|
1
|
Maria S and Witt-Enderby PA: Melatonin
effects on bone: Potential use for the prevention and treatment for
osteopenia, osteoporosis, and periodontal disease and for use in
bone-grafting procedures. J Pineal Res. 56:115–125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Johnell O and Kanis JA: An estimate of the
worldwide prevalence and disability associated with osteoporotic
fractures. Osteoporos Int. 17:1726–1733. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kanis JA: Diagnosis of osteoporosis and
assessment of fracture risk. Lancet. 359:1929–1936. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP
and Li HB: Dietary sources and bioactivities of melatonin.
Nutrients. 9:3672017. View Article : Google Scholar :
|
|
5
|
Cipolla-Neto J and Amaral FGD: Melatonin
as a hormone: New physiological and clinical insights. Endocr Rev.
39:990–1028. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Reiter RJ: Pineal melatonin: Cell biology
of its synthesis and of its physiological interactions. Endocr Rev.
12:151–180. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Amaral FGD and Cipolla-Neto J: A brief
review about melatonin, a pineal hormone. Arch Endocrinol Metab.
62:472–479. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Simonneaux V and Ribelayga C: Generation
of the melatonin endocrine message in mammals: A review of the
complex regulation of melatonin synthesis by norepinephrine,
peptides, and other pineal transmitters. Pharmacol Rev. 55:325–395.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tan DX, Manchester LC, Hardeland R,
Lopez-Burillo S, Mayo JC, Sainz RM and Reiter RJ: Melatonin: A
hormone, a tissue factor, an autocoid, a paracoid, and an
antioxidant vitamin. J Pineal Res. 34:75–78. 2003. View Article : Google Scholar
|
|
10
|
Permuy M, López-Peña M,
González-Cantalapiedra A and Muñoz F: Melatonin: A review of its
potential functions and effects on dental diseases. Int J Mol Sci.
18:8652017. View Article : Google Scholar :
|
|
11
|
Tordjman S, Chokron S, Delorme R, Charrier
A, Bellissant E, Jaafari N and Fougerou C: Melatonin: Pharmacology,
functions and therapeutic benefits. Curr Neuropharmacol.
15:434–443. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nauth A, Schemitsch E, Norris B, Nollin Z
and Watson JT: Critical-size bone defects: Is there a consensus for
diagnosis and treatment? J Orthop Trauma. 32(Suppl 1): S7–S11.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shino H, Hasuike A, Arai Y, Honda M,
Isokawa K and Sato S: Melatonin enhances vertical bone augmentation
in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal.
21:e122–e126. 2016. View Article : Google Scholar :
|
|
14
|
Histing T, Anton C, Scheuer C, Garcia P,
Holstein JH, Klein M, Matthys R, Pohlemann T and Menger MD:
Melatonin impairs fracture healing by suppressing RANKL-mediated
bone remodeling. J Surg Res. 173:83–90. 2012. View Article : Google Scholar
|
|
15
|
Satomura K, Tobiume S, Tokuyama R,
Yamasaki Y, Kudoh K, Maeda E and Nagayama M: Melatonin at
pharmacological doses enhances human osteoblastic differentiation
in vitro and promotes mouse cortical bone formation in vivo. J
Pineal Res. 42:231–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sethi S, Radio NM, Kotlarczyk MP, Chen CT,
Wei YH, Jockers R and Witt-Enderby PA: Determination of the minimal
melatonin exposure required to induce osteoblast differentiation
from human mesenchymal stem cells and these effects on downstream
signaling pathways. J Pineal Res. 49:222–238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dong P, Gu X, Zhu G, Li M, Ma B and Zi Y:
Melatonin induces osteoblastic differentiation of mesenchymal stem
cells and promotes fracture healing in a rat model of femoral
fracture via neuropeptide Y/neuropeptide Y receptor Y1 signaling.
Pharmacology. 102:272–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Luchetti F, Canonico B, Bartolini D,
Arcangeletti M, Ciffolilli S, Murdolo G, Piroddi M, Papa S, Reiter
RJ and Galli F: Melatonin regulates mesenchymal stem cell
differentiation: A review. J Pineal Res. 56:382–397. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhu G, Ma B, Dong P, Shang J, Gu X and Zi
Y: Melatonin promotes osteoblastic differentiation and regulates
PDGF/AKT signaling pathway. Cell Biol Int. 44:402–411. 2020.
View Article : Google Scholar
|
|
20
|
Park KH, Kang JW, Lee EM, Kim JS, Rhee YH,
Kim M, Jeong SJ, Park YG and Kim SH: Melatonin promotes
osteoblastic differentiation through the BMP/ERK/Wnt signaling
pathways. J Pineal Res. 51:187–194. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gao W, Lin M, Liang A, Zhang L, Chen C,
Liang G, Xu C, Peng Y, Chen C, Huang D and Su P: Melatonin enhances
chondrogenic differentiation of human mesenchymal stem cells. J
Pineal Res. 56:62–70. 2014. View Article : Google Scholar
|
|
22
|
Zhang B, Bailey WM, McVicar AL and Gensel
JC: Age increases reactive oxygen species production in macrophages
and potentiates oxidative damage after spinal cord injury.
Neurobiol Aging. 47:157–167. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fraser JH, Helfrich MH, Wallace HM and
Ralston SH: Hydrogen peroxide, but not superoxide, stimulates bone
resorption in mouse calvariae. Bone. 19:223–226. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lee NK, Choi YG, Baik JY, Han SY, Jeong
DW, Bae YS, Kim N and Lee SY: A crucial role for reactive oxygen
species in RANKL-induced osteoclast differentiation. Blood.
106:852–859. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu X, Gong Y, Xiong K, Ye Y, Xiong Y,
Zhuang Z, Luo Y, Jiang Q and He F: Melatonin mediates protective
effects on inflammatory response induced by interleukin-1 beta in
human mesenchymal stem cells. J Pineal Res. 55:14–25. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu XW, Zi Y, Liu YE, Zhang YB, Xiang LB
and Hou MX: Melatonin exerts protective effect on N2a cells under
hypoxia conditions through Zip1/ERK pathway. Neurosci Lett.
595:74–80. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xu S, Yang Y, Han S and Wu Z: ZIP1 and
zinc inhibits fluoride-induced apoptosis in MC3T3-E1 cells. Biol
Trace Elem Res. 159:399–409. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Halıcı M, Öner M, Güney A, Canöz Ö, Narin
F and Halıcı C: Melatonin promotes fracture healing in the rat
model. Eklem Hastalik Cerrahisi. 21:172–177. 2010.
|
|
29
|
Quesnelle KM, Bystrom PV and
Toledo-Pereyra LH: Molecular responses to ischemia and reperfusion
in the liver. Arch Toxicol. 89:651–657. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bagheri F, Khori V, Alizadeh AM,
Khalighfard S, Khodayari S and Khodayari H: Reactive oxygen
species-mediated cardiac-reperfusion injury: Mechanisms and
therapies. Life Sci. 165:43–55. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Erdem M, Gulabi D, Asci M, Bostan B, Gunes
T and Koseoglu RD: The effects of melatonin and caffeic acid
phenethyl ester (CAPE) on fracture healing under ischemic
conditions. Acta Orthop Traumatol Turc. 48:339–345. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Son JH, Cho YC, Sung IY, Kim IR, Park BS
and Kim YD: Melatonin promotes osteoblast differentiation and
mineralization of MC3T3-E1 cells under hypoxic conditions through
activation of PKD/p38 pathways. J Pineal Res. 57:385–392. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ramírez-Fernández MP, Calvo-Guirado JL,
de-Val JE, Delgado-Ruiz RA, Negri B, Pardo-Zamora G, Peñarrocha D,
Barona C, Granero JM and Alcaraz-Baños M: Melatonin promotes
angiogenesis during repair of bone defects: A radiological and
histomorphometric study in rabbit tibiae. Clin Oral Investig.
17:147–158. 2013. View Article : Google Scholar
|
|
34
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.
|
|
35
|
Pugazhenthi K, Kapoor M, Clarkson AN, Hall
I and Appleton I: Melatonin accelerates the process of wound repair
in full-thickness incisional wounds. J Pineal Res. 44:387–396.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yildirimturk S, Batu S, Alatli C, Olgac V,
Firat D and Sirin Y: The effects of supplemental melatonin
administration on the healing of bone defects in
streptozotocin-induced diabetic rats. J Appl Oral Sci. 24:239–249.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
de Carvalho Nogueira EF, de Oliveira
Vasconcelos R, Teixeira Correia SS, Souza Catunda I, Amorim JA and
do Egito Cavalcanti Vasconcelos B: Is there a benefit to the use of
melatonin in preoperative zygomatic fractures? J Oral Maxillofac
Surg. 77:2017.e1–2017.e7. 2019. View Article : Google Scholar
|
|
38
|
Al-Aama T, Brymer C, Gutmanis I,
Woolmore-Goodwin SM, Esbaugh J and Dasgupta M: Melatonin decreases
delirium in elderly patients: A randomized, placebo-controlled
trial. Int J Geriatr Psychiatry. 26:687–694. 2011. View Article : Google Scholar
|
|
39
|
Sultan SS: Assessment of role of
perioperative melatonin in prevention and treatment of
postoperative delirium after hip arthroplasty under spinal
anesthesia in the elderly. Saudi J Anaesth. 4:169–173. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
de Jonghe A, van Munster BC, Goslings JC,
Kloen P, van Rees C, Wolvius R, van Velde R, Levi M, de Haan RJ and
de Rooij SE; Amsterdam Delirium Study Group: Effect of melatonin on
incidence of delirium among patients with hip fracture: A
multicentre, double-blind randomized controlled trial. CMAJ.
186:E547–E556. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Majidinia M, Reiter RJ, Shakouri SK,
Mohebbi I, Rastegar M, Kaviani M, Darband SG, Jahanban-Esfahlan R,
Nabavi SM and Yousefi B: The multiple functions of melatonin in
regenerative medicine. Ageing Res Rev. 45:33–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Topkan E, Tufan H, Yavuz AA, Bacanli D,
Onal C, Kosdak S and Yavuz MN: Comparison of the protective effects
of melatonin and amifostine on radiation-induced epiphyseal injury.
Int J Radiat Biol. 84:796–802. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cipriani C, Pepe J, Bertoldo F, Bianchi G,
Cantatore FP, Corrado A, Di Stefano M, Frediani B, Gatti D,
Giustina A, et al: The epidemiology of osteoporosis in Italian
postmenopausal women according to the National Bone Health Alliance
(NBHA) diagnostic criteria: A multicenter cohort study. J
Endocrinol Invest. 41:431–438. 2018. View Article : Google Scholar
|
|
45
|
Parizad N, Baghi V, Karimi EB and Ghanei
Gheshlagh R: The prevalence of osteoporosis among Iranian
postmenopausal women with type 2 diabetes: A systematic review and
meta-analysis. Diabetes Metab Syndr. 13:2607–2612. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Melton LJ III: The prevalence of
osteoporosis: Gender and racial comparison. Calcif Tissue Int.
69:179–181. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Coughlan T and Dockery F: Osteoporosis and
fracture risk in older people. Clin Med (Lond). 14:187–191. 2014.
View Article : Google Scholar
|
|
48
|
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY
and Yu SN: A network meta-analysis on the short-term efficacy and
adverse events of different anti-osteoporosis drugs for the
treatment of postmenopausal osteoporosis. J Cell Biochem.
119:4469–4481. 2018. View Article : Google Scholar
|
|
49
|
Cui Z, Meng X, Feng H, Zhuang S, Liu Z,
Zhu T, Ye K, Xing Y, Sun C, Zhou F and Tian Y: Estimation and
projection about the standardized prevalence of osteoporosis in
mainland China. Arch Osteoporos. 15:22019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lane NE: Epidemiology, etiology, and
diagnosis of osteoporosis. Am J Obstet Gynecol. 194(2 Suppl):
S3–S11. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mohd-Tahir NA and Li SC: Economic burden
of osteoporosis-related hip fracture in Asia: A systematic review.
Osteoporos Int. 28:2035–2044. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hopkins RB, Burke N, Von Keyserlingk C,
Leslie WD, Morin SN, Adachi JD, Papaioannou A, Bessette L, Brown
JP, Pericleous L and Tarride J: The current economic burden of
illness of osteoporosis in Canada. Osteoporos Int. 27:3023–3032.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Egermann M, Gerhardt C, Barth A, Maestroni
GJ, Schneider E and Alini M: Pinealectomy affects bone mineral
density and structure-an experimental study in sheep. BMC
Musculoskelet Disord. 12:2712011. View Article : Google Scholar
|
|
54
|
Pines A: Circadian rhythm and menopause.
Climacteric. 19:551–552. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sack RL, Lewy AJ, Erb DL, Vollmer WM and
Singer CM: Human melatonin production decreases with age. J Pineal
Res. 3:379–388. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kotlarczyk MP, Lassila HC, O'Neil CK,
D'Amico F, Enderby LT, Witt-Enderby PA and Balk JL: Melatonin
osteoporosis prevention study (MOPS): A randomized, double-blind,
placebo-controlled study examining the effects of melatonin on bone
health and quality of life in perimenopausal women. J Pineal Res.
52:414–426. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sharan K, Lewis K, Furukawa T and Yadav
VK: Regulation of bone mass through pineal-derived melatonin-MT2
receptor pathway. J Pineal Res. 63. pp. e124232017, View Article : Google Scholar
|
|
58
|
Bao T, Zeng L, Yang K, Li Y, Ren F, Zhang
Y and Gao Z: Can melatonin improve the osteopenia of perimenopausal
and postmenopausal women? A meta-analysis. Int J Endocrinol.
2019:51516782019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tresguerres IF, Tamimi F, Eimar H,
Barralet JE, Prieto S, Torres J, Calvo-Guirado JL and Tresguerres
JA: Melatonin dietary supplement as an anti-aging therapy for
age-related bone loss. Rejuvenation Res. 17:341–346. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu Y, Sheng H, Bao Q, Wang Y, Lu J and Ni
X: NLRP3 inflammasome activation mediates estrogen
deficiency-induced depression- and anxiety-like behavior and
hippocampal inflammation in mice. Brain Behav Immun. 56:175–186.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xu L, Zhang L, Wang Z, Li C, Li S, Li L,
Fan Q and Zheng L: Melatonin suppresses estrogen deficiency-induced
osteoporosis and promotes osteoblastogenesis by inactivating the
NLRP3 inflammasome. Calcif Tissue Int. 103:400–410. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Si Y, Wang C, Guo Y, Xu G and Ma Y:
Prevalence of osteoporosis in patients with type 2 diabetes
mellitus in the Chinese mainland: A systematic review and
meta-analysis. Iran J Public Health. 48:1203–1214. 2019.PubMed/NCBI
|
|
63
|
Paschou SA, Dede AD, Anagnostis PG,
Vryonidou A, Morganstein D and Goulis DG: Type 2 diabetes and
osteoporosis: A guide to optimal management. J Clin Endocrinol
Metab. 102:3621–3634. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lecka-Czernik B: Diabetes, bone and
glucose-lowering agents: Basic biology. Diabetologia. 60:1163–1169.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Meng HZ, Zhang WL, Liu F and Yang MW:
Advanced glycation end products affect osteoblast proliferation and
function by modulating autophagy via the receptor of advanced
glycation end products/raf protein/mitogen-activated protein
kinase/extracellular signal-regulated kinase kinase/extracellular
signal-regulated kinase (RAGE/Raf/MEK/ERK) pathway. J Biol Chem.
290:28189–28199. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang WL, Meng HZ, Yang RF, Yang MW, Sun
GH, Liu JH, Shi PX, Liu F and Yang B: Melatonin suppresses
autophagy in type 2 diabetic osteoporosis. Oncotarget.
7:52179–52194. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ghareghani M, Scavo L, Arnoult D, Zibara K
and Farhadi N: Melatonin therapy reduces the risk of osteoporosis
and normalizes bone formation in multiple sclerosis. Fundam Clin
Pharmacol. 32:181–187. 2018. View Article : Google Scholar
|
|
68
|
Witt-Enderby PA, Radio NM, Doctor JS and
Davis VL: Therapeutic treatments potentially mediated by melatonin
receptors: Potential clinical uses in the prevention of
osteoporosis, cancer and as an adjuvant therapy. J Pineal Res.
41:297–305. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
March L, Smith EU, Hoy DG, Cross MJ,
Sanchez-Riera L, Blyth F, Buchbinder R, Vos T and Woolf AD: Burden
of disability due to musculoskeletal (MSK) disorders. Best Pract
Res Clin Rheumatol. 28:353–366. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Neogi T and Zhang Y: Epidemiology of
osteoarthritis. Rheum Dis Clin North Am. 39:1–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Thomas AC, Hubbard-Turner T, Wikstrom EA
and Palmieri-Smith RM: Epidemiology of Posttraumatic
Osteoarthritis. J Athl Train. 52:491–496. 2017. View Article : Google Scholar :
|
|
72
|
Vina ER and Kwoh CK: Epidemiology of
osteoarthritis: Literature update. Curr Opin Rheumatol. 30:160–167.
2018. View Article : Google Scholar :
|
|
73
|
Gentili C and Cancedda R: Cartilage and
bone extracellular matrix. Curr Pharm Des. 15:1334–1348. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mobasheri A, Rayman MP, Gualillo O, Sellam
J, van der Kraan P and Fearon U: The role of metabolism in the
pathogenesis of osteoarthritis. Nat Rev Rheumatol. 13:302–311.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Buckwalter JA, Anderson DD, Brown TD,
Tochigi Y and Martin JA: The roles of mechanical stresses in the
pathogenesis of osteoarthritis: Implications for treatment of joint
injuries. Cartilage. 4:286–294. 2013. View Article : Google Scholar
|
|
76
|
Kapoor M, Martel-Pelletier J, Lajeunesse
D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in
the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42.
2011. View Article : Google Scholar
|
|
77
|
Gao B, Gao W, Wu Z, Zhou T, Qiu X, Wang X,
Lian C, Peng Y, Liang A, Qiu J, et al: Melatonin rescued
interleukin 1β-impaired chondrogenesis of human mesenchymal stem
cells. Stem Cell Res Ther. 9:1622018. View Article : Google Scholar
|
|
78
|
Taruc-Uy RL and Lynch SA: Diagnosis and
treatment of osteoarthritis. Prim Care. 40:821–836. vii2013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hainque B, Dominice J, Jaffray P, Ronot X
and Adolphe M: Effects of dexamethasone on the growth of cultured
rabbit articular chondrocytes: Relation with the nuclear
glucocorticoid-receptor complex. Ann Rheum Dis. 46:146–152. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Robinson WH, Lepus CM, Wang Q, Raghu H,
Mao R, Lindstrom TM and Sokolove J: Low-grade inflammation as a key
mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol.
12:580–592. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu-Bryan R and Terkeltaub R: Emerging
regulators of the inflammatory process in osteoarthritis. Nat Rev
Rheumatol. 11:35–44. 2015. View Article : Google Scholar :
|
|
82
|
Zhang Y, Lin J, Zhou X, Chen X, Chen AC,
Pi B, Pan G, Pei M, Yang H, Liu T and He F: Melatonin prevents
osteoarthritis-induced cartilage degradation via targeting
MicroRNA-140. Oxid Med Cell Longev. 2019:97059292019. View Article : Google Scholar
|
|
83
|
Hosseinzadeh A, Kamrava SK, Joghataei MT,
Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H and
Mehrzadi S: Apoptosis signaling pathways in osteoarthritis and
possible protective role of melatonin. J Pineal Res. 61:411–425.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Milam SB, Zardeneta G and Schmitz JP:
Oxidative stress and degenerative temporomandibular joint disease:
A proposed hypothesis. J Oral Maxillofac Surg. 56:214–223. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bolduc JA, Collins JA and Loeser RF:
Reactive oxygen species, aging and articular cartilage homeostasis.
Free Radic Biol Med. 132:73–82. 2019. View Article : Google Scholar :
|
|
86
|
Bakker AD, Silva VC, Krishnan R, Bacabac
RG, Blaauboer ME, Lin YC, Marcantonio RA, Cirelli JA and
Klein-Nulend J: Tumor necrosis factor alpha and interleukin-1beta
modulate calcium and nitric oxide signaling in mechanically
stimulated osteocytes. Arthritis Rheum. 60:3336–3345. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG,
Chun YH, Choi BJ and Kim EC: Cytoprotective and anti-inflammatory
effects of melatonin in hydrogen peroxide-stimulated CHON-001 human
chondrocyte cell line and rabbit model of osteoarthritis via the
SIRT1 pathway. J Pineal Res. 53:225–237. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Guo JY, Li F, Wen YB, Cui HX, Guo ML,
Zhang L, Zhang YF, Guo YJ and Guo YX: Melatonin inhibits
Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to
attenuate osteoarthritis. Oncotarget. 8:55967–55983. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cuzzocrea S, Zingarelli B, Gilad E, Hake
P, Salzman AL and Szabó C: Protective effect of melatonin in
carrageenan-induced models of local inflammation: Relationship to
its inhibitory effect on nitric oxide production and its
peroxynitrite scavenging activity. J Pineal Res. 23:106–116. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ozturk G, Coşkun S, Erbaş D and Hasanoglu
E: The effect of melatonin on liver superoxide dismutase activity,
serum nitrate and thyroid hormone levels. Jpn J Physiol.
50:149–153. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hossain FM and Hong Y, Jin Y, Choi J and
Hong Y: Physiological and pathological role of circadian hormones
in osteoarthritis: Dose-dependent or time-dependent? J Clin Med.
8:14152019. View Article : Google Scholar :
|
|
92
|
Jahanban-Esfahlan R, Mehrzadi S, Reiter
RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B and
Sadeghpour A: Melatonin in regulation of inflammatory pathways in
rheumatoid arthritis and osteoarthritis: Involvement of circadian
clock genes. Br J Pharmacol. 175:3230–3238. 2018. View Article : Google Scholar :
|
|
93
|
Rong J, Zhu M, Munro J, Cornish J,
McCarthy GM, Dalbeth N and Poulsen RC: Altered expression of the
core circadian clock component PERIOD2 contributes to
osteoarthritis-like changes in chondrocyte activity. Chronobiol
Int. 36:319–331. 2019. View Article : Google Scholar
|
|
94
|
Yang W, Kang X, Liu J, Li H, Ma Z, Jin X,
Qian Z, Xie T, Qin N, Feng D, et al: Clock gene Bmal1 modulates
human cartilage gene expression by crosstalk with Sirt1.
Endocrinology. 157:3096–3107. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hong Y, Kim H, Lee S, Jin Y, Choi J, Lee
SR, Chang KT and Hong Y: Role of melatonin combined with exercise
as a switch-like regulator for circadian behavior in advanced
osteoarthritic knee. Oncotarget. 8:97633–97647. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Nugent M: MicroRNAs: Exploring new
horizons in osteoarthritis. Osteoarthritis Cartilage. 24:573–580.
2016. View Article : Google Scholar
|
|
97
|
Miyaki S and Asahara H: Macro view of
microRNA function in osteoarthritis. Nat Rev Rheumatol. 8:543–552.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Miyaki S, Sato T, Inoue A, Otsuki S, Ito
Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al:
MicroRNA-140 plays dual roles in both cartilage development and
homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN,
Cheng JQ, Lu YR and Shen B: Intra-articular injection of
microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression
by modulating extracellular matrix (ECM) homeostasis in rats.
Osteoarthritis Cartilage. 25:1698–1707. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Miyaki S, Nakasa T, Otsuki S, Grogan SP,
Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK and Asahara H:
MicroRNA-140 is expressed in differentiated human articular
chondrocytes and modulates interleukin-1 responses. Arthritis
Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Karlsen TA, de Souza GA, Ødegaard B,
Engebretsen L and Brinchmann JE: microRNA-140 inhibits inflammation
and stimulates chondrogenesis in a model of interleukin 1β-induced
osteoarthritis. Mol Ther Nucleic Acids. 5:e3732016. View Article : Google Scholar
|
|
102
|
Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang
A, Xu C, Gao W, Zhang L, Su P, et al: Melatonin-mediated
miR-526b-3p and miR-590-5p upregulation promotes chondrogenic
differentiation of human mesenchymal stem cells. J Pineal Res.
65:e124832018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jüni P, Hari R, Rutjes AW, Fischer R,
Silletta MG, Reichenbach S and da Costa BR: Intra-articular
corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev.
pp. CD0053282015
|
|
104
|
McAlindon TE, LaValley MP, Harvey WF,
Price LL, Driban JB, Zhang M and Ward RJ: Effect of intra-articular
triamcinolone vs saline on knee cartilage volume and pain in
patients with knee osteoarthritis: A randomized clinical trial.
JAMA. 317:1967–1975. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yang W, Kang X, Qin N, Li F, Jin X, Ma Z,
Qian Z and Wu S: Melatonin protects chondrocytes from impairment
induced by glucocorticoids via NAD+-dependent SIRT1.
Steroids. 126:24–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Garrido-Urbani S, Jaquet V and Imhof BA:
ROS and NADPH oxidase: Key regulators of tumor vascularisation. Med
Sci (Paris). 30:415–421. 2014.In French. View Article : Google Scholar
|
|
107
|
Ahn J, Kim SA, Kim KW, Oh JH and Kim SJ:
Optimization of TGF-β1-transduced chondrocytes for cartilage
regeneration in a 3D printed knee joint model. PLoS One.
14:e02176012019. View Article : Google Scholar
|
|
108
|
Verdier MP, Seité S, Guntzer K, Pujol JP
and Boumédiène K: Immunohistochemical analysis of transforming
growth factor beta isoforms and their receptors in human cartilage
from normal and osteoarthritic femoral heads. Rheumatol Int.
25:118–124. 2005. View Article : Google Scholar
|
|
109
|
Fang J, Xu L, Li Y and Zhao Z: Roles of
TGF-beta 1 signaling in the development of osteoarthritis. Histol
Histopathol. 31:1161–1167. 2016.PubMed/NCBI
|
|
110
|
Pei M, He F, Wei L and Rawson A: Melatonin
enhances cartilage matrix synthesis by porcine articular
chondrocytes. J Pineal Res. 46:181–187. 2009. View Article : Google Scholar
|
|
111
|
Maestroni GJ, Sulli A, Pizzorni C,
Villaggio B and Cutolo M: Melatonin in rheumatoid arthritis:
Synovial macrophages show melatonin receptors. Ann N Y Acad Sci.
966:271–275. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hong Y, Kim H, Lee Y, Lee S, Kim K, Jin Y,
Lee SR, Chang KT and Hong Y: Salutary effects of melatonin combined
with treadmill exercise on cartilage damage. J Pineal Res.
57:53–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Osseni RA, Rat P, Bogdan A, Warnet JM and
Touitou Y: Evidence of prooxidant and antioxidant action of
melatonin on human liver cell line HepG2. Life Sci. 68:387–399.
2000. View Article : Google Scholar
|
|
114
|
Zhang HM and Zhang Y: Melatonin: A
well-documented anti-oxidant with conditional pro-oxidant actions.
J Pineal Res. 57:131–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Saito R, Muneta T, Ozeki N, Nakagawa Y,
Udo M, Yanagisawa K, Tsuji K, Tomita M, Koga H and Sekiya I:
Strenuous running exacerbates knee cartilage erosion induced by low
amount of mono-iodoacetate in rats. BMC Musculoskelet Disord.
18:362017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gustafsson A and Asman B: Increased
release of free oxygen radicals from peripheral neutrophils in
adult periodontitis after Fc delta-receptor stimulation. J Clin
Periodontol. 23:38–44. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Battino M, Bullon P, Wilson M and Newman
H: Oxidative injury and inflammatory periodontal diseases: The
challenge of anti-oxidants to free radicals and reactive oxygen
species. Crit Rev Oral Biol Med. 10:458–476. 1999. View Article : Google Scholar
|
|
118
|
Walters J and Lai PC: Should antibiotics
be prescribed to treat chronic periodontitis? Dent Clin North Am.
59:919–933. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Srinath R, Acharya AB and Thakur SL:
Salivary and gingival crevicular fluid melatonin in periodontal
health and disease. J Periodontol. 81:277–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gómez-Moreno G, Cutando-Soriano A, Arana
C, Galindo P, Bolaños J, Acuña-Castroviejo D and Wang HL: Melatonin
expression in periodontal disease. J Periodontal Res. 42:536–540.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Laakso ML, Porkka-Heiskanen T, Alila A,
Stenberg D and Johansson G: Correlation between salivary and serum
melatonin: Dependence on serum melatonin levels. J Pineal Res.
9:39–50. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Madapusi BT and Rao SR: Preliminary
evaluation of human gingiva as an extrapineal site of melatonin
biosynthesis in states of periodontal health and disease. J Clin
Diagnostic Res. 12:ZF1–ZF7. 2018.
|
|
123
|
Ghallab NA, Hamdy E and Shaker OG:
Malondialdehyde, superoxide dismutase and melatonin levels in
gingival crevicular fluid of aggressive and chronic periodontitis
patients. Aust Dent J. 61:53–61. 2016. View Article : Google Scholar
|
|
124
|
Lodhi K, Saimbi CS, Khan MA, Nath C and
Shukla R: Evaluation of melatonin levels in saliva in gingivitis
and periodontitis cases: A pilot study. Contemp Clin Dent.
7:519–523. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Cutando A, Galindo P, Gómez-Moreno G,
Arana C, Bolaños J, Acuña-Castroviejo D and Wang HL: Relationship
between salivary melatonin and severity of periodontal disease. J
Periodontol. 77:1533–1538. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Almughrabi OM, Marzouk KM, Hasanato RM and
Shafik SS: Melatonin levels in periodontal health and disease. J
Periodont Res. 48:315–321. 2013. View Article : Google Scholar
|
|
127
|
Tinto M, Sartori M, Pizzi I, Verga A and
Longoni S: Melatonin as host modulating agent supporting
nonsurgical periodontal therapy in patients affected by untreated
severe periodontitis: A preliminary randomized, triple-blind,
placebo-controlled study. J Periodont Res. 55:61–67. 2020.
View Article : Google Scholar
|
|
128
|
Chitsazi M, Faramarzie M, Sadighi M,
Shirmohammadi A and Hashemzadeh A: Effects of adjective use of
melatonin and vitamin C in the treatment of chronic periodontitis:
A randomized clinical trial. J Dent Res Dent Clin Dent Prospects.
11:236–240. 2017.
|
|
129
|
Bazyar H, Gholinezhad H, Moradi L, Salehi
P, Abadi F, Ravanbakhsh M and Zare Javid A: The effects of
melatonin supplementation in adjunct with non-surgical periodontal
therapy on periodontal status, serum melatonin and inflammatory
markers in type 2 diabetes mellitus patients with chronic
periodontitis: A double-blind, placebo-controlled trial.
Inflammopharmacology. 27:67–76. 2019. View Article : Google Scholar
|
|
130
|
Sarıtekin E, Üreyen Kaya B, Aşcı H and
Özmen Ö: Anti-inflammatory and antiresorptive functions of
melatonin on experimentally induced periapical lesions. Int Endod
J. 52:1466–1478. 2019. View Article : Google Scholar
|
|
131
|
Renn TY, Huang YK, Feng SW, Wang HW, Lee
WF, Lin CT, Burnouf T, Chen LY, Kao PF and Chang HM: Prophylactic
supplement with melatonin successfully suppresses the pathogenesis
of periodontitis through normalizing RANKL/OPG ratio and depressing
the TLR4/MyD88 signaling pathway. J Pineal Res. 64:2018. View Article : Google Scholar
|
|
132
|
Botero JE, Yepes FL, Roldán N, Castrillón
CA, Hincapie JP, Ochoa SP, Ospina CA, Becerra MA, Jaramillo A,
Gutierrez SJ and Contreras A: Tooth and periodontal clinical
attachment loss are associated with hyperglycemia in patients with
diabetes. J Periodontol. 83:1245–1250. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Daniel R, Gokulanathan S, Shanmugasundaram
N, Lakshmigandhan M and Kavin T: Diabetes and periodontal disease.
J Pharm Bioallied Sci. 4(Suppl 2): S280–S282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Grover HS and Luthra S: Molecular
mechanisms involved in the bidirectional relationship between
diabetes mellitus and periodontal disease. J Indian Soc
Periodontol. 17:292–301. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Abdolsamadi H, Goodarzi MT, Ahmadi
Motemayel F, Jazaeri M, Feradmal J, Zarabadi M, Hoseyni M and
Torkzaban P: Reduction of melatonin level in patients with type II
diabetes and periodontal diseases. J Dent Res Dent Clin Dent
Prospects. 8:160–165. 2014.PubMed/NCBI
|
|
136
|
Balci Yuce H, Karatas O, Aydemir Turkal H,
Pirim Gorgun E, Ocakli S, Benli I and Cayli S: The effect of
melatonin on bone loss, diabetic control, and apoptosis in rats
with diabetes with ligature-induced periodontitis. J Periodontol.
87:e35–e43. 2016. View Article : Google Scholar
|
|
137
|
Cutando A, López-Valverde A, de Diego RG,
de Vicente J, Reiter R, Fernández MH and Ferrera MJ: Effect of
topical application of melatonin to the gingiva on salivary
osteoprotegerin, RANKL and melatonin levels in patients with
diabetes and periodontal disease. Odontology. 102:290–296.
2014.
|
|
138
|
Montero J, López-Valverde N, Ferrera MJ
and López-Valverde A: Changes in crevicular cytokines after
application of melatonin in patients with periodontal disease. J
Clin Exp Dent. 9:e1081–e1087. 2017.PubMed/NCBI
|
|
139
|
Martens L, De Smet S, Yusof MY and
Rajasekharan S: Association between overweight/obesity and
periodontal disease in children and adolescents: A systematic
review and meta-analysis. Eur Arch Paediatr Dent. 18:69–82. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Keller A, Rohde JF, Raymond K and Heitmann
BL: Association between periodontal disease and overweight and
obesity: A systematic review. J Periodontol. 86:766–776. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Virto L, Cano P, Jiménez-Ortega V,
Fernández-Mateos P, González J, Esquifino AI and Sanz M: Obesity
and periodontitis: An experimental study to evaluate periodontal
and systemic effects of comorbidity. J Periodontol. 89:176–185.
2018.
|
|
142
|
Shimizu I, Yoshida Y and Minamino T: A
role for circadian clock in metabolic disease. Hypertens Res.
39:483–491. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Zisapel N: New perspectives on the role of
melatonin in human sleep, circadian rhythms and their regulation.
Br J Pharmacol. 175:3190–3199. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Szewczyk-Golec K, Woźniak A and Reiter RJ:
Inter-relationships of the chronobiotic, melatonin, with leptin and
adiponectin: Implications for obesity. J Pineal Res. 59:277–291.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Ríos-Lugo MJ, Cano P, Jiménez-Ortega V,
Fernández-Mateos MP, Scacchi PA, Cardinali DP and Esquifino AI:
Melatonin effect on plasma adiponectin, leptin, insulin, glucose,
triglycerides and cholesterol in normal and high fat-fed rats. J
Pineal Res. 49:342–348. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Favero G, Stacchiotti A, Castrezzati S,
Bonomini F, Albanese M, Rezzani R and Rodella LF: Melatonin reduces
obesity and restores adipokine patterns and metabolism in obese
(ob/ob) mice. Nutr Res. 35:891–900. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Virto L, Haugen HJ, Fernández-Mateos P,
Cano P, González J, Jiménez-Ortega V, Esquifino AI and Sanz M:
Melatonin expression in periodontitis and obesity: An experimental
in-vivo investigation. J Periodont Res. 53:825–831. 2018.
View Article : Google Scholar
|
|
148
|
Virto L, Cano P, Jiménez-Ortega V,
Fernández-Mateos P, González J, Haugen HJ, Esquifino AI and Sanz M:
Melatonin as adjunctive therapy in the treatment of periodontitis
associated with obesity. J Clin Periodontol. 45:1336–1346. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Santos RMD, Marani F, Chiba FY, Mattera
MSLC, Tsosura TVS, Tessarin GWL, Pereira RF, Belardi BE, Pinheiro
BCES and Sumida DH: Melatonin promotes reduction in TNF levels and
improves the lipid profile and insulin sensitivity in
pinealectomized rats with periodontal disease. Life Sci. 213:32–39.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Diomede F, Zingariello M, Cavalcanti MFXB,
Merciaro I, Pizzicannella J, De Isla N, Caputi S, Ballerini P and
Trubiani O: MyD88/ERK/NFkB pathways and pro-inflammatory cytokines
release in periodontal ligament stem cells stimulated by
Porphyromonas gingivalis. Eur J Histochem. 61:27912017.
|
|
151
|
Nagata M, Iwasaki K, Akazawa K, Komaki M,
Yokoyama N, Izumi Y and Morita I: Conditioned medium from
periodontal ligament stem cells enhances periodontal regeneration.
Tissue Eng Part A. 23:367–377. 2017. View Article : Google Scholar :
|
|
152
|
Bae WJ, Park JS, Kang SK, Kwon IK and Kim
EC: Effects of melatonin and its underlying mechanism on
ethanol-stimulated senescence and osteoclastic differentiation in
human periodontal ligament cells and cementoblasts. Int J Mol Sci.
19:17422018. View Article : Google Scholar :
|
|
153
|
El-Sharkawy H, Elmeadawy S, Elshinnawi U
and Anees M: Is dietary melatonin supplementation a viable
adjunctive therapy for chronic periodontitis?-A randomized
controlled clinical trial. J Periodont Res. 54:190–197. 2019.
View Article : Google Scholar
|
|
154
|
Irwin MR, Olmstead R and Carroll JE: Sleep
disturbance, sleep duration, and inflammation: A Systematic review
and meta-analysis of cohort studies and experimental sleep
deprivation. Biol Psychiatry. 80:40–52. 2016. View Article : Google Scholar
|
|
155
|
Andersen LP, Gögenur I, Rosenberg J and
Reiter RJ: The safety of melatonin in humans. Clin Drug Investig.
36:169–175. 2016. View Article : Google Scholar
|
|
156
|
Foley HM and Steel AE: Adverse events
associated with oral administration of melatonin: A critical
systematic review of clinical evidence. Complement Ther Med.
42:65–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Frisher M, Gibbons N, Bashford J, Chapman
S and Weich S: Melatonin, hypnotics and their association with
fracture: A matched cohort study. Age Ageing. 45:801–806. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Sun T, Li J, Xing HL, Tao ZS and Yang M:
Melatonin improves the osseointegration of hydroxyapatite-coated
titanium implants in senile female rats. Z Gerontol Geriatr.
53:770–777. 2020. View Article : Google Scholar
|
|
159
|
Cutando A, Arana C, Gómez-Moreno G,
Escames G, López A, Ferrera MJ, Reiter RJ and Acuña-Castroviejo D:
Local application of melatonin into alveolar sockets of beagle dogs
reduces tooth removal-induced oxidative stress. J Periodontol.
78:576–583. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Swanson CM, Kohrt WM, Buxton OM, Everson
CA, Wright KP Jr, Orwoll ES and Shea SA: The importance of the
circadian system & sleep for bone health. Metabolism. 84:28–43.
2018. View Article : Google Scholar :
|
|
161
|
Wu QY, Wang J, Tong X, Chen J, Wang B,
Miao ZN, Li X, Ye JX and Yuan FL: Emerging role of circadian rhythm
in bone remodeling. J Mol Med (Berl). 97:19–24. 2019. View Article : Google Scholar
|
|
162
|
Yang N and Meng QJ: Circadian clocks in
articular cartilage and bone: A compass in the sea of matrices. J
Biol Rhythms. 31:415–427. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Tian Y and Li LM: Epidemiological study of
sleep disorder in the elderly. Zhonghua Liu Xing Bing Xue Za Zhi.
38:988–992. 2017.In Chinese. PubMed/NCBI
|
|
164
|
Santoro N: Perimenopause: From research to
practice. J Womens Health (Larchmt). 25:332–339. 2016. View Article : Google Scholar
|