Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review)

  • Authors:
    • Ting Liu
    • Yifei Huang
    • Hui Lin
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 73
    |
    Published online on: March 2, 2021
       https://doi.org/10.3892/ijmm.2021.4906
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen‑dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen‑dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle‑stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3‑kinase (PI3K) and extracellular signal‑regulated kinase (ERK). In addition, endocrine‑disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Mendelson CR, Jiang B, Shelton JM, Richardson JA and Hinshelwood MM: Transcriptional regulation of aromatase in placenta and ovary. J Steroid Biochem Mol Biol. 95:25–33. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Li J and Gibbs RB: Detection of estradiol in rat brain tissues: Contribution of local versus systemic production. Psychoneuroendocrinology. 102:84–94. 2019. View Article : Google Scholar

3 

Lambard S, Silandre D, Delalande C, Denis-Galeraud I, Bourguiba S and Carreau S: Aromatase in testis: Expression and role in male reproduction. J Steroid Biochem Mol Biol. 95:63–69. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Mahendroo MS, Mendelson CR and Simpson ER: Tissue-specific and hormonally controlled alternative promoters regulate aromatase cytochrome P450 gene expression in human adipose tissue. J Biol Chem. 268:19463–19470. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Wang Y, Pan P, Li X, Zhu Q, Huang T and Ge RS: Food components and environmental chemicals of inhibiting human placental aromatase. Food Chem Toxicol. 128:46–53. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y and Zhang W: Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med. 18:2167–2177. 2019.PubMed/NCBI

7 

Shoham Z, Jacobs HS and Insler V: Luteinizing hormone: Its role, mechanism of action, and detrimental effects when hyper-secreted during the follicular phase. Fertil Steril. 59:1153–1161. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Nelson LR and Bulun SE: Estrogen production and action. J Am Acad Dermatol. 45(Suppl 3): pp. S116–S124. 2001, View Article : Google Scholar

9 

Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC and Tuckey RC: Steroidogenesis in the skin: Implications for local immune functions. J Steroid Biochem Mol Biol. 137:107–123. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Bulun SE, Chen D, Moy I, Brooks DC and Zhao H: Aromatase, breast cancer and obesity: A complex interaction. Trends Endocrinol Metab. 23:83–89. 2012. View Article : Google Scholar :

11 

Zhao H, Zhou L, Shangguan AJ and Bulun SE: Aromatase expression and regulation in breast and endometrial cancer. J Mol Endocrinol. 57:R19–R33. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Shozu M, Zhao Y and Simpson ER: TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells. Mol Cell Endocrinol. 160:123–133. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Stocco C: Aromatase expression in the ovary: Hormonal and molecular regulation. Steroids. 73:473–487. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Bulun SE, Chen D, Lu M, Zhao H, Cheng Y, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, et al: Aromatase excess in cancers of breast, endometrium and ovary. J Steroid Biochem Mol Biol. 106:81–96. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Bulun SE and Simpson ER: Aromatase expression in women's cancers. Adv Exp Med Biol. 630:112–132. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Sharma D, Ghai S and Singh D: Different promoter usage for CYP19 gene expression in buffalo ovary and placenta. Gen Comp Endocrinol. 162:319–328. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Solak KA, Wijnolts FMJ, Nijmeijer SM, Blaauboer BJ, van den Berg M and van Duursen MBM: Excessive levels of diverse phytoestrogens can modulate steroidogenesis and cell migration of KGN human granulosa-derived tumor cells. Toxicol Rep. 1:360–372. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Ghosh S, Wu Y, Li R and Hu Y: Jun proteins modulate the ovary-specific promoter of aromatase gene in ovarian granulosa cells via a cAMP-responsive element. Oncogene. 24:2236–2246. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Li Q, Du X, Pan Z, Zhang L and Li Q: The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol. 476:84–95. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Andrieu T, Féral C, Joubert M, Benhaim A and Mittre H: The absence of a functional nuclear receptor element A (NREA) in the promoter II of the aromatase P450 gene in rabbit granulosa cells. J Steroid Biochem Mol Biol. 101:127–135. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Boerboom D, Kerban A and Sirois J: Dual regulation of promoter II- and promoter 1f-derived cytochrome P450 aromatase transcripts in equine granulosa cells during human chorionic gonadotropin-induced ovulation: A novel model for the study of aromatase promoter switching. Endocrinology. 140:4133–4141. 1999. View Article : Google Scholar : PubMed/NCBI

22 

Simpson ER: Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 86:225–230. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Miyoshi T, Otsuka F and Shimasaki S: GRK-6 mediates FSH action synergistically enhanced by estrogen and the oocyte in rat granulosa cells. Biochem Biophys Res Commun. 434:401–406. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Czajka-Oraniec I and Simpson ER: Aromatase research and its clinical significance. Endokrynol Pol. 61:126–134. 2010.PubMed/NCBI

25 

Velthut-Meikas A, Simm J, Tuuri T, Tapanainen JS, Metsis M and Salumets A: Research resource: Small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Mol Endocrinol. 27:1128–1141. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Mlodawska W and Slomczynska M: Immunohistochemical localization of aromatase during the development and atresia of ovarian follicles in prepubertal horses. Theriogenology. 74:1707–1712. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Naganuma H, Ohtani H, Harada N and Nagura H: Immunoelectron microscopic localization of aromatase in human placenta and ovary using microwave fixation. J Histochem Cytochem. 38:1427–1432. 1990. View Article : Google Scholar : PubMed/NCBI

28 

Shaikh AA: Estrone and estradiol levels in the ovarian venous blood from rats during the estrous cycle and pregnancy. Biol Reprod. 5:297–307. 1971. View Article : Google Scholar : PubMed/NCBI

29 

Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M and Rivero-Müller A: FSHR trans-activation and oligomerization. Front Endocrinol (Lausanne). 9:7602018. View Article : Google Scholar

30 

Jiang C, Hou X, Wang C, May JV, Butnev VY, Bousfield GR and Davis JS: Hypoglycosylated hFSH has greater bioactivity than fully glycosylated recombinant hFSH in human granulosa cells. J Clin Endocrinol Metab. 100:E852–E860. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Hobeika E, Armouti M, Kala H, Fierro MA, Winston NJ, Scoccia B, Zamah AM and Stocco C: Oocyte-secreted factors synergize with FSH to promote aromatase expression in primary human cumulus cells. J Clin Endocrinol Metab. 104:1667–1676. 2019. View Article : Google Scholar :

32 

Parakh TN, Hernandez JA, Grammer JC, Weck J, Hunzicker- Dunn M, Zeleznik AJ and Nilson JH: Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc Natl Acad Sci USA. 103:12435–12440. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Kwintkiewicz J, Cai Z and Stocco C: Follicle-stimulating hormone-induced activation of Gata4 contributes in the up-regulation of Cyp19 expression in rat granulosa cells. Mol Endocrinol. 21:933–947. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Hong Y, Li H, Yuan YC and Chen S: Molecular characterization of aromatase. Ann N Y Acad Sci. 1155:112–120. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Li Y, Gao D, Xu T, Adur MK, Zhang L, Luo L, Zhu T, Tong X, Zhang D, Wang Y, et al: Anti-Müllerian hormone inhibits luteinizing hormone-induced androstenedione synthesis in porcine theca cells. Theriogenology. 142:421–432. 2020. View Article : Google Scholar

36 

Fang Y, Wang B, Lyu S, Zhang K, Cheng Q and Zhu Y: Virus analog decreases estradiol secretion in FSH-treated human ovarian granulosa cells. Gynecol Endocrinol. 36:346–350. 2020. View Article : Google Scholar

37 

Kajitani T, Liu S, Maruyama T, Uchida H, Sakurai R, Masuda H, Nagashima T, Ono M, Arase T and Yoshimura Y: Analysis of serum FSH bioactivity in a patient with an FSH-secreting pituitary microadenoma and multicystic ovaries: A case report. Hum Reprod. 23:435–439. 2008. View Article : Google Scholar

38 

Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Nose E, Nishii O, Yano T and Taketani Y: Bone morphogenetic protein-2 (BMP-2) increases gene expression of FSH receptor and aromatase and decreases gene expression of LH receptor and StAR in human granulosa cells. Am J Reprod Immunol. 65:421–427. 2011. View Article : Google Scholar

39 

Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Hirata T, Yano T, Nishii O and Taketani Y: Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin beta subunits, and anti-Müllerian hormone in human granulosa cells. Fertil Steril. 92:1794–1798. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Shi J, Yoshino O, Osuga Y, Nishii O, Yano T and Taketani Y: Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells. Fertil Steril. 93:1273–1279. 2010. View Article : Google Scholar

41 

Overes HW, de Leeuw R and Kloosterboer HJ: Regulation of aromatase activity in FSH-primed rat granulosa cells in vitro by follicle-stimulating hormone and various amounts of human chorionic gonadotrophin. Hum Reprod. 7:191–196. 1992. View Article : Google Scholar : PubMed/NCBI

42 

Wu Y, Ghosh S, Nishi Y, Yanase T, Nawata H and Hu Y: The orphan nuclear receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cells: A possible mechanism for repression of aromatase expression upon luteinizing hormone surge. Endocrinology. 146:237–246. 2005. View Article : Google Scholar

43 

Du BW, Zhang XJ, Shi N, Peng T, Gao JB, Azimova B, Zhang R, Pu DB, Wang C, Abduvaliev A, et al: Luteolin-7-methylether from Leonurus japonicus inhibits estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). Eur J Pharmacol. 879:1731542020. View Article : Google Scholar : PubMed/NCBI

44 

Lee SY, Kang YJ, Kwon J, Nishi Y, Yanase T, Lee KA and Koong MK: miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone. Clin Exp Reprod Med. 47:194–206. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Xu S, Linher-Melville K, Yang BB, Wu D and Li J: Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 152:3941–3951. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Liu J, Li X, Yao Y and Li Q, Pan Z and Li Q: miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta Gene Regul Mech. 1861:246–257. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Wang L, Li C, Li R, Deng Y, Tan Y, Tong C and Qi H: MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim. 52:365–373. 2016. View Article : Google Scholar

48 

Chaurasiya V, Kumari S, Onteru SK and Singh D: miR-326 down-regulate CYP19A1 expression and estradiol-17b production in buffalo granulosa cells through CREB and C/EBP-β. J Steroid Biochem Mol Biol. 199:1056082020. View Article : Google Scholar

49 

Shi S, Zhou X, Li J, Zhang L, Hu Y, Li Y, Yang G and Chu G: MiR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. J Anim Sci Biotechnol. 11:942020. View Article : Google Scholar : PubMed/NCBI

50 

Li Y, Liu YD, Zhou XY, Chen SL, Chen X, Zhe J, Zhang J, Zhang QY and Chen YX: MiR-29a regulates the proliferation, aromatase expression, and estradiol biosynthesis of human granulosa cells in polycystic ovary syndrome. Mol Cell Endocrinol. 498:1105402019. View Article : Google Scholar : PubMed/NCBI

51 

Al-Kawlani B, Murrieta-Coxca JM, Chaiwangyen W, Fröhlich K, Fritzsche A, Winkler S, Markert UR and Morales-Prieto DM: Doxorubicin induces cytotoxicity and miR-132 expression in granulosa cells. Reprod Toxicol. 96:95–101. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Ogo Y, Taniuchi S, Ojima F, Hayashi S, Murakami I, Saito Y, Takeuchi S, Kudo T and Takahashi S: IGF-1 gene expression is differentially regulated by estrogen receptors α and β in mouse endometrial stromal cells and ovarian granulosa cells. J Reprod Dev. 60:216–223. 2014. View Article : Google Scholar :

53 

Zhou J, Chin E and Bondy C: Cellular pattern of insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the developing and mature ovarian follicle. Endocrinology. 129:3281–3288. 1991. View Article : Google Scholar : PubMed/NCBI

54 

Mani AM, Fenwick MA, Cheng Z, Sharma MK, Singh D and Wathes DC: IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction. 139:139–151. 2010. View Article : Google Scholar

55 

Herrmann M, Scholmerich J and Straub RH: Influence of cytokines and growth factors on distinct steroidogenic enzymes in vitro: A short tabular data collection. Ann NY Acad Sci. 966:166–186. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Fang L, Yu Y, Li Y, Wang S, Zhang R, Guo Y, Li Y, Yan Y and Sun YP: Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: A mechanism for estradiol production in the luteal phase. Hum Reprod. 34:2018–2026. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Mendelson CR, Merrill JC, Steinkampf MP and Simpson ER: Regulation of the synthesis of aromatase cytochrome P-450 in human adipose stromal and ovarian granulosa cells. Steroids. 50:51–59. 1987. View Article : Google Scholar : PubMed/NCBI

58 

Mishra SR, Bharati J, Rajesh G, Chauhan VS, Taru Sharma G, Bag S, Maurya VP, Singh G and Sarkar M: Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) synergistically promote steroidogenesis and survival of cultured buffalo granulosa cells. Anim Reprod Sci. 179:88–97. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Zachow RJ, Ramski BE and Lee H: Modulation of estrogen production and 17beta-hydroxysteroid dehydrogenase-type 1, cytochrome P450 aromatase, c-met, and protein kinase Balpha messenger ribonucleic acid content in rat ovarian granulosa cells by hepatocyte growth factor and follicle-stimulating hormone. Biol Reprod. 62:1851–1857. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC and Hwang JJ: Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J Endocrinol. 192:405–419. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Zachow RJ, Weitsman SR and Magoffin DA: Leptin impairs the synergistic stimulation by transforming growth factor-beta of follicle-stimulating hormone-dependent aromatase activity and messenger ribonucleic acid expression in rat ovarian granulosa cells. Biol Reprod. 61:1104–1109. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Kwintkiewicz J, Nishi Y, Yanase T and Giudice LC: Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ Health Perspect. 118:400–406. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Bloom MS, Mok-Lin E and Fujimoto VY: Bisphenol A and ovarian steroidogenesis. Fertil Steril. 106:857–863. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Dasmahapatra AK, Wimpee BA, Trewin AL and Hutz RJ: 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases steady-state estrogen receptor-beta mRNA levels after CYP1A1 and CYP1B1 induction in rat granulosa cells in vitro. Mol Cell Endocrinol. 182:39–48. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Dasmahapatra AK, Wimpee BA, Trewin AL, Wimpee CF, Ghorai JK and Hutz RJ: Demonstration of 2,3,7,8-tetrachloro-dibenzo-p-dioxin attenuation of P450 steroidogenic enzyme mRNAs in rat granulosa cell in vitro by competitive reverse transcriptase-polymerase chain reaction assay. Mol Cell Endocrinol. 164:5–18. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Enan E, Moran F, VandeVoort CA, Stewart DR, Overstreet JW and Lasley BL: Mechanism of toxic action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in cultured human luteinized granulosa cells. Reprod Toxicol. 10:497–508. 1996. View Article : Google Scholar : PubMed/NCBI

67 

Baldridge MG, Marks GT, Rawlins RG and Hutz RJ: Very low-dose (femtomolar) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disrupts steroidogenic enzyme mRNAs and steroid secretion by human luteinizing granulosa cells. Reprod Toxicol. 52:57–61. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Lovekamp TN and Davis BJ: Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 172:217–224. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Reinsberg J, Wegener-Toper P, van der Ven K, van der Ven H and Klingmueller D: Effect of mono-(2-ethylhexyl) phthalate on steroid production of human granulosa cells. Toxicol Appl Pharmacol. 239:116–123. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Davis BJ, Weaver R, Gaines LJ and Heindel JJ: Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol Appl Pharmacol. 128:224–228. 1994. View Article : Google Scholar : PubMed/NCBI

71 

Simon V, Avet C, Grange-Messent V, Wargnier R, Denoyelle C, Pierre A, Dairou J, Dupret JM and Cohen-Tannoudji J: Carbon black nanoparticles inhibit aromatase expression and estradiol secretion in human granulosa cells through the ERK1/2 pathway. Endocrinology. 158:3200–3211. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Fan G, Zhang Q, Wan Y, Lv F, Chen Y, Ni Y, Zou W, Zhang W and Wang H: Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol. 128:256–266. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Taupeau C, Poupon J, Treton D, Brosse A, Richard Y and Machelon V: Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor beta in human ovarian granulosa cells. Biol Reprod. 68:1982–1988. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Morinaga H, Yanase T, Nomura M, Okabe T, Goto K, Harada N and Nawata H: A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology. 145:1860–1869. 2004. View Article : Google Scholar

75 

Zachow R and Uzumcu M: The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro. Reprod Toxicol. 22:659–665. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Rice S, Pellatt L, Ramanathan K, Whitehead SA and Mason HD: Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway. Endocrinology. 150:4794–4801. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Fuhrmeister IP, Branchini G, Pimentel AM, Ferreira GD, Capp E, Brum IS and von Eye Corleta H: Human granulosa cells: Insulin and insulin-like growth factor-1 receptors and aromatase expression modulation by metformin. Gynecol Obstet Invest. 77:156–162. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Seto-Young D, Avtanski D, Parikh G, Suwandhi P, Strizhevsky M, Araki T, Rosenwaks Z and Poretsky L: Rosiglitazone and pioglitazone inhibit estrogen synthesis in human granulosa cells by interfering with androgen binding to aromatase. Horm Metab Res. 43:250–256. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Mu YM, Yanase T, Nishi Y, Waseda N, Oda T, Tanaka A, Takayanagi R and Nawata H: Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun. 271:710–713. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL and Richards JS: Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): Evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 14:1283–1300. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Donadeu FX and Ascoli M: The differential effects of the gonado- tropin receptors on aromatase expression in primary cultures of immature rat granulosa cells are highly dependent on the density of receptors expressed and the activation of the inositol phosphate cascade. Endocrinology. 146:3907–3916. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Riccetti L, Sperduti S, Lazzaretti C, Casarini L and Simoni M: The cAMP/PKA pathway: Steroidogenesis of the antral follicular stage. Minerva Ginecol. 70:516–524. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS and Hunzicker-Dunn M: Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem. 279:19431–19440. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Zhou Y, Zeng C, Li X, Wu PL, Yin L, Yu XL, Zhou YF and Xue Q: IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis. J Mol Med (Berl). 94:887–897. 2016. View Article : Google Scholar

85 

Liu J, Han Y, Tian Y, Weng X, Hu X, Liu W, Heng D, Xu K, Yang Y and Zhang C: Regulation by 3,5,3′-tri-iodothyronine and FSH of cytochrome P450 family 19 (CYP19) expression in mouse granulosa cells. Reprod Fertil Dev. 30:1225–1233. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Cottom J, Salvador LM, Maizels ET, Reierstad S, Park Y, Carr DW, Davare MA, Hell JW, Palmer SS, Dent P, et al: Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase. J Biol Chem. 278:7167–7179. 2003. View Article : Google Scholar

87 

Huang X, Jin J, Shen S, Xia Y, Xu P, Zou X, Wang H, Yi L, Wang Y and Gao Q: Modulation of expression of 17-Hydroxylase/17,20 lyase (CYP17) and P450 aromatase (CYP19) by inhibition of MEK1 in a human ovarian granulosa-like tumor cell line. Gynecol Endocrinol. 32:201–205. 2016. View Article : Google Scholar

88 

Findlay JK: An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis. Biol Reprod. 48:15–23. 1993. View Article : Google Scholar : PubMed/NCBI

89 

Nomura M, Sakamoto R, Morinaga H, Wang L, Mukasa C and Takayanagi R: Activin stimulates CYP19A gene expression in human ovarian granulosa cell-like KGN cells via the Smad2 signaling pathway. Biochem Biophys Res Commun. 436:443–448. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Yenuganti VR, Ravinder and Singh D: Endotoxin induced TLR4 signaling downregulates CYP19A1 expression through CEBPB in buffalo granulosa cells. Toxicol In Vitro. 42:93–100. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Wang Y, Lu E, Bao R, Xu P, Feng F, Wen W, Dong Q, Hu C, Xiao L, Tang M, et al: Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells. Reprod Fertil Dev. 31:1091–1103. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Manna PR, Molehin D and Ahmed AU: Dysregulation of aromatase in breast, endometrial, and ovarian cancers: An overview of therapeutic strategies. Prog Mol Biol Transl Sci. 144:487–537. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Kato N, Uchigasaki S, Fukase M and Kurose A: Expression of P450 aromatase in granulosa cell tumors and sertoli-stromal cell tumors of the ovary: Which cells are responsible for estrogenesis? Int J Gynecol Pathol. 35:41–47. 2016. View Article : Google Scholar

94 

Kitamura S, Abiko K, Matsumura N, Nakai H, Akimoto Y, Tanimoto H and Konishi I: Adult granulosa cell tumors of the ovary: A retrospective study of 30 cases with respect to the expression of steroid synthesis enzymes. J Gynecol Oncol. 28:e312017. View Article : Google Scholar : PubMed/NCBI

95 

Hsueh AJ, Adashi EY, Jones PB and Welsh TH Jr: Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 5:76–127. 1984. View Article : Google Scholar : PubMed/NCBI

96 

Cocquet J, Pailhoux E, Jaubert F, Servel N, Xia X, Pannetier M, De Baere E, Messiaen L, Cotinot C, Fellous M and Veitia RA: Evolution and expression of FOXL2. J Med Genet. 39:916–921. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Belli M, Iwata N, Nakamura T, Iwase A, Stupack D and Shimasaki S: FOXL2C134W-induced CYP19 expression via cooperation with SMAD3 in HGrC1 cells. Endocrinology. 159:1690–1703. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER and Clyne CD: Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One. 5:e143892010. View Article : Google Scholar : PubMed/NCBI

99 

Leung K: (S)-6-[(4-Chlorophenyl)(1H-1,2,4-triazol-1-yl) methyl]-1-[(11)C]methyl-1H-benzotriazole. Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information; Bethesda, MD: 2004

100 

Moro F, Leombroni M, Pasciuto T, Trivellizzi IN, Mascilini F, Ciccarone F, Zannoni GF, Fanfani F, Scambia G and Testa AC: Synchronous primary cancers of endometrium and ovary vs endometrial cancer with ovarian metastasis: An observational study. Ultrasound Obstet Gynecol. 53:827–835. 2019.PubMed/NCBI

101 

Michael MD, Kilgore MW, Morohashi K and Simpson ER: Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem. 270:13561–13566. 1995. View Article : Google Scholar : PubMed/NCBI

102 

Panghiyangani R, Soeharso P, Andrijono, Suryandari DA, Wiweko B, Kurniati M and Pujianto DA: CYP19A1 gene expression in patients with polycystic ovarian syndrome. J Hum Reprod Sci. 13:100–103. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Shozu M, Sumitani H, Segawa T, Yang HJ, Murakami K, Kasai T and Inoue M: Overexpression of aromatase P450 in leiomyoma tissue is driven primarily through promoter I.4 of the aromatase P450 gene (CYP19). J Clin Endocrinol Metab. 87:2540–2548. 2002. View Article : Google Scholar : PubMed/NCBI

104 

Jamnongjit M and Hammes SR: Ovarian steroids: The good, the bad, and the signals that raise them. Cell Cycle. 5:1178–1183. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han YB, Teng XM and Yang JZ: Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 150:289–296. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Dewailly D, Robin G, Peigne M, Decanter C, Pigny P and Catteau-Jonard S: Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 22:709–724. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Che Q, Liu M, Zhang D, Lu Y, Xu J, Lu X, Cao X, Liu Y, Dong X and Liu S: Long noncoding RNA HUPCOS promotes follicular fluid androgen excess in PCOS patients via aromatase inhibition. J Clin Endocrinol Metab. 105:dgaa0602020. View Article : Google Scholar : PubMed/NCBI

108 

Gu Y, Xu W, Zhuang B and Fu W: Role of A-kinase anchoring protein 95 in the regulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in human ovarian granulosa cells. Reprod Fertil Dev. 30:1128–1136. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Ma X, Hayes E, Prizant H, Srivastava RK, Hammes SR and Sen A: Leptin-induced CART (cocaine- and amphetamine-regulated transcript) is a novel intraovarian mediator of obesity-related infertility in females. Endocrinology. 157:1248–1257. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Turkistani A and Marsh S: Pharmacogenomics of third-generation aromatase inhibitors. Expert Opin Pharmacother. 13:1299–1307. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Kharb R, Haider K, Neha K and Yar MS: Aromatase inhibitors: Role in postmenopausal breast cancer. Arch Pharm (Weinheim). 353:e20000812020. View Article : Google Scholar

112 

Usluogullari B, Duvan C and Usluogullari C: Use of aromatase inhibitors in practice of gynecology. J Ovarian Res. 8:42015. View Article : Google Scholar : PubMed/NCBI

113 

Ammazzalorso A, Gallorini M, Fantacuzzi M, Gambacorta N, De Filippis B, Giampietro L, Maccallini C, Nicolotti O, Cataldi A and Amoroso R: Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors. Eur J Med Chem. 211:1131152021. View Article : Google Scholar

114 

Haltia UM, Pihlajoki M, Andersson N, Mäkinen L, Tapper J, Cervera A, Horlings HM, Turpeinen U, Anttonen M, Bützow R, et al: Functional profiling of FSH and estradiol in ovarian granulosa cell tumors. J Endocr Soc. 4:bvaa0342020. View Article : Google Scholar : PubMed/NCBI

115 

Ghosh D, Lo J and Egbuta C: Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective. J Med Chem. 59:5131–5148. 2016. View Article : Google Scholar :

116 

Steinkampf MP, Mendelson CR and Simpson ER: Effects of epidermal growth factor and insulin-like growth factor I on the levels of mRNA encoding aromatase cytochrome P-450 of human ovarian granulosa cells. Mol Cell Endocrinol. 59:93–99. 1988. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu T, Huang Y and Lin H: Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 47: 73, 2021.
APA
Liu, T., Huang, Y., & Lin, H. (2021). Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). International Journal of Molecular Medicine, 47, 73. https://doi.org/10.3892/ijmm.2021.4906
MLA
Liu, T., Huang, Y., Lin, H."Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review)". International Journal of Molecular Medicine 47.5 (2021): 73.
Chicago
Liu, T., Huang, Y., Lin, H."Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 73. https://doi.org/10.3892/ijmm.2021.4906
Copy and paste a formatted citation
x
Spandidos Publications style
Liu T, Huang Y and Lin H: Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 47: 73, 2021.
APA
Liu, T., Huang, Y., & Lin, H. (2021). Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). International Journal of Molecular Medicine, 47, 73. https://doi.org/10.3892/ijmm.2021.4906
MLA
Liu, T., Huang, Y., Lin, H."Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review)". International Journal of Molecular Medicine 47.5 (2021): 73.
Chicago
Liu, T., Huang, Y., Lin, H."Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 73. https://doi.org/10.3892/ijmm.2021.4906
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team