tomita Y and Good
RA: Studies of immunomodulating actions of carotenoids. I. Effects
of beta-carotene and astaxanthin on murine lymphocyte functions and
cell surface marker expression in in vitro culture system. Nutr
Cancer. 16:93–105. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Mahmoud FF, Haines D, Al-Awadhi R,
Arifhodzic N, Abal A, Azeamouzi C, Al-Sharah S and Tosaki A: In
vitro suppression of lymphocyte activation in patients with
seasonal allergic rhinitis and pollen-related asthma by cetirizine
or azelastine in combination with ginkgolide B or astaxanthin. Acta
Physiol Hung. 99:173–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Jyonouchi H, Zhang L and Tomita Y: Studies
of immunomodulating actions of carotenoids. II. Astaxanthin
enhances in vitro antibody production to T-dependent antigens
without facilitating polyclonal B-cell activation. Nutr Cancer.
19:269–280. 1993. View Article : Google Scholar : PubMed/NCBI
|