Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2021 Volume 47 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 47 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)

  • Authors:
    • Ruiying Wang
    • Min Wang
    • Jingxue Ye
    • Guibo Sun
    • Xiaobo Sun
  • View Affiliations / Copyright

    Affiliations: Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 65-76
    |
    Published online on: November 24, 2020
       https://doi.org/10.3892/ijmm.2020.4798
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Atherosclerosis (AS) is a chronic disease with a complex pathology that may lead to several cardiovascular and cerebrovascular diseases; however, further research is necessary to fully elucidate its pathogenesis. The main risk factors for AS include lipid metabolism disorders, endothelial cell injury, inflammation and immune dysfunction, among which vascular endothelial cell damage is considered as the main trigger for AS occurrence and development. Endothelial cell damage leads to enhanced intimal permeability and leukocyte adhesion, promoting thrombus formation and accelerating disease progression. The function of endothelial cells is affected by glycolysis regulation, since 80% of ATP in these cells is produced via this pathway. Genes associated with AS and endothelial cell glycolysis, including AKT1, interleukin‑6, vascular endothelial growth factor A, TP53, signal transducer and activator of transcription 3, SRC and mitogen‑activated protein kinase 1, were screened. Through integrated analysis, these genes were found to play a key role in AS by regulating multiple signaling pathways associated with cell signal transduction, energy metabolism, immune function and thrombosis. In conclusion, endothelial cell injury in AS may be alleviated by glycolysis and is a potential clinical treatment strategy for AS.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kobiyama K and Ley K: Atherosclerosis. Circ Res. 123:1118–1120. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Spinelli FR, Barone F, Cacciapaglia F, Pecani A and Piga M: Atherosclerosis and autoimmunity. Mediators Inflamm. 2018:67304212018. View Article : Google Scholar : PubMed/NCBI

3 

Lu H and Daugherty A: Atherosclerosis. Arterioscler Thromb Vasc Biol. 35:485–491. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF: Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI

5 

Bories GFP and Leitinger N: Macrophage metabolism in athero-sclerosis. FEBS Lett. 591:3042–3060. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y and Shi D: Small rodent models of atherosclerosis. Biomed Pharmacother. 129:1104262020. View Article : Google Scholar : PubMed/NCBI

7 

Goonewardena SN, Prevette LE and Desai AA: Metabolomics and atherosclerosis. Curr Atheroscler Rep. 12:267–272. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P, Camici P, et al: From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 9:830–834. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Chen PY, Schwartz MA and Simons M: Endothelial-to-mesenchymal transition, vascular inflammation, and atherosclerosis. Front Cardiovasc Med. 7:532020. View Article : Google Scholar : PubMed/NCBI

10 

Gao F, Chen J and Zhu H: A potential strategy for treating athero-sclerosis: Improving endothelial function via AMP-activated protein kinase. Sci China Life Sci. 61:1024–1029. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Pircher A, Treps L, Bodrug N and Carmeliet P: Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis. 253:247–257. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Zhao X, Tan F, Cao X, Cao Z, Li B, Shen Z and Tian Y: PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 52:9–17. 2020. View Article : Google Scholar

13 

Ilhan F and Kalkanli ST: Atherosclerosis and the role of immune cells. World J Clin Cases. 3:345–352. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Xiao W, Jia Z, Zhang Q, Wei C, Wang H and Wu Y: Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep. 12:3315–3322. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Dinh QN, Chrissobolis S, Diep H, Chan CT, Ferens D, Drummond GR and Sobey CG: Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxida-tive stress, but not hypertension. Pharmacol Res. 116:70–76. 2017. View Article : Google Scholar

16 

Yang K, Zhang H, Luo Y, Zhang J, Wang M, Liao P, Cao L, Guo P, Sun G and Sun X: Gypenoside XVII prevents atherosclerosis by attenuating endothelial apoptosis and oxidative stress: Insight into the ERα-Mediated PI3K/Akt Pathway. Int J Mol Sci. 18:772017. View Article : Google Scholar

17 

Feletou M, Cohen RA, Vanhoutte PM and Verbeuren TJ: TP receptors and oxidative stress hand in hand from endothelial dysfunction to atherosclerosis. Adv Pharmacol. 60:85–106. 2010.PubMed/NCBI

18 

Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN and Rutledge JC: Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci. 63:1–9. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Gupta M, Blumenthal C, Chatterjee S, Bandyopadhyay D, Jain V, Lavie CJ, Virani SS, Ray KK, Aronow WS and Ghosh RK: Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs. 29:611–622. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Lee J, Jung S, Kim N, Shin MJ, Ryu DH and Hwang GS: Myocardial metabolic alterations in mice with diet-induced atherosclerosis: Linking sulfur amino acid and lipid metabolism. Sci Rep. 7:135972017. View Article : Google Scholar : PubMed/NCBI

21 

Novák J, Olejníčková V, Tkáčová N and Santulli G: Mechanistic role of MicroRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol. 887:79–100. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C and Shi J: Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food. 2:132018. View Article : Google Scholar

23 

Giral H, Kratzer A and Landmesser U: MicroRNAs in lipid metabolism and atherosclerosis. Best Pract Res Clin Endocrinol Metab. 30:665–676. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Gimbrone MA Jr and García-Cardeña G: Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Mudau M, Genis A, Lochner A and Strijdom H: Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc J Afr. 23:222–231. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Brix B, Mesters JR, Pellerin L and Johren O: Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci. 32:9727–9735. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Legein B, Temmerman L, Biessen EA and Lutgens E: Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 70:3847–3869. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Libby P and Hansson GK: Taming immune and inflammatory responses to treat atherosclerosis. J Am Coll Cardiol. 71:173–176. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Wolf D and Ley K: Immunity and Inflammation in atherosclerosis. Circ Res. 124:315–327. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Hansson GK and Hermansson A: The immune system in athero-sclerosis. Nat Immunol. 12:204–212. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Iwata H and Nagai R: Novel immune signals and atherosclerosis. Curr Atheroscler Rep. 14:484–490. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, et al: NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 46:1124–1138. 2018. View Article : Google Scholar :

33 

Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 125:4334–4348. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Kumar S, Kim CW, Simmons RD and Jo H: Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: Mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 34:2206–2216. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Barton M: Mechanisms and therapy of atherosclerosis and its clinical complications. Curr Opin Pharmacol. 13:149–153. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Gonzalez L and Trigatti BL: Macrophage apoptosis and necrotic core development in atherosclerosis: A rapidly advancing field with clinical relevance to imaging and therapy. Can J Cardiol. 33:303–312. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Chen C, Wang Y, Cao Y, Wang Q, Anwaier G, Zhang Q and Qi R: Mechanisms underlying the inhibitory effects of probucol on elastase-induced abdominal aortic aneurysm in mice. Br J Pharmacol. 177:204–216. 2020. View Article : Google Scholar

38 

Guo X, Wang L, Xia X, Wang P and Li X: Effects of atorvastatin and/or probucol on recovery of atherosclerosis in high-fat-diet-fed apolipoprotein E-deficient mice. Biomed Pharmacother. 109:1445–1453. 2019. View Article : Google Scholar

39 

Profumo E, Buttari B, D'Arcangelo D, Tinaburri L, Dettori MA, Fabbri D, Delogu G and Riganò R: The nutraceutical dehydroz-ingerone and its dimer counteract inflammation- and oxidative stress-induced dysfunction of in vitro cultured human endothelial cells: A novel perspective for the prevention and therapy of atherosclerosis. Oxid Med Cell Longev. 2016:12464852016. View Article : Google Scholar

40 

Jiang Y, Jin M, Chen J, Yan J, Liu P, Yao M, Cai W and Pi R: Discovery of a novel niacin-lipoic acid dimer N2L attenuating atherosclerosis and dyslipidemia with non-flushing effects. Eur J Pharmacol. 868:1728712020. View Article : Google Scholar

41 

Ren Y, Qiao W, Fu D, Han Z, Liu W, Ye W and Liu Z: Traditional Chinese medicine protects against cytokine production as the potential immunosuppressive agents in atherosclerosis. J Immunol Res. 2017:74243072017. View Article : Google Scholar : PubMed/NCBI

42 

Li TT, Wang ZB, Li Y, Cao F, Yang BY and Kuang HX: The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med. 17:401–412. 2019.PubMed/NCBI

43 

Tian F, Gu L, Si A, Yao Q, Zhang X, Zhao J and Hu D: Metabolomic study on the faecal extracts of atherosclerosis mice and its application in a traditional Chinese Medicine. J Chromatogr B Analyt Technol Biomed Life Sci. 1007:140–148. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Fan Q, Liu Y, Rao J, Zhang Z, Xiao W, Zhu T, Chai X, Ye K, Ning N, Yin Z, et al: Anti-atherosclerosis effect of angong niuhuang pill via regulating Th17/Treg immune balance and inhibiting chronic inflammatory on ApoE−/− mice model of early and mid-term atherosclerosis. Front Pharmacol. 10:15842020. View Article : Google Scholar

45 

Zhu ZB, Song K, Huang WJ, Li H, Yang H, Bai YQ, Guo KT, Yang RB, Lou WJ, Xia CH, et al: Si-Miao-Yong-An (SMYA) decoction may protect the renal function through regulating the autophagy-mediated degradation of ubiquitinated protein in an atherosclerosis model. Front Pharmacol. 11:8372020. View Article : Google Scholar : PubMed/NCBI

46 

Li L, Yu AL, Wang ZL, Chen K, Zheng W, Zhou JJ, Xie Q, Yan HB, Ren P and Huang X: Chaihu-Shugan-San and absorbed meranzin hydrate induce anti-atherosclerosis and behavioral improvements in high-fat diet ApoE−/− mice via anti-inflammatory and BDNF-TrkB pathway. Biomed Pharmacother. 115:1088932019. View Article : Google Scholar

47 

Haskard DO, Boyle JJ, Evans PC, Mason JC and Randi AM: Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation. 20:203–216. 2013. View Article : Google Scholar

48 

Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S, et al: Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and athero-sclerosis. Diab Vasc Dis Res. 14:14–23. 2017. View Article : Google Scholar

49 

Chrysohoou C, Kollia N and Tousoulis D: The link between depression and atherosclerosis through the pathways of inflammation and endothelium dysfunction. Maturitas. 109:1–5. 2018. View Article : Google Scholar

50 

Jensen HA and Mehta JL: Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 14:1021–1033. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Theodorou K and Boon RA: Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 6:822018. View Article : Google Scholar : PubMed/NCBI

52 

Verma I, Syngle A, Krishan P and Garg N: Endothelial progenitor cells as a marker of endothelial dysfunction and atherosclerosis in Ankylosing Spondylitis: A cross-sectional study. Int J Angiol. 26:36–42. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Lee DY and Chiu JJ: Atherosclerosis and flow: Roles of epigenetic modulation in vascular endothelium. J Biomed Sci. 26:562019. View Article : Google Scholar : PubMed/NCBI

54 

Georgescu A, Alexandru N, Andrei E, Dragan E, Cochior D and Dias S: Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development. Biol Cell. 108:219–243. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Xiang W, Hu ZL, He XJ and Dang XQ: Intravenous transfusion of endothelial progenitor cells that overexpress vitamin D receptor inhibits atherosclerosis in apoE-deficient mice. Biomed Pharmacother. 84:1233–1242. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Kong M, Zhao Y, Chen A and Lin A: The importance of physiologic ischemia training in preventing the development of atherosclerosis: The role of endothelial progenitor cells in athero-sclerotic rabbits. Coron Artery Dis. 30:377–383. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Pákozdi A, Besenyei T, Paragh G, Koch AE and Szekanecz Z: Endothelial progenitor cells in arthritis-associated vasculogenesis and atherosclerosis. Joint Bone Spine. 76:581–583. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Hu X, Cai X, Ma R, Fu W, Zhang C and Du X: Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J Cell Physiol. 234:18792–18800. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Flynn MC, Kraakman MJ, Tikellis C, Lee MKS, Hanssen NMJ, Kammoun HL, Pickering RJ, Dragoljevic D, Al-Sharea A, Barrett TJ, et al: Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ Res. 127:877–892. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Matsuura Y, Yamashita A, Zhao Y, Iwakiri T, Yamasaki K, Sugita C, Koshimoto C, Kitamura K, Kawai K, Tamaki N, et al: Altered glucose metabolism and hypoxic response in alloxan-induced diabetic atherosclerosis in rabbits. PLoS One. 12:e01759762017. View Article : Google Scholar : PubMed/NCBI

61 

Vojinovic D, van der Lee SJ, van Duijn CM, Vernooij MW, Kavousi M, Amin N, Demirkan A, Ikram MA, van der Lugt A and Bos D: Metabolic profiling of intra- and extracranial carotid artery atherosclerosis. Atherosclerosis. 272:60–65. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Akins NS, Nielson TC and Le HV: Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr Top Med Chem. 18:494–504. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, Zheng K, Lin W, Li X, Yao X, et al: Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 9:1001–1014. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Godfrey R and Quinlivan R: Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol. 12:393–402. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquière B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J, et al: Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:37–48. 2014. View Article : Google Scholar

66 

Fernie AR, Carrari F and Sweetlove LJ: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 7:254–261. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Tang BL: Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 235:7653–7662. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Paik JY, Lee KH, Ko BH, Choe YS, Choi Y and Kim BT: Nitric oxide stimulates 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. J Nucl Med. 46:365–370. 2005.PubMed/NCBI

69 

Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Song J, Li Y, Song J, Hou F, Liu B and Li A: Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells. Biochim Biophys Acta Mol Basis Dis. 1863:1829–1839. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J and Ge J: Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med. 22:2791–2803. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Wik JA, Lundbäck P, la Cour Poulsen L, Haraldsen G, Skålhegg BS and Hol J: 3PO inhibits inflammatory NFκB and stress-activated kinase signaling in primary human endothelial cells independently of its target PFKFB3. PLoS One. 15:e02293952020. View Article : Google Scholar

73 

Zhang R, Li R, Liu Y, Li L and Tang Y: The glycolytic enzyme PFKFB3 controls TNF-α-induced endothelial proinflammatory responses. Inflammation. 42:146–155. 2019. View Article : Google Scholar

74 

Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, Li J, Wang N, Jiang C, Xu Q, et al: PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 96:585–600. 2018. View Article : Google Scholar

75 

Zhang X, Chen B, Wu J, Sha J, Yang B, Zhu J, Sun J, Hartung J and Bao E: Aspirin enhances the protection of Hsp90 from heat-stressed injury in cardiac microvascular endothelial cells through PI3K-Akt and PKM2 pathways. Cells. 9:2432020. View Article : Google Scholar :

76 

Serganova I, Cohen IJ, Vemuri K, Shindo M, Maeda M, Mane M, Moroz E, Khanin R, Satagopan J, Koutcher JA and Blasberg R: LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response. PLoS One. 13:e02039652018. View Article : Google Scholar : PubMed/NCBI

77 

Chen SF, Pan MX, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain. 13:632020. View Article : Google Scholar

78 

Fernández-Hernando C, József L, Jenkins D, Di Lorenzo A and Sessa WC: Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis. Arterioscler Thromb Vasc Biol. 29:2033–2040. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Pan C, Liu Q and Wu X: HIF1α/miR-520a-3p/AKT1/mTOR feedback promotes the proliferation and glycolysis of gastric cancer cells. Cancer Manag Res. 11:10145–10156. 2019. View Article : Google Scholar :

80 

Zhong ZW, Zhou WC, Sun XF, Wu QC, Chen WK and Miao CH: Dezocine regulates the malignant potential and aerobic glycolysis of liver cancer targeting Akt1/GSK-3β pathway. Ann Transl Med. 8:4802020. View Article : Google Scholar

81 

Zhao X, Wu X, Wang H, Yu H and Wang J: USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51-AKT1 signaling. Mol Carcinog. 59:1000–1011. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Song L and Schindler C: IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis. 177:43–51. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Zhang P, Chen X, Zhang Y, Su H, Zhang Y, Zhou X, Sun M, Li L and Xu Z: Tet3 enhances IL-6 expression through up-regulation of 5-hmC in IL-6 promoter in chronic hypoxia induced athero-sclerosis in offspring rats. Life Sci. 232:1166012019. View Article : Google Scholar

84 

Bozic M, Alvarez A, de Pablo C, Sanchez-Niño MD, Ortiz A, Dolcet X, Encinas M, Fernandez E and Valdivielso JM: Impaired vitamin D signaling in endothelial cell leads to an enhanced leukocyte-endothelium interplay: Implications for atheroscle-rosis development. PLoS One. 10:e01368632015. View Article : Google Scholar

85 

Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y, Jiang Y, Ding Q and Wu G: Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer. Int J Oncol. 48:215–224. 2016. View Article : Google Scholar

86 

Li H, Liang Q and Wang L: Icaritin inhibits glioblastoma cell viability and glycolysis by blocking the IL-6/Stat3 pathway. J Cell Biochem. Nov 2–2018.Epub ahead of print. View Article : Google Scholar

87 

Zhao N and Zhang J: Role of alternative splicing of VEGF-A in the development of atherosclerosis. Aging (Albany NY). 10:2695–2708. 2018. View Article : Google Scholar

88 

Wang X, Hu Z, Wang Z, Cui Y and Cui X: Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am J Transl Res. 11:6341–6355. 2019.PubMed/NCBI

89 

Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, Bonar NA, McNulty MR, Ramsey KM and Bass J: Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 25:86–92. 2017. View Article : Google Scholar

90 

Zhao M, Fan J, Liu Y, Yu Y, Xu J, Wen Q, Zhang J, Fu S, Wang B, Xiang L, et al: Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation. Int J Oncol. 48:756–764. 2016. View Article : Google Scholar

91 

Ko YH, Domingo-Vidal M, Roche M, Lin Z, Whitaker-Menezes D, Seifert E, Capparelli C, Tuluc M, Birbe RC, Tassone P, et al: TP53-inducible glycolysis and apoptosis regulator (TIGAR) metabolically reprograms carcinoma and stromal cells in breast cancer. J Biol Chem. 291:26291–26303. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Xiong Y, Yepuri G, Forbiteh M, Yu Y, Montani JP, Yang Z and Ming XF: ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy. 10:2223–2238. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Li X, Wu L, Zopp M, Kopelov S and Du W: p53-TP53-Induced glycolysis regulator mediated glycolytic suppression attenuates DNA damage and genomic instability in fanconi anemia hematopoietic stem cells. Stem Cells. 37:937–947. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y and Han Y: Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 9:6424–6442. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Zhou X, Li D, Yan W and Li W: Pravastatin prevents aortic atherosclerosis via modulation of signal transduction and activation of transcription 3 (STAT3) to attenuate interleukin-6 (IL-6) action in ApoE knockout mice. Int J Mol Sci. 9:2253–2264. 2008. View Article : Google Scholar

96 

Li Y, Wang Y, Liu Z, Guo X, Miao Z and Ma S: Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol. 11:2732020. View Article : Google Scholar : PubMed/NCBI

97 

Zheng M, Cao MX, Yu XH, Li L, Wang K, Wang SS, Wang HF, Tang YJ, Tang YL and Liang XH: STAT3 promotes invasion and aerobic glycolysis of human oral squamous cell carcinoma via inhibiting FoxO1. Front Oncol. 9:11752019. View Article : Google Scholar : PubMed/NCBI

98 

Seki N, Hashimoto N, Taira M, Yagi S, Yoshida Y, Ishikawa K, Suzuki Y, Sano H, Horiuchi S, Yoshida S, et al: Regulation of Src homology 2-containing protein tyrosine phosphatase by advanced glycation end products: The role on atherosclerosis in diabetes. Metabolism. 56:1591–1598. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Park JS, Lee S, Jeong AL, Han S, Ka HI, Lim JS, Lee MS, Yoon DY, Lee JH and Yang Y: Hypoxia-induced IL-32β increases glycolysis in breast cancer cells. Cancer Lett. 356:800–808. 2015. View Article : Google Scholar

100 

Nam K, Oh S and Shin I: Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Biochem J. 473:3013–3030. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Byun S, Jung H, Chen J, Kim YC, Kim DH, Kong B, Guo G, Kemper B and Kemper JK: Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem. 294:8732–8744. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Lovren F, Pan Y, Shukla PC, Quan A, Teoh H, Szmitko PE, Peterson MD, Gupta M, Al-Omran M and Verma S: Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: Translational implications for atherosclerosis. Am J Physiol Endocrinol Metab. 296:1440–1449. 2009. View Article : Google Scholar

103 

Gupta A, Mohanty P and Bhatnagar S: Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res. 35:149–164. 2015. View Article : Google Scholar

104 

Perrotta P, Emini Veseli B, Van der Veken B, Roth L, Martinet W and De Meyer GRY: Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul Pharmacol. 112:72–78. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang R, Wang M, Ye J, Sun G and Sun X: Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). Int J Mol Med 47: 65-76, 2021.
APA
Wang, R., Wang, M., Ye, J., Sun, G., & Sun, X. (2021). Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). International Journal of Molecular Medicine, 47, 65-76. https://doi.org/10.3892/ijmm.2020.4798
MLA
Wang, R., Wang, M., Ye, J., Sun, G., Sun, X."Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)". International Journal of Molecular Medicine 47.1 (2021): 65-76.
Chicago
Wang, R., Wang, M., Ye, J., Sun, G., Sun, X."Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)". International Journal of Molecular Medicine 47, no. 1 (2021): 65-76. https://doi.org/10.3892/ijmm.2020.4798
Copy and paste a formatted citation
x
Spandidos Publications style
Wang R, Wang M, Ye J, Sun G and Sun X: Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). Int J Mol Med 47: 65-76, 2021.
APA
Wang, R., Wang, M., Ye, J., Sun, G., & Sun, X. (2021). Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). International Journal of Molecular Medicine, 47, 65-76. https://doi.org/10.3892/ijmm.2020.4798
MLA
Wang, R., Wang, M., Ye, J., Sun, G., Sun, X."Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)". International Journal of Molecular Medicine 47.1 (2021): 65-76.
Chicago
Wang, R., Wang, M., Ye, J., Sun, G., Sun, X."Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)". International Journal of Molecular Medicine 47, no. 1 (2021): 65-76. https://doi.org/10.3892/ijmm.2020.4798
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team