Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2021 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Extracellular matrix grafts: From preparation to application (Review)

  • Authors:
    • Yongsheng Jiang
    • Rui Li
    • Chunchan Han
    • Lijiang Huang
  • View Affiliations / Copyright

    Affiliations: Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 463-474
    |
    Published online on: December 15, 2020
       https://doi.org/10.3892/ijmm.2020.4818
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recently, the increasing emergency of traffic accidents and the unsatisfactory outcome of surgical intervention are driving research to seek a novel technology to repair traumatic soft tissue injury. From this perspective, decellularized matrix grafts (ECM‑G) including natural ECM materials, and their prepared hydrogels and bioscaffolds, have emerged as possible alternatives for tissue engineering and regenerative medicine. Over the past decades, several physical and chemical decellularization methods have been used extensively to deal with different tissues/organs in an attempt to carefully remove cellular antigens while maintaining the non‑immunogenic ECM components. It is anticipated that when the decellularized biomaterials are seeded with cells in vitro or incorporated into irregularly shaped defects in vivo, they can provide the appropriate biomechanical and biochemical conditions for directing cell behavior and tissue remodeling. The aim of this review is to first summarize the characteristics of ECM‑G and describe their major decellularization methods from different sources, followed by analysis of how the bioactive factors and undesired residual cellular compositions influence the biologic function and host tissue response following implantation. Lastly, we also provide an overview of the in vivo application of ECM‑G in facilitating tissue repair and remodeling.
View Figures

Figure 1

View References

1 

Bonnans C, Chou J and Werb Z: Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 15:786–801. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L, et al: Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 10:56582019. View Article : Google Scholar : PubMed/NCBI

3 

Spang MT and Christman KL: Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 68:1–14. 2018. View Article : Google Scholar :

4 

Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME and Hubbell JA: Three-dimensional extracellular matrix-directed cardiopro-genitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials. 29:2757–2766. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Ma Y, Ji Y, Huang G, Ling K, Zhang X and Xu F: Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication. 7:0441052015. View Article : Google Scholar : PubMed/NCBI

6 

Aamodt JM and Grainger DW: Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 86:68–82. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, Ismail N, Mohd Khalid MKN, Amran F, Masuzawa T, et al: Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis. 13:e00072702019. View Article : Google Scholar : PubMed/NCBI

8 

Szalewski DA, Hinrichs VS, Zinniel DK and Barletta RG: The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery. Can J Microbiol. 64:439–453. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Zilelidou EA and Skandamis PN: Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: Microbial interactions from species to strain level. Int J Food Microbiol. 277:10–25. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Gilbert TW, Sellaro TL and Badylak SF: Decellularization of tissues and organs. Biomaterials. 27:3675–3683. 2006.PubMed/NCBI

11 

Choi JS, Yang HJ, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY and Cho YW: Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release. 139:2–7. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME, Zhou Y, Li X, O'Brien C, Li L, et al: Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep. 8:104522018. View Article : Google Scholar : PubMed/NCBI

13 

Lv S, Bu T, Kayser J, Bausch A and Li H: Towards constructing extracellular matrix-mimetic hydrogels: An elastic hydrogel constructed from tandem modular proteins containing tenascin FnIII domains. Acta Biomater. 9:6481–6491. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Rao N, Agmon G, Tierney MT, Ungerleider JL, Braden RL, Sacco A and Christman KL: Engineering an injectable muscle-specific microenvironment for improved cell delivery using a nanofibrous extracellular matrix hydrogel. ACS Nano. 11:3851–3859. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Seif-Naraghi SB, Horn D, Schup-Magoffin PJ and Christman KL: Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 8:3695–3703. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Davidov T, Efraim Y, Dahan N, Baruch L and Machluf M: Porcine arterial ECM hydrogel: Designing an in vitro angiogenesis model for long-term high-throughput research. FASEB J. 34:7745–7758. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Rosso F, Giordano A, Barbarisi M and Barbarisi A: From cell-ECM interactions to tissue engineering. J Cell Physiol. 199:174–180. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Engler AJ, Sen S, Sweeney HL and Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Divya P and Krishnan LK: Glycosaminoglycans restrained in a fibrin matrix improve ECM remodelling by endothelial cells grown for vascular tissue engineering. J Tissue Eng Regen Med. 3:377–388. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Kim SH, Lee SH, Lee JE, Park SJ, Kim K, Kim IS, Lee YS, Hwang NS and Kim BG: Tissue adhesive, rapid forming, and sprayable ECM hydrogel via recombinant tyrosinase cross-linking. Biomaterials. 178:401–412. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L and Hong Y: An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 16:49–59. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Tukmachev D, Forostyak S, Koci Z, Zaviskova K, Vackova I, Vyborny K, Sandvig I, Sandvig A, Medberry CJ, Badylak SF, et al: Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A. 22:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Ahearne M: Introduction to cell-hydrogel mechanosensing. Interface Focus. 4:201300382014. View Article : Google Scholar : PubMed/NCBI

24 

Vats K and Benoit DS: Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng Part B Rev. 19:455–469. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Ghuman H, Mauney C, Donnelly J, Massensini AR, Badylak SF and Modo M: Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 80:66–84. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Black C, Kanczler JM, de Andres MC, White LJ, Savi FM, Bas O, Saifzadeh S, Henkel J, Zannettino A, Gronthos S, et al: Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold. Biomaterials. 247:1199982020. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Gallant RC and Ni H: Extracellular matrix proteins in the regulation of thrombus formation. Curr Opin Hematol. 23:280–287. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Jiang B, Suen R, Wertheim JA and Ameer GA: Targeting heparin to collagen within extracellular matrix significantly reduces thrombogenicity and improves endothelialization of decellular-ized tissues. Biomacromolecules. 17:3940–3948. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Li X, Zhang C, Haggerty AE, Yan J, Lan M, Seu M, Yang M, Marlow MM, Maldonado-Lasunció I, Cho B, et al: The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials. 245:1199782020. View Article : Google Scholar : PubMed/NCBI

30 

Farrokhi A, Pakyari M, Nabai L, Pourghadiri A, Hartwell R, Jalili R and Ghahary A: Evaluation of detergent-free and deter-gent-based methods for decellularization of murine skin. Tissue Eng Part A. 24:955–967. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Gupta SK, Mishra NC and Dhasmana A: Decellularization methods for scaffold fabrication. Methods Mol Biol. 1577:1–10. 2018.

32 

Isidan A, Liu S, Li P, Lashmet M, Smith LJ, Hara H, Cooper DKC and Ekser B: Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation. 26:e125642019. View Article : Google Scholar : PubMed/NCBI

33 

Jackson DW, Grood ES, Arnoczky SP, Butler DL and Simon TM: Freeze dried anterior cruciate ligament allografts. Preliminary studies in a goat model. Am J Sports Med. 15:295–303. 1987. View Article : Google Scholar : PubMed/NCBI

34 

Jackson DW, Grood ES, Wilcox P, Butler DL, Simon TM and Holden JP: The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats. Am J Sports Med. 16:101–105. 1988. View Article : Google Scholar : PubMed/NCBI

35 

Mardhiyah A, Sha'ban M and Azhim A: Evaluation of histological and biomechanical properties on engineered meniscus tissues using sonication decellularization. Annu Int Conf IEEE Eng Med Biol Soc. 2017:2064–2067. 2017.PubMed/NCBI

36 

Hrebikova H, Diaz D and Mokry J: Chemical decellularization: A promising approach for preparation of extracellular matrix. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 159:12–17. 2015. View Article : Google Scholar

37 

Tchoukalova YD, Hintze JM, Hayden RE and Lott DG: Tracheal decellularization using a combination of chemical, physical and bioreactor methods. Int J Artif Organs. Sep 28–2017.Epub ahead of print. PubMed/NCBI

38 

Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW and Lee OK: Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials. 35:3607–3617. 2014. View Article : Google Scholar : PubMed/NCBI

39 

McCrary MW, Vaughn NE, Hlavac N, Song YH, Wachs RA and Schmidt CE: Novel sodium deoxycholate-based chemical decellularization method for peripheral nerve. Tissue Eng Part C Methods. 26:23–36. 2020. View Article : Google Scholar

40 

Tebyanian H, Karami A, Motavallian E, Aslani J, Samadikuchaksaraei A, Arjmand B and Nourani MR: Histologic analyses of different concentrations of tritonX-100 and Sodium dodecyl sulfate detergent in lung decellularization. Cell Mol Biol (Noisy-le-grand). 63:46–51. 2017. View Article : Google Scholar

41 

Vafaee T, Thomas D, Desai A, Jennings LM, Berry H, Rooney P, Kearney J, Fisher J and Ingham E: Decellularization of human donor aortic and pulmonary valved conduits using low concen-tration sodium dodecyl sulfate. J Tissue Eng Regen Med. 12:e841–e853. 2018. View Article : Google Scholar

42 

Yu BT, Li WT, Song BQ and Wu YL: Comparative study of the triton X-100-sodium deoxycholate method and detergent-enzymatic digestion method for decellularization of porcine aortic valves. Eur Rev Med Pharmacol Sci. 17:2179–2184. 2013.PubMed/NCBI

43 

Varhac R, Robinson NC and Musatov A: Removal of bound triton X-100 from purified bovine heart cytochrome bc1. Anal Biochem. 395:268–270. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Dahl SL, Koh J, Prabhakar V and Niklason LE: Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 12:659–666. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Chen RN, Ho HO, Tsai YT and Sheu MT: Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials. 25:2679–2686. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Goissis G, Suzigan S, Parreira DR, Maniglia JV, Braile DM and Raymundo S: Preparation and characterization of collagen-elastin matrices from blood vessels intended as small diameter vascular grafts. Artif Organs. 24:217–223. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Gamba PG, Conconi MT, Lo Piccolo R, Zara G, Spinazzi R and Parnigotto PP: Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int. 18:327–331. 2002. View Article : Google Scholar : PubMed/NCBI

48 

McFetridge PS, Daniel JW, Bodamyali T, Horrocks M and Chaudhuri JB: Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 70:224–234. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Teebken OE, Bader A, Steinhoff G and Haverich A: Tissue engineering of vascular grafts: Human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg. 19:381–386. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Rahman S, Griffin M, Naik A, Szarko M and Butler PEM: Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Sci Rep. 8:30972018. View Article : Google Scholar : PubMed/NCBI

51 

Warwick RM, Magee JG, Leeming JP, Graham JC, Hannan MM, Chadwick M, Crook DW, Yearsley CP, Rayner A and Parker R: Mycobacteria and allograft heart valve banking: An international survey. J Hosp Infect. 68:255–261. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Hensley A, Rames J, Casler V, Rood C, Walters J, Fernandez C, Gill S and Mercuri JJ: Decellularization and characterization of a whole intervertebral disk xenograft scaffold. J Biomed Mater Res A. 106:2412–2423. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Crapo PM, Gilbert TW and Badylak SF: An overview of tissue and whole organ decellularization processes. Biomaterials. 32:3233–3243. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Wong ML and Griffiths LG: Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. Decellularization Acta Biomater. 10:1806–1816. 2014. View Article : Google Scholar

55 

Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Dullah EC and Ongkudon CM: Current trends in endotoxin detection and analysis of endotoxin-protein interactions. Crit Rev Biotechnol. 37:251–261. 2017. View Article : Google Scholar

57 

Ogikubo Y, Norimatsu M, Noda K, Takahashi J, Inotsume M, Tsuchiya M and Tamura Y: Evaluation of the bacterial endotoxin test for quantification of endotoxin contamination of porcine vaccines. Biologicals. 32:88–93. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Yang YG and Sykes M: Xenotransplantation: Current status and a perspective on the future. Nat Rev Immunol. 7:519–531. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Aurora A, McCarron J, Iannotti JP and Derwin K: Commercially available extracellular matrix materials for rotator cuff repairs: State of the art and future trends. J Shoulder Elbow Surg. 16(Suppl 5): S171–S178. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Ercan H, Durkut S, Koc-Demir A, Elçin AE and Elçin YM: Clinical applications of injectable biomaterials. Adv Exp Med Biol. 1077:163–182. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Ahmadian Z, Correia A, Hasany M, Figueiredo P, Dobakhti F, Eskandari MR, Hosseini SH, Abiri R, Khorshid S, Hirvonen J, et al: A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration. Adv Healthc Mater. Oct 26–2020.Epub ahead of print. View Article : Google Scholar

62 

Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, Lee SW, Kim HJ, Cho JH and Cho DW: Therapeutic effect of decellularized extra-cellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 266:1204772021. View Article : Google Scholar

63 

Beachley V, Ma G, Papadimitriou C, Gibson M, Corvelli M and Elisseeff J: Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications. J Biomed Mater Res A. 106:147–159. 2018. View Article : Google Scholar

64 

Lou J, Stowers R, Nam S, Xia Y and Chaudhuri O: Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials. 154:213–222. 2018. View Article : Google Scholar

65 

Zhang X, Li J, Ye P, Gao G, Hubbell K and Cui X: Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomater. 59:317–326. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG and Feinberg AW: 3D bioprinting of collagen to rebuild components of the human heart. Science. 365:482–487. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, et al: 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 112:264–274. 2017. View Article : Google Scholar

68 

Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, Clevers H and Lutolf MP: Designer matrices for intestinal stem cell and organoid culture. Nature. 539:560–564. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Saheli M, Sepantafar M, Pournasr B, Farzaneh Z, Vosough M, Piryaei A and Baharvand H: Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J Cell Biochem. 119:4320–4333. 2018. View Article : Google Scholar

70 

Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, Ringnalda F, Villiger L, Züllig R, Lehmann R, et al: Growth of epithelial organoids in a defined hydrogel. Adv Mater. 30:e18016212018. View Article : Google Scholar : PubMed/NCBI

71 

Augsornworawat P, Velazco-Cruz L, Song J and Millman JR: A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater. 97:272–280. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Liu H, Wang Y, Cui K, Guo Y, Zhang X and Qin J: Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 31:e19020422019. View Article : Google Scholar : PubMed/NCBI

73 

Chuang W, Sharma A, Shukla P, Li G, Mall M, Rajarajan K, Abilez OJ, Hamaguchi R, Wu JC, Wernig M and Wu SM: Partial reprogramming of pluripotent stem cell-derived cardiomyocytes into neurons. Sci Rep. 7:448402017. View Article : Google Scholar : PubMed/NCBI

74 

Garreta E, Prado P, Tarantino C, Oria R, Fanlo L, Martí E, Zalvidea D, Trepat X, Roca-Cusachs P, Gavaldà-Navarro A, et al: Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat Mater. 18:397–405. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Gong J, Schuurmans CCL, Genderen AMV, Cao X, Li W, Cheng F, He JJ, López A, Huerta V, Manríquez J, et al: Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat Commun. 11:12672020. View Article : Google Scholar : PubMed/NCBI

76 

Prest TA, Yeager E, LoPresti ST, Zygelyte E, Martin MJ, Dong L, Gibson A, Olutoye OO, Brown BN and Cheetham J: Nerve-specific, xenogeneic extracellular matrix hydrogel promotes recovery following peripheral nerve injury. J Biomed Mater Res A. 106:450–459. 2018. View Article : Google Scholar

77 

Keane TJ, DeWard A, Londono R, Saldin LT, Castleton AA, Carey L, Nieponice A, Lagasse E and Badylak SF: Tissue-specific effects of esophageal extracellular matrix. Tissue Eng Part A. 21:2293–2300. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Schnellmann R and Chiquet-Ehrismann R: Preparation and application of a decellularized extracellular matrix for identification of ADAMTS substrates. Methods Mol Biol. 2043:275–284. 2020. View Article : Google Scholar

79 

Li R, Li Y, Wu Y, Chen H, Yuan Y, Xu K, Zhang H, Lu Y, Wang J, Li X, et al: Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials. 168:24–37. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Slivka PF, Dearth CL, Keane TJ, Meng FW, Medberry CJ, Riggio RT, Reing JE and Badylak SF: Fractionation of an ECM hydrogel into structural and soluble components reveals distinc-tive roles in regulating macrophage behavior. Biomater Sci. 2:1521–1534. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Panorchan P, Lee JS, Kole TP, Tseng Y and Wirtz D: Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys J. 91:3499–3507. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Sjöberg J and Kanje M: The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect. Brain Res. 529:79–84. 1990. View Article : Google Scholar : PubMed/NCBI

83 

Grinsell D and Keating CP: Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. Biomed Res Int. 2014:6982562014. View Article : Google Scholar : PubMed/NCBI

84 

Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, et al: Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater. 73:326–338. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Qiu S, Rao Z, He F, Wang T, Xu Y, Du Z, Yao Z, Lin T, Yan L, Quan D, et al: Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med. 14:931–943. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Ansari S, Diniz IM, Chen C, Sarrion P, Tamayol A, Wu BM and Moshaverinia A: Human periodontal ligament- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Adv Healthc Mater. 6:102017.

87 

Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma XM, Vosler PS, Badylak SF, Dixon CE, Cui XT and Chen J: Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A. 19:1909–1918. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Wang JY, Liou A, Ren ZH, Zhang L, Brown BN, Cui XT, Badylak SF, Cai YN, Guan YQ, Leak RK, et al: Neurorestorative effect of urinary bladder matrix-mediated neural stem cell trans-plantation following traumatic brain injury in rats. CNS Neurol Disord Drug Targets. 12:413–425. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Buckenmeyer MJ, Meder TJ, Prest TA and Brown BN: Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods. 171:41–61. 2020. View Article : Google Scholar

90 

Hong LT, Kim YM, Park HH, Hwang DH, Cui Y, Lee EM, Yahn S, Lee JK, Song SC and Kim BG: An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun. 8:5332017. View Article : Google Scholar : PubMed/NCBI

91 

Jiang X, Yang Z and Dong M: Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 11:2972020. View Article : Google Scholar : PubMed/NCBI

92 

Farnebo S, Woon CY, Schmitt T, Joubert LM, Kim M, Pham H and Chang J: Design and characterization of an injectable tendon hydrogel: A novel scaffold for guided tissue regeneration in the musculoskeletal system. Tissue Eng Part A. 20:1550–1561. 2014. View Article : Google Scholar

93 

Curley CJ, Dolan EB, Otten M, Hinderer S, Duffy GP and Murphy BP: An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Deliv Transl Res. 9:1–13. 2019. View Article : Google Scholar

94 

Grover GN, Rao N and Christman KL: Myocardial matrix-poly-ethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology. 25:0140112014. View Article : Google Scholar

95 

Efraim Y, Sarig H, Cohen Anavy N, Sarig U, de Berardinis E, Chaw SY, Krishnamoorthi M, Kalifa J, Bogireddi H, Duc TV, et al: Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater. 50:220–233. 2017. View Article : Google Scholar

96 

Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RP and Paul A: Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 69:95–106. 2018. View Article : Google Scholar :

97 

Guruswamy Damodaran R and Vermette P: Tissue and organ decellularization in regenerative medicine. Biotechnol Prog. 34:1494–1505. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP and Christman KL: Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A. 16:2017–2027. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Karabekmez FE, Duymaz A and Moran SL: Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (NY). 4:245–249. 2009. View Article : Google Scholar

100 

Pipino G, Risitano S, Alviano F, Wu EJ, Bonsi L, Vaccarisi DC and Indelli PF: Microfractures and hydrogel scaffolds in the treatment of osteochondral knee defects: A clinical and histological evaluation. J Clin Orthop Trauma. 10:67–75. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Fitzpatrick LE and McDevitt TC: Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci. 3:12–24. 2015. View Article : Google Scholar

102 

Loh QL and Choong C: Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 19:485–502. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Defrere J and Franckart A: Freeze-dried fascia lata allografts in the reconstruction of anterior cruciate ligament defects. A two- to seven-year follow-up study. Clin Orthop Relat Res. 303:56–66. 1994.

104 

Mahirogullari M, Ferguson CM, Whitlock PW, Stabile KJ and Poehling GG: Freeze-dried allografts for anterior cruciate ligament reconstruction. Clin Sports Med. 26:625–637. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM and Cummings JF: The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am. 73:201–213. 1991. View Article : Google Scholar : PubMed/NCBI

106 

Freytes DO, Badylak SF, Webster TJ, Geddes LA and Rundell AE: Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials. 25:2353–2361. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Lin P, Chan WC, Badylak SF and Bhatia SN: Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 10:1046–1053. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Schenke-Layland K, Vasilevski O, Opitz F, Opitz F, König K, Riemann I, Halbhuber KJ, Wahlers T and Stock UA: Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol. 143:201–208. 2003. View Article : Google Scholar : PubMed/NCBI

109 

Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI and Taylor DA: Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nat Med. 14:213–221. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, et al: Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 16:814–820. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP and Badylak SF: Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 30:1482–1491. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT and Badylak SF: The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 31:8626–8633. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Elder BD, Kim DH and Athanasiou KA: Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery. 66:722–727. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Woods T and Gratzer PF: Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials. 26:7339–7349. 2005. View Article : Google Scholar : PubMed/NCBI

115 

Nakamura N, Saito K, Kimura T and Kishida A: Recellularization of decellularized cancellous bone scaffolds using low-temperature cell seeding. Tissue Cell. 66:1013852020. View Article : Google Scholar : PubMed/NCBI

116 

Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K and Schmidt CE: Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 10:1641–1651. 2004. View Article : Google Scholar

117 

Conconi MT, De Coppi P, Bellini S, Zara G, Sabatti M, Marzaro M, Zanon GF, Gamba PG, Parnigotto PP and Nussdorfer GG: Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials. 26:2567–2574. 2005. View Article : Google Scholar

118 

Poon CJ, Pereira E, Cotta MV, Sinha S, Palmer JA, Woods AA, Morrison WA and Abberton KM: Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomater. 9:5609–5620. 2013. View Article : Google Scholar

119 

Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B and Abarrategi A: Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 21:54472020. View Article : Google Scholar :

120 

Flynn LE: The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 31:4715–4724. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, Wolf MT, Tottey S, Barnes CA, Ratner BD and Badylak SF: Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods. 17:411–421. 2011. View Article : Google Scholar :

122 

Gilbert TW: Strategies for tissue and organ decellularization. J Cell Biochem. 113:2217–2222. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, et al: Tissue-engineered lungs for in vivo implantation. Science. 329:538–541. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q and Yi D: RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med. 20:2327–2336. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Hodgson MJ, Knutson CC, Momtahan N and Cook AD: Extracellular matrix from whole porcine heart decellularization for cardiac tissue engineering. Methods Mol Biol. 1577:95–102. 2018. View Article : Google Scholar

126 

Obata T, Tsuchiya T, Akita S, Kawahara T, Matsumoto K, Miyazaki T, Masumoto H, Kobayashi E, Niklason LE and Nagayasu T: Utilization of natural detergent potassium laurate for decellularization in lung bioengineering. Tissue Eng Part C Methods. 25:459–471. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Shirakigawa N and Ijima H: Decellularization of liver and organogenesis in rats. Methods Mol Biol. 1577:271–281. 2018. View Article : Google Scholar

128 

Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP and Ott HC: Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 19:646–651. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Piccoli M, Trevisan C, Maghin E, Franzin C and Pozzobon M: Mouse skeletal muscle decellularization. Methods Mol Biol. 1577:87–93. 2018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang Y, Li R, Han C and Huang L: Extracellular matrix grafts: From preparation to application (Review). Int J Mol Med 47: 463-474, 2021.
APA
Jiang, Y., Li, R., Han, C., & Huang, L. (2021). Extracellular matrix grafts: From preparation to application (Review). International Journal of Molecular Medicine, 47, 463-474. https://doi.org/10.3892/ijmm.2020.4818
MLA
Jiang, Y., Li, R., Han, C., Huang, L."Extracellular matrix grafts: From preparation to application (Review)". International Journal of Molecular Medicine 47.2 (2021): 463-474.
Chicago
Jiang, Y., Li, R., Han, C., Huang, L."Extracellular matrix grafts: From preparation to application (Review)". International Journal of Molecular Medicine 47, no. 2 (2021): 463-474. https://doi.org/10.3892/ijmm.2020.4818
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang Y, Li R, Han C and Huang L: Extracellular matrix grafts: From preparation to application (Review). Int J Mol Med 47: 463-474, 2021.
APA
Jiang, Y., Li, R., Han, C., & Huang, L. (2021). Extracellular matrix grafts: From preparation to application (Review). International Journal of Molecular Medicine, 47, 463-474. https://doi.org/10.3892/ijmm.2020.4818
MLA
Jiang, Y., Li, R., Han, C., Huang, L."Extracellular matrix grafts: From preparation to application (Review)". International Journal of Molecular Medicine 47.2 (2021): 463-474.
Chicago
Jiang, Y., Li, R., Han, C., Huang, L."Extracellular matrix grafts: From preparation to application (Review)". International Journal of Molecular Medicine 47, no. 2 (2021): 463-474. https://doi.org/10.3892/ijmm.2020.4818
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team