|
1
|
Andersson GB: Epidemiological features of
chronic low-back pain. Lancet. 354:581–585. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Martin BI, Deyo RA, Mirza SK, Turner JA,
Comstock BA, Hollingworth W and Sullivan SD: Expenditures and
health status among adults with back and neck problems. Jama.
299:656–664. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang W, Yu XH, Wang C, He WS, Zhang SJ,
Yan YG, Zhang J, Xiang YX and Wang WJ: Interleukin-1beta in
intervertebral disk degeneration. Clin Chim Acta. 450:262–272.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Luoma K, Riihimäki H, Luukkonen R,
Raininko R, Viikari-Juntura E and Lamminen A: Low back pain in
relation to lumbar disc degeneration. Spine (Phila Pa 1976).
25:487–492. 2000. View Article : Google Scholar
|
|
5
|
Takatalo J, Karppinen J, Niinimäki J,
Taimela S, Näyhä S, Mutanen P, Sequeiros RB, Kyllönen E and
Tervonen O: Does lumbar disc degeneration on magnetic resonance
imaging associate with low back symptom severity in young finnish
adults? Spine (Phila Pa 1976). 36:2180–2189. 2011. View Article : Google Scholar
|
|
6
|
Antoniou J, Goudsouzian NM, Heathfield TF,
Winterbottom N, Steffen T, Poole AR, Aebi M and Alini M: The human
lumbar endplate. Evidence of changes in biosynthesis and
denaturation of the extracellular matrix with growth, maturation,
aging, and degeneration. Spine. 21:1153–1161. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guterl CC, See EY, Blanquer SB, Pandit A,
Ferguson SJ, Benneker LM, Grijpma DW, Sakai D, Eglin D, Alini M, et
al: Challenges and strategies in the repair of ruptured annulus
fibrosus. Eur Cell Mater. 25:1–21. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang X and X Li: Nucleus pulposus tissue
engineering: A brief review. Eur Spine J. 18:1564–1572. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Edgar MA: The nerve supply of the lumbar
intervertebral disc. J Bone Joint Surg Br. 89:1135–1139. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pattappa G, Li Z, Peroglio M, Wismer N,
Alini M and Grad S: Diversity of intervertebral disc cells:
Phenotype and function. J Anat. 221:480–496. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Adams MA and Roughley PJ: What is
intervertebral disc degeneration, and what causes it? Spine.
31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Antoniou J, Steffen T, Nelson F,
Winterbottom N, Hollander AP, Poole RA, Aebi M and Alini M: The
human lumbar intervertebral disc: Evidence for changes in the
biosynthesis and denaturation of the extracellular matrix with
growth, maturation, ageing, and degeneration. J Clin Invest.
98:996–1003. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wuertz K, Vo N, Kletsas D and Boos N:
Inflammatory and catabolic signalling in intervertebral discs: The
roles of NF-kB and MAP kinases. Eur Cell Mater. 23:103–119.
2012.
|
|
14
|
Kepler CK, Markova DZ, Dibra F, Yadla S,
Vaccaro AR, Risbud MV, Albert TJ and Anderson DG: Expression and
relationship of proinflammatory chemokine RANTES/CCL5 and cytokine
IL-1β in painful human intervertebral discs. Spine. 38:873–880.
2013. View Article : Google Scholar
|
|
15
|
Feng C, Liu H, Yang M, Zhang Y, Huang B
and Zhou Y: Disc cell senescence in intervertebral disc
degeneration: Causes and molecular pathways. Cell Cycle.
15:1674–1684. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sivan SS, Hayes AJ, Wachtel E, Caterson B,
Merkher Y, Maroudas A, Brown S and Roberts S: Biochemical
composition and turnover of the extracellular matrix of the normal
and degenerate intervertebral disc. Eur Spine J. 23(Suppl 3):
S344–S353. 2014. View Article : Google Scholar
|
|
17
|
Molinos M, Almeida CR, Caldeira J, Cunha
C, Gonçalves RM and Barbosa MA: Inflammation in intervertebral disc
degeneration and regeneration. J R Soc Interface. 12:201411912015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lorenzo P, Bayliss MT and Heinegard D: A
novel cartilage protein (CILP) present in the mid-zone of human
articular cartilage increases with age. J Biol Chem.
273:23463–23468. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Seki S, Kawaguchi Y, Chiba K, Mikami Y,
Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, et al: A
functional SNP in CILP, encoding cartilage intermediate layer
protein, is associated with susceptibility to lumbar disc disease.
Nat Genet. 37:607–612. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lorenzo P, Neame P, Sommarin Y and
Heinegård D: Cloning and deduced amino acid sequence of a novel
cartilage protein (CILP) identifies a proform including a
nucleotide pyrophospho-hydrolase. J Biol Chem. 273:23469–23475.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cardenal A, Masuda I, Haas AL, Ono W and
McCarty DJ: Identification of a nucleotide pyrophosphohydrolase
from articular tissues in human serum. Arthritis Rheum. 39:252–256.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Masuda I, Cardenal A, Ono W, Hamada J,
Haas AL and McCarty DJ: Nucleotide pyrophosphohydrolase in human
synovial fluid. J Rheumatol. 24:1588–1594. 1997.PubMed/NCBI
|
|
23
|
Wang Z, Kim JH, Higashino K, Kim SS, Wang
S, Seki S, Hutton WC and Yoon ST: Cartilage intermediate layer
protein (CILP) regulation in intervertebral discs. The effect of
age, degeneration, and bone morphogenetic protein-2. Spine (Phila
Pa 1976). 37:E203–E208. 2012. View Article : Google Scholar
|
|
24
|
He J, Feng C, Sun J, Lu K, Chu T, Zhou Y
and Pan Y: Cartilage intermediate layer protein is regulated by
mechanical stress and affects extracellular matrix synthesis. Mol
Med Rep. 17:6130–6137. 2018.PubMed/NCBI
|
|
25
|
Seki S, Tsumaki N, Motomura H, Nogami M,
Kawaguchi Y, Hori T, Suzuki K, Yahara Y, Higashimoto M, Oya T, et
al: Cartilage intermediate layer protein promotes lumbar disc
degeneration. Biochem Biophys Res Commun. 446:876–881. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yee A, Lam MP, Tam V, Chan WC, Chu IK,
Cheah KS, Cheung KM and Chan D: Fibrotic-like changes in degenerate
human intervertebral discs revealed by quantitative proteomic
analysis. Osteoarthritis Cartilage. 24:503–513. 2016. View Article : Google Scholar
|
|
27
|
Roberts S, Evans H, Trivedi J and Menage
J: Histology and pathology of the human intervertebral disc. J Bone
Joint Surg Am. 88(Suppl 2): S10–S14. 2006.
|
|
28
|
Kanayama M, Togawa D, Takahashi C, Terai T
and Hashimoto T: Cross-sectional magnetic resonance imaging study
of lumbar disc degeneration in 200 healthy individuals. J Neurosurg
Spine. 11:501–507. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Adams MA, Freeman BJ, Morrison HP, Nelson
IW and Dolan P: Mechanical initiation of intervertebral disc
degeneration. Spine (Phila Pa 1976). 25:1625–1636. 2000. View Article : Google Scholar
|
|
30
|
Battie MC, Videman T, Kaprio J, Gibbons
LE, Gill K, Manninen H, Saarela J and Peltonen L: The Twin Spine
Study: Contributions to a changing view of disc degeneration. Spine
J. 9:47–59. 2009. View Article : Google Scholar
|
|
31
|
Wang D, Nasto LA, Roughley P, Leme AS,
Houghton AM, Usas A, Sowa G, Lee J, Niedernhofer L, Shapiro S, et
al: Spine degeneration in a murine model of chronic human tobacco
smokers. Osteoarthritis Cartilage. 20:896–905. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Le Maitre CL, Freemont AJ and Hoyland JA:
The role of interleukin-1 in the pathogenesis of human
intervertebral disc degeneration. Arthritis Res Ther. 7:R732–R745.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Le Maitre CL, Hoyland JA and Freemont AJ:
Catabolic cytokine expression in degenerate and herniated human
intervertebral discs: IL-1beta and TNFalpha expression profile.
Arthritis Res Ther. 9:R772007. View
Article : Google Scholar : PubMed/NCBI
|
|
34
|
Karli P, Martlé V, Bossens K, Summerfield
A, Doherr MG, Turner P, Vandevelde M, Forterre F and Henke D:
Dominance of chemokine ligand 2 and matrix metalloproteinase-2 and
-9 and suppression of pro-inflammatory cytokines in the epidural
compartment after intervertebral disc extrusion in a canine model.
Spine J. 14:2976–2984. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yamamoto J, Maeno K, Takada T, Kakutani K,
Yurube T, Zhang Z, Hirata H, Kurakawa T, Sakai D, Mochida J, et al:
Fas ligand plays an important role for the production of
pro-inflammatory cytokines in intervertebral disc nucleus pulposus
cells. J Orthop Res. 31:608–615. 2013. View Article : Google Scholar
|
|
36
|
Kepler CK, Markova DZ, Hilibrand AS,
Vaccaro AR, Risbud MV, Albert TJ and Anderson DG: Substance P
stimulates production of inflammatory cytokines in human disc
cells. Spine (Phila Pa 1976). 38:E1291–E1299. 2013. View Article : Google Scholar
|
|
37
|
Singh K, Masuda K, Thonar EJ, An HS and
Cs-Szabo G: Age-related changes in the extracellular matrix of
nucleus pulposus and anulus fibrosus of human intervertebral disc.
Spine (Phila Pa 1976). 34:10–16. 2009. View Article : Google Scholar
|
|
38
|
Vo NV, Hartman RA, Yurube T, Jacobs LJ,
Sowa GA and Kang JD: Expression and regulation of
metalloproteinases and their inhibitors in intervertebral disc
aging and degeneration. Spine J. 13:331–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Freemont AJ, Watkins A, Le Maitre C, Baird
P, Jeziorska M, Knight MT, Ross ER, O'Brien JP and Hoyland JA:
Nerve growth factor expression and innervation of the painful
intervertebral disc. J Pathol. 197:286–292. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Melrose J, Roberts S, Smith S, Menage J
and Ghosh P: Increased nerve and blood vessel ingrowth associated
with proteoglycan depletion in an ovine anular lesion model of
experimental disc degeneration. Spine (Phila Pa 1976).
27:1278–1285. 2002. View Article : Google Scholar
|
|
41
|
Harshitha SM, Sibin MK, Chetan GK and
Dhananjaya I Bhat: Association of CILP, COL9A2 and MMP3 gene
polymorphisms with lumbar disc degeneration in an Indian
population. J Mol Neurosci. 66:378–382. 2018. View Article : Google Scholar
|
|
42
|
Min SK, Nakazato K, Yamamoto Y, Gushiken
K, Fujimoto H, Fujishiro H, Kobayakawa Y and Hiranuma K: Cartilage
intermediate layer protein gene is associated with lumbar disc
degeneration in male, but not female, collegiate athletes. Am J
Sports Med. 38:2552–2557. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nakamura I, Okawa A, Ikegawa S, Takaoka K
and Nakamura Y: Genomic organization, mapping, and polymorphisms of
the gene encoding human cartilage intermediate layer protein
(CILP). J Hum Genet. 44:203–205. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lorenzo P, Aman P, Sommarin Y and
Heinegård D: The human CILP gene: Exon/intron organization and
chromosomal mapping. Matrix Biol. 18:445–454. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mori M, Nakajima M, Mikami Y, Seki S,
Takigawa M, Kubo T and Ikegawa S: Transcriptional regulation of the
cartilage intermediate layer protein (CILP) gene. Biochem Biophys
Res Commun. 341:121–127. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hirose J, Ryan LM and Masuda I:
Up-regulated expression of cartilage intermediate-layer protein and
ANK in articular hyaline cartilage from patients with calcium
pyrophosphate dihydrate crystal deposition disease. Arthritis
Rheum. 46:3218–3129. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bernardo BC, Belluoccio D, Rowley L,
Little CB, Hansen U and Bateman JF: Cartilage intermediate layer
protein 2 (CILP-2) is expressed in articular and meniscal cartilage
and down-regulated in experimental osteoarthritis. J Biol Chem.
286:37758–33767. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang W, Hao J, Zheng S, Xiao X, Wen Y, He
A, Guo X and Zhang F: Association between cartilage intermediate
layer protein and degeneration of intervertebral disc: A
meta-analysis. Spine (Phila Pa 1976). 41:E1244–E1248. 2016.
View Article : Google Scholar
|
|
49
|
Virtanen IM, Song YQ, Cheung KM, Ala-Kokko
L, Karppinen J, Ho DW, Luk KD, Yip SP, Leong JC, Cheah KS, et al:
Phenotypic and population differences in the association between
CILP and lumbar disc disease. J Med Genet. 44:285–288. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rajasekaran S, Kanna RM, Senthil N,
Raveendran M, Cheung KM, Chan D, Subramaniam S and Shetty AP:
Phenotype variations affect genetic association studies of
degenerative disc disease: Conclusions of analysis of genetic
association of 58 single nucleotide polymorphisms with highly
specific phenotypes for disc degeneration in 332 subjects. Spine J.
13:1309–1320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Min SK, Nakazato K, Ishigami H and
Hiranuma K: Cartilage intermediate layer protein and asporin
polymorphisms are independent risk factors of lumbar disc
degeneration in male collegiate athletes. Cartilage. 5:37–42. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kelempisioti A, Eskola PJ, Okuloff A,
Karjalainen U, Takatalo J, Daavittila I, Niinimäki J, Sequeiros RB,
Tervonen O, Solovieva S, et al: Genetic susceptibility of
intervertebral disc degeneration among young Finnish adults. BMC
Med Genet. 12:1532011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Taipale M, Solovieva S, Leino-Arjas P and
Männikkö M: Functional polymorphisms in asporin and CILP together
with joint loading predispose to hand osteoarthritis. BMC Genetics.
18:1082017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Park S, Ranjbarvaziri S, Zhao P and
Ardehali R: Cardiac fibrosis is associated with decreased
circulating levels of full-length CILP in heart failure. JACC Basic
Transl Sci. 5:432–443. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hayes AJ, Benjamin M and Ralphs JR:
Extracellular matrix in development of the intervertebral disc.
Matrix Biol. 20:107–121. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pattison ST, Melrose J, Ghosh P and Taylor
TK: Regulation of gelatinase-A (MMP-2) production by ovine
intervertebral disc nucleus pulposus cells grown in alginate bead
culture by Transforming Growth Factor-beta(1)and insulin like
growth factor-I. Cell Biol Int. 25:679–689. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen J, Yan W and Setton LA: Static
compression induces zonal-specific changes in gene expression for
extracellular matrix and cytoskeletal proteins in intervertebral
disc cells in vitro. Matrix Biol. 22:573–583. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang H, Kroeber M, Hanke M, Ries R, Schmid
C, Poller W and Richter W: Release of active and depot GDF-5 after
adenovirus-mediated overexpression stimulates rabbit and human
intervertebral disc cells. J Mol Med (Berl). 82:126–134. 2004.
View Article : Google Scholar
|
|
59
|
Nishida K, Kang JD, Gilbertson LG, Moon
SH, Suh JK, Vogt MT, Robbins PD and Evans CH: Modulation of the
biologic activity of the rabbit intervertebral disc by gene
therapy: An in vivo study of adenovirus-mediated transfer of the
human transforming growth factor beta 1 encoding gene. Spine (Phila
Pa 1976). 24:2419–2425. 1999. View Article : Google Scholar
|
|
60
|
Grimaud E, Heymann D and Redini F: Recent
advances in TGF-beta effects on chondrocyte metabolism. Potential
therapeutic roles of TGF-beta in cartilage disorders. Cytokine
Growth Factor Rev. 13:241–257. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
de Caestecker M: The transforming growth
factor-beta super-family of receptors. Cytokine Growth Factor Rev.
15:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Border WA, Noble NA, Yamamoto T, Harper
JR, Yamaguchi YU, Pierschbacher MD and Ruoslahti E: Natural
inhibitor of transforming growth factor-beta protects against
scarring in experimental kidney disease. Nature. 360:361–364. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Isaka Y, Brees DK, Ikegaya K, Kaneda Y,
Imai E, Noble NA and Border WA: Gene therapy by skeletal muscle
expression of decorin prevents fibrotic disease in rat kidney. Nat
Med. 2:418–423. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF-beta family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Laron Z: Insulin-like growth factor 1
(IGF-1): A growth hormone. Mol Pathol. 54:311–316. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Foulstone E, Prince S, Zaccheo O, Burns
JL, Harper J, Jacobs C, Church D and Hassan AB: Insulin-like growth
factor ligands, receptors, and binding proteins in cancer. J
Pathol. 205:145–153. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu ZQ, Zhao S and Fu WQ: Insulin-like
growth factor 1 antagonizes lumbar disc degeneration through
enhanced autophagy. Am J Transl Res. 8:4346–4353. 2016.PubMed/NCBI
|
|
68
|
Johnson K, Farley D, Hu SI and Terkeltaub
R: One of two chondrocyte-expressed isoforms of cartilage
intermediate-layer protein functions as an insulin-like growth
factor 1 antagonist. Arthritis Rheum. 48:1302–1314. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Olmez U, Ryan LM, Kurup IV and Rosenthal
AK: Insulin-like growth factor-1 suppresses pyrophosphate
elaboration by transforming growth factor beta1-stimulated
chondrocytes and cartilage. Osteoarthritis Cartilage. 2:149–154.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Abu Shehab M, Iosef C, Wildgruber R,
Sardana G and Gupta MB: Phosphorylation of IGFBP-1 at discrete
sites elicits variable effects on IGF-I receptor
autophosphorylation. Endocrinology. 154:1130–1143. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Russell RG, Bisaz S, Fleisch H, Currey HL,
Rubinstein HM, Dietz AA, Boussina I, Micheli A and Fallet G:
Inorganic pyro-phosphate in plasma, urine, and synovial fluid of
patients with pyrophosphate arthropathy (chondrocalcinosis or
pseudogout). Lancet. 2:899–902. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Johnson K and Terkeltaub R: Inorganic
pyrophosphate (PPI) in pathologic calcification of articular
cartilage. Front Biosci. 10:988–997. 2005. View Article : Google Scholar
|
|
73
|
Liu MH, Sun C, Yao Y, Fan X, Liu H, Cui
YH, Bian XW, Huang B and Zhou Y: Matrix stiffness promotes
cartilage endplate chon-drocyte calcification in disc degeneration
via miR-20a targeting ANKH expression. Sci Rep. 6:254012016.
View Article : Google Scholar
|
|
74
|
Roberts S, Urban JP, Evans H and
Eisenstein SM: Transport properties of the human cartilage endplate
in relation to its composition and calcification. Spine (Phila Pa
1976). 21:415–420. 1996. View Article : Google Scholar
|
|
75
|
Moore RJ: The vertebral endplate: Disc
degeneration, disc regeneration. Eur Spine J. 15(Suppl 3 (Suppl
3)): S333–S337. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lefebvre V, Li P and De Crombrugghe B: A
new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in
chondrogenesis and cooperatively activate the type II collagen
gene. Embo J. 17:5718–5733. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
de Crombrugghe B, Lefebvre V, Behringer
RR, Bi W, Murakami S and Huang W: Transcriptional mechanisms of
chondrocyte differentiation. Matrix Biol. 19:389–394. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ikeda T, Kamekura S, Mabuchi A, Kou I,
Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S and Chung UI:
The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides
signals sufficient for induction of permanent cartilage. Arthritis
Rheum. 50:3561–3573. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang C, Yu X, Yan Y, Yang W, Zhang S,
Xiang Y, Zhang J and Wang W: Tumor necrosis factor-α: A key
contributor to intervertebral disc degeneration. Acta Biochim
Biophys Sin (Shanghai). 49:1–13. 2017. View Article : Google Scholar
|
|
80
|
Clutterbuck AL, Smith JR, Allaway D,
Harris P, Liddell S and Mobasheri A: High throughput proteomic
analysis of the secretome in an explant model of articular
cartilage inflammation. J Proteomics. 74:704–715. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tran CM, Shapiro IM and Risbud MV:
Molecular regulation of CCN2 in the intervertebral disc: Lessons
learned from other connective tissues. Matrix Biol. 32:298–306.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang CL, Zhao Q, Liang H, Qiao X, Wang
JY, Wu D, Wu LL and Li L: Cartilage intermediate layer protein-1
alleviates pressure overload-induced cardiac fibrosis via
interfering TGF-β1 signaling. J Mol Cell Cardiol. 116:135–144.
2018. View Article : Google Scholar : PubMed/NCBI
|