|
1
|
da Costa VG, Moreli ML and Saivish MV: The
emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st
century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar
|
|
2
|
Lee C: Porcine epidemic diarrhea virus: An
emerging and re-emerging epizootic swine virus. Virol J.
12:1932015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bande F, Arshad SS, Bejo MH, Moeini H and
Omar AR: Progress and challenges toward the development of vaccines
against avian infectious bronchitis. J Immunol Res.
2015:4248602015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fouchier RA, Kuiken T, Schutten M, van
Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W,
Stohr K and Osterhaus AD: Aetiology: Koch's postulates fulfilled
for SARS virus. Nature. 423:2402003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zaki AM, van Boheemen S, Bestebroer TM,
Osterhaus ADME and Fouchier RAM: Isolation of a novel coronavirus
from a man with pneumonia in Saudi Arabia. N Engl J Med.
367:1814–1820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Coronaviridae Study Group of the
International Committee on Taxonomy of Viruses: The species Severe
acute respiratory syndrome-related coronavirus: Classifying
2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 5:536–544. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
World Health Organization: Timeline of
WHO's response to COVID-19. 2020.
|
|
9
|
Petrosillo N, Viceconte G, Ergonul O,
Ippolito G and Petersen E: COVID-19, SARS and MERS: Are they
closely related? Clin Microbiol Infect. 26:729–734. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar :
|
|
11
|
Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma
JP, Xiao W, Wang YN, Zhong MH, Li CH, et al: Clinical
characteristics of novel coronavirus cases in tertiary hospitals in
Hubei Province. Chin Med J (Engl). 133:1025–1031. 2020. View Article : Google Scholar
|
|
12
|
Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li
N, Shen J, LV Y, Pan L, Ding P, et al: Aerosol transmission of
SARS-CoV-2? Evidence, prevention and control. Environ Int.
144:1060392020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sanche S, Lin YT, Xu C, Romero-Severson E,
Hengartner N and KE R: High contagiousness and rapid spread of
severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis.
26:1470–1477. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bauch CT, Lloyd-Smith JO, Coffee MP and
Galvani AP: Dynamically modeling SARS and other newly emerging
respiratory illnesses: Past, present, and future. Epidemiology.
16:791–801. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Walls AC, Park YJ, Tortorici MA, Wall A,
McGuire AT and Veesler D: Structure, function, and antigenicity of
the SARS-CoV-2 spike glycoprotein. Cell. 181:281–292.e6. 2020.
View Article : Google Scholar :
|
|
16
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zou X, Chen K, Zou J, Han P, Hao J and Han
Z: Single-cell RNA-seq data analysis on the receptor ACE2
expression reveals the potential risk of different human organs
vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Johns Hopkins University Coronavirus
Resource Center: COVID-19 Dashboard by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (JHU).
2020.
|
|
19
|
Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng
J, Li Q, Jiang C, Zhou Y, Liu S, et al: Risk factors of critical
& mortal COVID-19 cases. A systematic literature review and
meta-analysis. J Infect. 81:e16–e25. 2020. View Article : Google Scholar
|
|
20
|
Peters R, Ee N, Peters J, Beckett N, Booth
A, Rockwood K and Anstey KJ: Common risk factors for major
noncommunicable disease, a systematic overview of reviews and
commentary. The implied potential for targeted risk reduction. Ther
Adv Chronic Dis. Oct 15–2019.Epub ahead of print. View Article : Google Scholar
|
|
21
|
Cena H and Calder PC: Defining a healthy
diet: Evidence for the role of contemporary dietary patterns in
health and disease. Nutrients. 12:3342020. View Article : Google Scholar :
|
|
22
|
Wu D, Lewis ED, Pae M and Meydani SN:
Nutritional modulation of immune function. Analysis of evidence,
mechanisms, and clinical relevance. Front Immunol. 9:31602019.
View Article : Google Scholar
|
|
23
|
Forsyth C, Kouvari M, D'Cunha NM,
Georgousopoulou EN, Panagiotakos DB, Mellor DD, Kellett J and
Naumovski N: The effects of the Mediterranean diet on rheumatoid
arthritis prevention and treatment. A systematic review of human
prospective studies. Rheumatol Int. 38:737–747. 2018. View Article : Google Scholar
|
|
24
|
Zheng R, Gonzalez A, Yue J, Wu X, Qiu M,
Gui L, Zhu S and Huang L: Efficacy and safety of vitamin D
supplementation in patients with systemic lupus erythematosus. A
meta-analysis of randomized controlled trials. Am J Med Sci.
358:104–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee KR, Midgette Y and Shah R: Fish oil
derived omega 3 fatty acids suppress adipose NLRP3 inflammasome
signaling in human obesity. J Endocr Soc. 3:504–515. 2018.
View Article : Google Scholar
|
|
26
|
Hussain MI, Ahmed W, Nasir M, Mushtaq MH,
Sheikh AA, Shaheen AY and Mahmood A: Immune boosting role of
vitamin E against pulmonary tuberculosis. Pak J Pharm Sci. 32(Suppl
1): S269–S276. 2019.
|
|
27
|
Martinez-Estevez NS, Alvarez-Guevara AN
and Rodriguez-Martinez CE: Effects of zinc supplementation in the
prevention of respiratory tract infections and diarrheal disease in
Colombian children. A 12-month randomised controlled trial.
Allergol Immunopathol (Madr). 44:368–375. 2016. View Article : Google Scholar
|
|
28
|
Zhang H, Yeh C, Jin Z, Ding L, Liu BY,
Zhang L and Dannelly HK: Prospective study of probiotic
supplementation results in immune stimulation and improvement of
upper respiratory infection rate. Synth Syst Biotechnol. 3:113–120.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McCarthy MS and Martindale RG:
Immunonutrition in critical illness. What is the role? Nutr Clin
Pract. 33:348–358. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chow O and Barbul A: Immunonutrition. Role
in wound healing and tissue regeneration. Adv Wound Care (New
Rochelle). 3:46–53. 2014. View Article : Google Scholar
|
|
31
|
Pilz S, Zittermann A, Trummer C,
Theiler-Schwetz V, Lerchbaum E, Keppel MH, Grübler MR, März W and
Pandis M: Vitamin D testing and treatment. A narrative review of
current evidence. Endocr Connect. 8:R27–R43. 2019. View Article : Google Scholar
|
|
32
|
Martineau AR, Jolliffe DA, Hooper RL,
Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa
D, Ginde AA, et al: Vitamin D supplementation to prevent acute
respiratory tract infections. Systematic review and meta-analysis
of individual participant data. BMJ. 356:i65832017. View Article : Google Scholar
|
|
33
|
Nair R, Maseeh A and Vitamin D: The
'sunshine' vitamin. J Pharmacol Pharmacother. 3:118–126.
2012.PubMed/NCBI
|
|
34
|
Roth DE, Abrams SA, Aloia J, Bergeron G,
Bourassa MW, Brown KH, Calvo MS, Cashman KD, Combs G, De-Regil LM,
et al: Global prevalence and disease burden of vitamin D
deficiency: A roadmap for action in low- and middle-income
countries. Ann NY Acad Sci. 1430:44–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brito A, Cori H, Olivares M, Fernanda
Mujica M, Cediel G and Lopez de Romana D: Less than adequate
vitamin D status and intake in Latin America and the Caribbean. A
problem of unknown magnitude. Food Nutr Bull. 34:52–64. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L,
Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, et al: Identification of a
novel coronavirus causing severe pneumonia in human: A descriptive
study. Chin Med J (Engl). 133:1015–1024. 2020. View Article : Google Scholar
|
|
37
|
Li W, Moore M J, Vasilieva N, Sui J, Wong
S K, Berne M A, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough
TC, et al: Angiotensin-converting enzyme 2 is a functional receptor
for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jia HP, Look DC, Shi L, Hickey M, Pewe L,
Netland J, Farzan M, Wohlford-Lenane C, Perlman S and McCray PB Jr:
ACE2 receptor expression and severe acute respiratory syndrome
coronavirus infection depend on differentiation of human airway
epithelia. J Virol. 79:14614–14621. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh
DM and Al-Nasser AD: SARS-CoV-2 and coronavirus disease 2019: What
we know so far. Pathogens. 9:2312020. View Article : Google Scholar :
|
|
40
|
Yuki K, Fujiogi M and Koutsogiannaki S:
COVID-19 pathophysiology: A review. Clin Immunol. 215:1084272020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Banu N, Panikar SS, Leal LR and Leal AR:
Protective role of ACE2 and its downregulation in SARS-CoV-2
infection leading to macrophage activation syndrome: Therapeutic
implications. Life Sci. 256:1179052020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li X, Geng M, Peng Y, Meng L and Lu S:
Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm
Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nile SH, Nile A, Qiu J, Li L, Jia X and
Kai G: COVID-19: Pathogenesis, cytokine storm and therapeutic
potential of interferons. Cytokine Growth Factor Rev. 53:66–70.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Burki T: COVID-19 in Latin America. Lancet
Infect Dis. 20:547–548. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bolano-Ortiz TR, Camargo-Caicedo Y,
Puliafito SE, Ruggeri MF, Bolano-Diaz S, Pascual-Flores R, Saturno
J, Ibarra-Espinosa S, Mayol-Bracero OL, Torres-Delgado E and
Cereceda-Balic F: Spread of SARS-CoV-2 through Latin America and
the Caribbean region: A look from its economic conditions, climate
and air pollution indicators. Environ Res. 191:1099382020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
World Health Organization: Our World in
Data: Coronavirus (COVID-19) Vaccinations. 2021.
|
|
47
|
Guzman-Holst A, DeAntonio R, Prado-Cohrs D
and Juliao P: Barriers to vaccination in Latin America: A
systematic literature review. Vaccine. 38:470–481. 2020. View Article : Google Scholar
|
|
48
|
Pathak DSK, Salunke DAA, Thivari DP,
Pandey A, Nandy DK, Harish VK, Ratna D, Pandey DS, Chawla DJ,
Mujawar DJ, Dhanwate DA and Menon DV: No benefit of
hydroxychloroquine in COVID-19: Results of systematic review and
meta-analysis of randomized controlled trials'. Diabetes Metab
Syndr. 14:1673–1680. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan
G, Ruan L, Song B, Cai Y, Wei M, et al: A trial of
lopinavir-ritonavir in adults hospitalized with severe covid-19. N
Engl J Med. 382:1787–1799. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Novartis: Novartis provides update on
CAN-COVID trial in hospitalized patients with COVID-19 pneumonia
and cytokine release syndrome (CRS). 2020.
|
|
51
|
Sanofi: Sanofi provides update on Kevzara®
(sarilumab) Phase 3 trial in severe and critically ill COVID-19
patients outside the U.S. 2020.
|
|
52
|
AstraZeneca: Update on CALAVI phase II
trials for calquence in patients hospitalised with respiratory
symptoms of COVID-19. 2020.
|
|
53
|
Iserson KV: SARS-CoV-2 (COVID-19) vaccine
development and production: An ethical way forward. Camb Q Healthc
Ethics. 30:59–68. 2021. View Article : Google Scholar
|
|
54
|
Bollyky TJ, Gostin LO and Hamburg MA: The
equitable distribution of COVID-19 therapeutics and vaccines. JAMA.
323:2462–2463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Barreto SM, Miranda JJ, Figueroa JP,
Schmidt MI, Munoz S, Kuri-Morales PP and Silva JB Jr: Epidemiology
in Latin America and the Caribbean: Current situation and
challenges. Int J Epidemiol. 41:557–571. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zumla A, Hui DS, Azhar EI, Memish ZA and
Maeurer M: Reducing mortality from 2019-nCoV: Host-directed
therapies should be an option. Lancet. 395:e35–e36. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rhodes JM, Subramanian S, Laird E and
Kenny RA: Editorial: Low population mortality from COVID-19 in
countries south of latitude 35 degrees North supports vitamin D as
a factor determining severity. Aliment Pharmacol Ther.
51:1434–1437. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lamberg-Allardt C: Vitamin D in foods and
as supplements. Prog Biophys Mol Biol. 92:33–38. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jeon SM and Shin EA: Exploring vitamin D
metabolism and function in cancer. Exp Mol Med. 50:202018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bikle DD: Vitamin D metabolism, mechanism
of action, and clinical applications. Chem Biol. 21:319–329. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Christakos S, Dhawan P, Verstuyf A,
Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular
mechanism of action, and pleiotropic effects. Physiol Rev.
96:365–408. 2016. View Article : Google Scholar :
|
|
62
|
Holick MF: Vitamin D deficiency. N Engl J
Med. 357:266–281. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bivona G, Agnello L and Ciaccio M: The
immunological implication of the new vitamin D metabolism. Cent J
Immunol. 43:331–334. 2018. View Article : Google Scholar
|
|
64
|
Charoenngam N and Holick MF: Immunologic
effects of vitamin d on human health and disease. Nutrients.
12:20972020. View Article : Google Scholar :
|
|
65
|
Ghebrehewet S, MacPherson P and Ho A:
Influenza. BMJ. 355:i62582016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tamerius JD, Shaman J, Alonso WJ,
Bloom-Feshbach K, Uejio CK, Comrie A and Viboud C: Environmental
predictors of seasonal influenza epidemics across temperate and
tropical climates. PLoS Pathog. 9:e10031942013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Arbeitskreis Blut, Untergruppe 'Bewertung
Blutassoziierter Krankheitserreger': Influenza virus. Transfus Med
Hemother. 36:32–39. 2009. View Article : Google Scholar
|
|
68
|
Hope-simpson RE: The role of season in the
epidemiology of influenza. J Hyg (Lond). 86:35–47. 1981. View Article : Google Scholar
|
|
69
|
Cannell JJ, Vieth R, Umhau JC, Holick M F,
Grant WB, Madronich S, Garland CF and Giovannucci E: Epidemic
influenza and vitamin D. Epidemiol Infect. 134:1129–1140. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mendes MM, Hart KH, Botelho PB and
Lanham-New SA: Vitamin D status in the tropics: Is sunlight
exposure the main determinant? Nutr Bull. 43:428–434. 2018.
View Article : Google Scholar
|
|
71
|
Huotari A and Herzig KH: Vitamin D and
living in northern latitudes-an endemic risk area for vitamin D
deficiency. Int J Circumpolar Health. 67:164–178. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kmiec P, Zmijewski M, Waszak P, Sworczak K
and Lizakowska-Kmiec M: Vitamin D deficiency during winter months
among an adult, predominantly urban, population in Northern Poland.
Endokrynol Pol. 65:105–113. 2014.PubMed/NCBI
|
|
73
|
Kmiec P, Zmijewski M, Lizakowska-Kmiec M
and Sworczak K: Widespread vitamin D deficiency among adults from
northern Poland (54°N) after months of low and high natural UVB
radiation. Endokrynol Pol. 66:30–38. 2015.
|
|
74
|
Kroll MH, Bi C, Garber CC, Kaufman HW, Liu
D, Caston-Balderrama A, Zhang K, Clarke N, Xie M, Reitz RE, et al:
Temporal relationship between vitamin D status and parathyroid
hormone in the United States. PLoS One. 10:e01181082015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Greene-Finestone LS, Berger C, de Groh M,
Hanley DA, Hidiroglou N, Sarafin K, Poliquin S, Krieger J, Richards
JB and Goltzman D; CaMos Research Group: 25-Hydroxyvitamin D in
canadian adults: Biological, environmental, and behavioral
correlates. Osteoporos Int. 22:1389–1399. 2011. View Article : Google Scholar
|
|
76
|
Lowen AC, Mubareka S, Steel J and Palese
P: Influenza virus transmission is dependent on relative humidity
and temperature. PLoS Pathog. 3:1470–1476. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lowen Ac and Steel J: Roles of humidity
and temperature in shaping influenza seasonality. J Virol.
88:7692–7695. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pham H, Rahman A, Majidi A, Waterhouse M
and Neale RE: Acute respiratory tract infection and
25-hydroxyvitamin D concentration: A systematic review and
meta-analysis. Int J Environ Res Public Health. 16:30202019.
View Article : Google Scholar :
|
|
79
|
Ilie PC, Stefanescu S and Smith L: The
role of vitamin D in the prevention of coronavirus disease 2019
infection and mortality. Aging clin Exp Res. 32:1195–1198. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hastie CE, Mackay DF, Ho F, Celis-Morales
CA, Katikireddi SV, Niedzwiedz CL, Jani BD, Welsh P, Mair FS, Gray
SR, et al: Vitamin D concentrations and COVID-19 infection in UK
Biobank. Diabetes Metab Syndr. 14:561–565. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
D'Avolio A, Avataneo V, Manca A, Cusato J,
De Nicolo A, Lucchini R, Keller F and Cantù M: 25-Hydroxyvitamin D
concentrations are lower in patients with positive PcR for
SARS-coV-2. Nutrients. 12:13592020. View Article : Google Scholar :
|
|
82
|
Meltzer DO, Best TJ, Zhang H, Vokes T,
Arora V and Solway J: Association of vitamin D deficiency and
treatment with cOVID-19 incidence. MedRxiv. 2020.05.08.20095893.
2020.
|
|
83
|
Whittemore PB: COVID-19 fatalities,
latitude, sunlight, and vitamin D. Am J Infect control.
48:1042–1044. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Panagiotou G, Tee SA, Ihsan Y, Athar W,
Marchitelli G, Kelly D, Boot CS, Stock N, Macfarlane J, Martineau
AR, et al: Low serum 25-hydroxyvitamin D (25[OH]D) levels in
patients hospitalized with cOVID-19 are associated with greater
disease severity. Clin Endocrinol (Oxf). 93:508–511. 2020.
View Article : Google Scholar
|
|
85
|
Merzon E, Tworowski D, Gorohovski A,
Vinker S, Golan Cohen A, Green I and Frenkel Morgenstern M: Low
plasma 25(OH) vitamin D level is associated with increased risk of
COVID-19 infection: An Israeli population-based study. FEBS J.
287:3693–3702. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Batur LK and Hekim N: The role of DBP gene
polymorphisms in the prevalence of new coronavirus disease 2019
infection and mortality rate. J Med Virol. Aug 8–2020.Epub ahead of
print.
|
|
87
|
Carpagnano GE, Di Lecce V, Quaranta VN,
Zito A, Buonamico E, Capozza E, Palumbo A, Di Gioia G, Valerio VN
and Resta O: Vitamin D deficiency as a predictor of poor prognosis
in patients with acute respiratory failure due to COVID-19. J
Endocrinol Invest. Aug 9–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Abrishami A, Dalili N, Mohammadi Torbati
P, Asgari R, Arab-Ahmadi M, Behnam B and Sanei-Taheri M: Possible
association of vitamin D status with lung involvement and outcome
in patients with COVID-19: A retrospective study. Eur J Nutr. Oct
30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
De Smet D, De Smet K, Herroelen P,
Gryspeerdt S and Martens GA: Serum 25(OH)D level on hospital
admission associated with COVID-19 stage and mortality. Am J Clin
Pathol. Nov 25–2020.Epub ahead of print. PubMed/NCBI
|
|
90
|
Ling SF, Broad E, Murphy R, Pappachan JM,
Pardesi-Newton S, Kong MF and Jude EB: High-dose cholecalciferol
booster therapy is associated with a reduced risk of mortality in
patients with COVID-19: A cross-sectional multi-centre
observational study. Nutrients. 12:37992020. View Article : Google Scholar :
|
|
91
|
Faniyi AA, Lugg ST, Faustini SE, Webster
C, Duffy JE, Hewison M, Shields A, Nightingale P, Richter AG and
Thickett DR: Vitamin D status and seroconversion for COVID-19 in UK
healthcare workers. Eur Respir J. Dec 10–2020.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ye K, Tang F, Liao X, Shaw B A, Deng M,
Huang G, Qin Z, Peng X, Xiao H, Chen C, et al: Does serum vitamin D
level affect COVID-19 infection and its severity?-A case-control
study. J Am Coll Nutr. Oct 13–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jain A, Chaurasia R, Sengar NS, Singh M,
Mahor S and Narain S: Analysis of vitamin D level among
asymptomatic and critically ill COVID-19 patients and its
correlation with inflammatory markers. Sci Rep. 10:201912020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cereda E, Bogliolo L, Klersy C, Lobascio
F, Masi S, Crotti S, De Stefano L, Bruno R, Corsico AG, Di Sabatino
A, et al: Vitamin D 25OH deficiency in COVID-19 patients admitted
to a tertiary referral hospital. Clin Nutr. Nov 2–2020.Epub ahead
of print. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Annweiler C, Hanotte B, Grandin de
l'Eprevier C, Sabatier JM, Lafaie L and Célarier T: Vitamin D and
survival in COVID-19 patients: A quasi-experimental study. J
Steroid Biochem Mol Biol. 204:1057712020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Annweiler G, Corvaisier M, Gautier J,
Dubée V, Legrand E, Sacco G and Annweiler C: Vitamin D
supplementation associated to better survival in hospitalized frail
elderly COVID-19 patients: The GERIA-COVID Quasi-experimental
study. Nutrients. 12:33772020. View Article : Google Scholar :
|
|
97
|
Entrenas Castillo M, Entrenas Costa LM,
Vaquero Barrios JM, Alcala Diaz JF, Lopez Miranda J, Bouillon R and
Quesada Gomez JM: 'Effect of calcifediol treatment and best
available therapy versus best available therapy on intensive care
unit admission and mortality among patients hospitalized for
COVID-19: A pilot randomized clinical study'. J Steroid Biochem Mol
Biol. 203:1057512020. View Article : Google Scholar
|
|
98
|
Rastogi A, Bhansali A, Khare N, Suri V,
Yaddanapudi N, Sachdeva N, Puri GD and Malhotra P: Short term,
high-dose vitamin D supplementation for COVID-19 disease: A
randomised, placebo-controlled, study (SHADE study). Postgrad Med
J. Nov 12–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Pereira M, Dantas Damascena A, Galvâo
Azevedo LM, de Almeida Oliveira T and da Mota Santana J: Vitamin D
deficiency aggravates COVID-19: Systematic review and
meta-analysis. Crit Rev Food Sci Nutr. Nov 4–2020.Epub ahead of
print. View Article : Google Scholar
|
|
100
|
Liu N, Sun J, Wang X, Zhang T, Zhao M and
Li H: Low vitamin D status is associated with coronavirus disease
2019 outcomes: A systematic review and meta-analysis. Int J Infect
Dis. 104:58–64. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shoenfeld Y, Giacomelli R, Azrielant S,
Berardicurti O, Reynolds JA and Bruce IN: Vitamin D and systemic
lupus erythe-matosus-the hype and the hope. Autoimmun Rev.
17:19–23. 2018. View Article : Google Scholar
|
|
102
|
Cantorna MT, Snyder L, Lin YD and Yang L:
Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients.
7:3011–3021. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang YG, Wu S and Sun J: Vitamin D,
vitamin D receptor, and tissue barriers. Tissue Barriers.
1:e231182013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ware LB and Matthay MA: Alveolar fluid
clearance is impaired in the majority of patients with acute lung
injury and the acute respiratory distress syndrome. Am J Respir Git
care Med. 163:1376–1383. 2001. View Article : Google Scholar
|
|
105
|
Matthay MA, Zemans RL, Zimmerman GA, Arabi
YM, Beitler JR, Mercat A, Herridge M, Randolph AG and Calfee Cs:
Acute respiratory distress syndrome. Nat Rev Dis Primers. 5:182019.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Campbell HK, Maiers JL and DeMali KA:
Interplay between tight junctions & adherens junctions. Exp
cell Res. 358:39–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chen H, Lu R, Zhang YG and Sun J: Vitamin
D receptor deletion leads to the destruction of tight and adherens
junctions in lungs. Tissue Barriers. 6:1–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shi YY, Liu TJ, Fu JH, Xu W, Wu LL, Hou AN
and Xue XD: Vitamin D/VDR signaling attenuates
lipopolysaccharide-induced acute lung injury by maintaining the
integrity of the pulmonary epithelial barrier. Mol Med Rep.
13:1186–1194. 2016. View Article : Google Scholar :
|
|
109
|
Sassi F, Tamone C and D'Amelio P: Vitamin
D: Nutrient, hormone, and immunomodulator. Nutrients. 10:16562018.
View Article : Google Scholar :
|
|
110
|
Hewison M: Antibacterial effects of
vitamin D. Nat Rev Endocrinol. 7:337–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wei R and Christakos S: Mechanisms
underlying the regulation of innate and adaptive immunity by
vitamin D. Nutrients. 7:8251–8260. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chung C, Silwal P, Kim I, Modlin RL and Jo
EK: Vitamin D-cathelicidin axis: At the crossroads between
protective immunity and pathological inflammation during infection.
Immune Netw. 20:e122020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Svensson D, Nebel D, Voss U, Ekblad E and
Nilsson BO: Vitamin D-induced up-regulation of human keratinocyte
cathelicidin anti-microbial peptide expression involves retinoid X
receptor a. cell Tissue Res. 366:353–362. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Schrumpf JA, van Sterkenburg MA, Verhoosel
RM, Zuyderduyn S and Hiemstra PS: Interleukin 13 exposure enhances
vitamin D-mediated expression of the human cathelicidin
antimicrobial peptide 18/LL-37 in bronchial epithelial cells.
Infect Immun. 80:4485–4494. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kim EW, Teles RMB, Haile S, Liu PT and
Modlin RL: Vitamin D status contributes to the antimicrobial
activity of macrophages against mycobacterium leprae. PLoS Negl
Trop Dis. 12:e00066082018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fabri M, Stenger S, Shin DM, Yuk JM, Liu
PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, et al:
Vitamin D is required for IFN-gamma-mediated antimicrobial activity
of human macrophages. Sci Transl Med. 3:104ra1022011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Martineau AR, Wilkinson KA, Newton SM,
Floto RA, Norman AW, Skolimowska K, Davidson RN, Sørensen OE,
Kampmann B, Griffiths CJ and Wilkinson RJ: IFN-gamma- and
TNF-independent vitamin D-inducible human suppression of
mycobacteria: The role of cathelicidin LL-37. J Immunol.
178:7190–7198. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Piemonti L, Monti P, Sironi M, Fraticelli
P, Leone BE, Dal cin E, Allavena P and Di carlo V: Vitamin D3
affects differentiation, maturation, and function of human
monocyte-derived dendritic cells. J Immunol. 164:4443–4451. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Széles L, Keresztes G, Töröcsik D,
Balajthy Z, Krenacs L, Poliska S, Steinmeyer A, Zuegel U, Pruenster
M, Rot A and Nagy L: 1,25-dihydroxyvitamin D3 is an autonomous
regulator of the transcriptional changes leading to a tolerogenic
dendritic cell phenotype. J Immunol. 182:2074–2083. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Aranow C: Vitamin D and the immune system.
J Investig Med. 59:881–886. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Prietl B, Treiber G, Pieber TR and Amrein
K: Vitamin D and immune function. Nutrients. 5:2502–2521. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Alroy I, Towers TL and Freedman LP:
Transcriptional repression of the interleukin-2 gene by vitamin D3:
Direct inhibition of NFATp/AP-1 complex formation by a nuclear
hormone receptor. Mol Cell Biol. 15:5789–5799. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cippitelli M and Santoni A: Vitamin D3: A
transcriptional modulator of the interferon-gamma gene. Eur J
Immunol. 28:3017–3030. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Palmer MT, Lee YK, Maynard CL, Oliver JR,
Bikle DD, Jetten AM and Weaver CT: Lineage-specific effects of
1.25-dihydroxyvitamin D(3) on the development of effector CD4 T
cells. J Biol Chem. 286:997–1004. 2011. View Article : Google Scholar
|
|
125
|
Dankers W, Colin EM, van Hamburg JP and
Lubberts E: Vitamin D in autoimmunity: molecular mechanisms and
therapeutic potential. Front Immunol. 7:6972017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Tang J, Zhou R, Luger D, Zhu W, Silver PB,
Grajewski RS, Su SB, Chan CC, Adorini L and Caspi RR: Calcitriol
suppresses antiretinal autoimmunity through inhibitory effects on
the Th17 effector response. J Immunol. 182:4624–4632. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wöbke TK, Sorg BL and Steinhilber D:
Vitamin D in inflammatory diseases. Front Physiol.
5:2442014.PubMed/NCBI
|
|
128
|
Cohen-Lahav M, Shany S, Tobvin D,
Chaimovitz C and Douvdevani A: Vitamin D decreases NFkappaB
activity by increasing IkappaBalpha levels. Nephrol Dial
Transplant. 21:889–897. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Harant H, Wolff B and Lindleyl J:
1Alpha,25-dihydroxyvitaminD3 decreases DNA binding of nuclear
factor-kappa B in human fibroblasts. FEBS Lett. 436:329–334. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sloka S, Silva C, Wang J and Yong VW:
Predominance of Th2 polarization by vitamin D through a
STAT6-dependent mechanism. J Neuroinflammation. 8:562011.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Calton EK, Keane KN, Newsholme P and
Soares MJ: The impact of vitamin D levels on inflammatory status: A
systematic review of immune cell studies. PLoS One.
10:e01417702015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ho IC, Tai TS and Pai SY: GATA3 and the
T-cell lineage: Essential functions before and after
T-helper-2-cell differentiation. Nat Rev Immunol. 9:125–135. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Baeke F, Takiishi T, Korf H, Gysemans C
and Mathieu C: Vitamin D: Modulator of the immune system. Curr Opin
Pharmacol. 10:482–496. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Joshi S, Pantalena LC, Liu XK, Gaffen SL,
Liu H, Rohowsky-Kochan C, Ichiyama K, Yoshimura A, Steinman L,
Christakos S and Youssef S: 1,25-dihydroxyvitamin D(3) ameliorates
Th17 autoimmunity via transcriptional modulation of
interleukin-17A. Mol Cell Biol. 31:3653–3669. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Jeffery LE, Burke F, Mura M, Zheng Y,
Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K and Sansom DM:
1.25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell
production of inflammatory cytokines and promote development of
regulatory T cells expressing CTLA-4 and FoxP3. J Immunol.
183:5458–5467. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Nanduri R, Mahajan S, Bhagyaraj E, Sethi
K, Kalra R, Chandra V and Gupta P: The active form of vitamin D
transcriptionally represses Smad7 signaling and activates
extracellular signal-regulated kinase (ERK) to inhibit the
differentiation of a inflammatory T helper cell subset and suppress
experimental autoimmune encephalomyelitis. J Biol Chem.
290:12222–12236. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Li YC: Vitamin D regulation of the
renin-angiotensin system. J Cell Biochem. 88:327–331. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Fountain JH and Lappin SL: Physiology,
Renin Angiotensin System. StatPearls Publishing; Treasure Island,
FL: 2020
|
|
139
|
Mahmudpour M, Roozbeh J, Keshavarz M,
Farrokhi S and Nabipour I: COVID-19 cytokine storm: The anger of
inflammation. Cytokine. 133:1551512020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Aygun H: Vitamin D can prevent COVID-19
infection-induced multiple organ damage. Naunyn Schmiedebergs Arch
Pharmacol. 393:1157–1160. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ajabshir S, Asif A and Nayer A: The
effects of vitamin D on the renin-angiotensin system. J
Nephropathol. 3:41–43. 2014.PubMed/NCBI
|
|
142
|
Yuan W, Pan W, Kong J, Zheng W, Szeto FL,
Wong KE, Cohen R, Klopot A, Zhang Z and Li YC:
1,25-dihydroxyvitamin D3 suppresses renin gene transcription by
blocking the activity of the cyclic AMP response element in the
renin gene promoter. J Biol Chem. 282:29821–29830. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Melamed ML, Michos ED, Post W and Astor B:
25-hydroxyvitamin D levels and the risk of mortality in the general
population. Arch Intern Med. 168:1629–1637. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Cashman KD, van den Heuvel EG, Schoemaker
RJ, Preveraud DP, Macdonald HM and Arcot J: 25-Hydroxyvitamin D as
a biomarker of vitamin D status and its modeling to inform
strategies for prevention of vitamin D deficiency within the
population. Adv Nutr. 8:947–957. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Norval M and Wulf HC: Does chronic
sunscreen use reduce vitamin D production to insufficient levels?
Br J Dermatol. 161:732–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Neale RE, Khan SR, Lucas RM, Waterhouse M,
Whiteman DC and Olsen CM: The effect of sunscreen on vitamin D: A
review. Br J Dermatol. 181:907–915. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Brenner M and Hearing VJ: The protective
role of melanin against UV damage in human skin. Photochem
Photobiol. 84:539–549. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Vranic L, Mikolasevic I and Milic S:
Vitamin D deficiency: Consequence or cause of obesity? Medicina
(Kaunas). 55:5412019. View Article : Google Scholar
|
|
149
|
Iruzubieta P, Teran A, Crespo J and
Fabrega E: Vitamin D deficiency in chronic liver disease. World J
Hepatol. 6:901–915. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Goldstein DA, Haldimann B, Sherman D,
Norman AW and Massry SG: Vitamin D metabolites and calcium
metabolism in patients with nephrotic syndrome and normal renal
function. J clin Endocrinol Metab. 52:116–121. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Banerjee S, Basu S, Akhtar S, Sinha R, Sen
A and Sengupta J: Free vitamin D levels in steroid-sensitive
nephrotic syndrome and healthy controls. Pediatr Nephrol.
35:447–454. 2020. View Article : Google Scholar
|
|
152
|
Skversky AL, Kumar J, Abramowitz MK,
Kaskel FJ and Melamed ML: Association of glucocorticoid use and low
25-hydroxyvitamin D levels: Results from the national health and
nutrition examination survey (NHANEs): 2001-2006. J Clin Endocrinol
Metab. 96:3838–3845. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Fernandez H, Mohammed HT and Patel T:
Vitamin D supplementation for bone health in adults with epilepsy:
A systematic review. Epilepsia. 59:885–896. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Zhou C, Assem M, Tay JC, Watkins PB,
Blumberg B, Schuetz EG and Thummel KE: steroid and xenobiotic
receptor and vitamin D receptor crosstalk mediates cYP24 expression
and drug-induced osteomalacia. J Clin Invest. 116:1703–1712. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Al-Badr W and Martin KJ: Vitamin D and
Kidney Disease. Clin J Am Soc Nephrol. 3:1555–1560. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Chung S, Kim M, Koh ES, Hwang HS, Chang
YK, Park CW, Kim SY, Chang YS and Hong YA: serum
1,25-dihydroxyvitamin D better reflects renal parameters than
25-hydoxyvitamin D in patients with glomerular diseases. Int J Med
Sci. 14:1080–1087. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Dastani Z, Li R and Richards B: Genetic
regulation of vitamin D levels. Calcif Tissue Int. 92:106–117.
2013. View Article : Google Scholar
|
|
158
|
Wang TJ, Zhang F, Richards JB, Kestenbaum
B, van Meurs JB, Berry D, Kiel DP, streeten EA, Ohlsson C, Koller
DL, et al: Common genetic determinants of vitamin D insufficiency:
A genome-wide association study. Lancet. 376:180–188. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Alshahrani FM, Almalki MH, Aljohani N,
Alzahrani A, Alsaleh Y and Holick MF: Vitamin D: Light side and
best time of sunshine in Riyadh, audi Arabia. Dermatoendocrinol.
5:177–180. 2013. View Article : Google Scholar
|
|
160
|
Gallagher JC: Vitamin D and aging.
Endocrinol Metab Clin North Am. 42:319–332. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Margulies SL, Kurian D, Elliott MS and Han
Z: Vitamin D deficiency in patients with intestinal malabsorption
syndromes-think in and outside the gut. J Dig Dis. 16:617–633.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Robien K, Oppeneer SJ, Kelly JA and
Hamilton-Reeves JM: Drug-vitamin D interactions: A systematic
review of the literature. Nutr Clin Pract. 28:194–208. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Cembranel F, D'Orsi E, Jakovljevic Pudla
Wagner K, Weber Corseuil Giehl M, Moreno YMF and Gonzalez-Chica DA:
Obesity and 25(OH)D serum concentration are more important than
vitamin D intake for changes in nutritional status indicators: A
population-based longitudinal study in a state capital city in
Southern Brazil. Nutrients. 11:23662019. View Article : Google Scholar :
|
|
164
|
Martrnez-Zavala N, Löpez-Sanchez GN,
Vergara-Lopez A, Chavez-Tapia NC, Uribe M and Nuno-Lambarri N:
Vitamin D deficiency in Mexicans have a high prevalence: A
cross-sectional analysis of the patients from the centro Médico
Nacional 20 de Noviembre. Arch Osteoporos. 15:882020. View Article : Google Scholar
|
|
165
|
Tomaino K, Romero KM, Robinson CL, Baumann
LM, Hansel NN, Pollard SL, Gilman RH, Mougey E, Lima JJ and
Checkley W; PURA study investigators: Association between serum
25-hydroxy vitamin D levels and blood pressure among adolescents in
two resource-limited settings in Peru. Am J Hypertens.
28:1017–1023. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Solis-Urra P, Cristi-Montero C,
Romero-Parra J, Zavala-Crichton JP, Saez-Lara MJ and Plaza-Diaz J:
Passive commuting and higher sedentary time is associated with
vitamin D deficiency in adult and older women: Results from Chilean
national health survey 2016-2017. Nutrients. 11:3002019. View Article : Google Scholar
|
|
167
|
Hernando VU, Andry MM, Maria Virginia PF
and Valentina A: Vitamin D nutritional status in the adult
population in Colombia-an analytical cross-sectional study.
Heliyon. 6:e034792020. View Article : Google Scholar
|
|
168
|
Ross AC, Manson JE, Abrams SA, Aloia JF,
Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL,
Jones G, et al: The 2011 report on dietary reference intakes for
calcium and vitamin D from the institute of medicine What
clinicians need to know. J Clin Endocrinol Metab. 96:53–58. 2011.
View Article : Google Scholar
|
|
169
|
Holick MF, Binkley NC, Bischoff-Ferrari
HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM and
Endocrine Society: Evaluation, treatment, and prevention of vitamin
D deficiency: An endocrine society clinical practice guideline. J
Clin Endocrinol Metab. 96:1911–1930. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Palacios C and Gonzalez L: Is vitamin D
deficiency a major global public health problem? J Steroid Biochem
Mol Biol. 144:138–145. 2014. View Article : Google Scholar
|
|
171
|
Dobson R, Cock HR, Brex P and Giovannoni
G: Vitamin D supplementation. Pract Neurol. 18:35–42. 2018.
View Article : Google Scholar
|
|
172
|
EFSA Panel on Dietetic Products Nutrition
and Allergies (NDA): Scientific opinion on the tolerable upper
intake level of vitamin D. EFSA J. 10:28132012.
|
|
173
|
Scientific Advisory Committee on
Nutrition: Vitamin D and Health. 2016.
|
|
174
|
Ebadi M and Montano-Loza AJ: Perspective:
Improving vitamin D status in the management of COVID-19. Eur J
Clin Nutr. 74:856–859. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Maeda SS, Borba VZ, Camargo MB, Silva DM,
Borges JL, Bandeira F and Lazaretti-Castro M: Recomendaçôes da
Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) para o
diagnostico e tratamento da hipovitaminose D. Arq Bras Endocrinol
Metabol. 58:411–433. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Ministerio de Salud del Gobierno de Chile:
Estudio para revision y actualization de las guias alimentarias
para la poblacion chilena. 2013.
|
|
177
|
Vasquez-Awad D, Cano-Gutiérrez CA,
Gomez-Ortiz A, Gonzalez MA, Guzman-Moreno R, Martinez-Reyes JI,
Rosero-Olarte O, Rueda-Beltz C and Acosta-Reyes JL: Vitamina D.
Consenso colombiano de expertos. Medicina. 39:140–157. 2017.
|
|
178
|
Lopez-Gonzalez D, Méndez-Sanchez L,
Guagnelli MA and Clark P: Deficiencia de vitamina D en la edad
pediatrica. una oportunidad de prevencion. Bol Med Hosp Infant Mex.
72:225–234. 2015.
|
|
179
|
Pludowski P, Holick MF, Grant WB,
Konstantynowicz J, Mascarenhas MR, Haq A, Povoroznyuk V, Balatska
N, Barbosa AP, Karonova T, et al: Vitamin D supplementation
guidelines. J Steroid Biochem Mol Biol. 175:125–135. 2018.
View Article : Google Scholar
|
|
180
|
Grant WB, Lahore H, McDonnell SL, Baggerly
CA, French CB, Aliano JL and Bhattoa HP: Evidence that vitamin D
supplementation could reduce risk of influenza and COVID-19
infections and deaths. Nutrients. 12:9882020. View Article : Google Scholar :
|
|
181
|
Goddek S: Vitamin D3 and K2 and their
potential contribution to reducing the COVID-19 mortality rate. Int
J Infect Dis. 99:286–290. 2020. View Article : Google Scholar : PubMed/NCBI
|