Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.xlsx
Review Open Access

Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)

  • Authors:
    • Jessica Yuen Wuen Ma
    • Ying Hon Sze
    • Jing Fang Bian
    • Thomas Chuen Lam
  • View Affiliations / Copyright

    Affiliations: Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 83
    |
    Published online on: March 18, 2021
       https://doi.org/10.3892/ijmm.2021.4916
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tear film is a layer of body fluid that maintains the homeostasis of the ocular surface. The superior accessibility of tears and the presence of a high concentration of functional proteins make tears a potential medium for the discovery of non‑invasive biomarkers in ocular diseases. Recent advances in mass spectrometry (MS) have enabled determination of an in‑depth proteome profile, improved sensitivity, faster acquisition speed, proven variety of acquisition methods, and identification of disease biomarkers previously lacking in the field of ophthalmology. The use of MS allows efficient discovery of tear proteins, generation of reproducible results, and, more importantly, determines changes of protein quantity and post‑translation modifications in microliter samples. The present review compared techniques for tear collection, sample preparation, and acquisition applied for the discovery of tear protein markers in normal subjects and multifactorial conditions, including dry eye syndrome, diabetic retinopathy, thyroid eye disease and primary open‑angle glaucoma, which require an early diagnosis for treatment. It also summarized the contribution of MS to early discovery by means of disease‑related protein markers in tear fluid and the potential for transformation of the tear MS‑based proteome to antibody‑based assay for future clinical application.
View Figures

Figure 1

Figure 2

View References

1 

Dogru M, Okada N, Asano-Kato N, Tanaka M, Igarashi A, Takano Y, Fukagawa K, Shimazaki J, Tsubota K and Fujishima H: Atopic ocular surface disease: Implications on tear function and ocular surface mucins. Cornea. 24(8 Suppl): S18–S23. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Gipson IK: The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Invest Ophthalmol Vis Sci. 48:4390–4398. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Miano F, Mazzone M, Giannetto A, Enea V, Mc Cauley P, Bailey A and Winlove PC: Interface properties of simplified tear-like fluids in relation to lipid and aqueous layers composition. Adv Exp Med Biol. 506:405–417. 2002. View Article : Google Scholar

4 

King-Smith PE, Bailey MD and Braun RJ: Four characteristics and a model of an effective tear film lipid layer (TFLL). Ocul Surf. 11:236–245. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Kijlstra A and Kuizenga A: Analysis and function of the human tear proteins. Adv Exp Med Biol. 350:299–308. 1994. View Article : Google Scholar : PubMed/NCBI

6 

Esmaeelpour M, Watts PO, Boulton ME, Cai J and Murphy PJ: Tear film volume and protein analysis in full-term newborn infants. Cornea. 30:400–404. 2011. View Article : Google Scholar

7 

Sack RA, Sathe S and Beaton A: Tear turnover and immune and inflammatory processes in the open-eye and closed-eye environments: Relationship to extended wear contact lens use. Eye Contact Lens. 29(Suppl 1): S80–S84. S192–S194. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY and Pflugfelder SC: Autoimmunity at the ocular surface: Pathogenesis and regulation. Mucosal Immunol. 3:425–442. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Schicht M, Garreis F, Hartjen N, Beileke S, Jacobi C, Sahin A, Holland D, Schröder H, Hammer CM, Paulsen F and Bräuer L: SFTA3-a novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci Rep. 8:97912018. View Article : Google Scholar

10 

Kwong MS, Evans DJ, Ni M, Cowell BA and Fleiszig SM: Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect Immun. 75:2325–2332. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Zhou L and Beuerman RW: The power of tears: How tear proteomics research could revolutionize the clinic. Expert Rev Proteomics. 14:189–191. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Hagan S, Martin E and Enriquez-de-Salamanca A: Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 7:152016. View Article : Google Scholar : PubMed/NCBI

13 

Gachon AM and Lacazette E: Tear lipocalin and the eye's front line of defence. Br J Ophthalmol. 82:453–455. 1998. View Article : Google Scholar : PubMed/NCBI

14 

Kuizenga A, van Haeringen NJ and Kijlstra A: Identification of lectin binding proteins in human tears. Invest Ophthalmol Vis Sci. 32:3277–3284. 1991.PubMed/NCBI

15 

Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR and Beuerman RW: In-depth analysis of the human tear proteome. J Proteomics. 75:3877–3885. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Mishima S, Gasset A, Klyce SD Jr and Baum JL: Determination of tear volume and tear flow. Invest Ophthalmol. 5:264–276. 1966.PubMed/NCBI

17 

Rentka A, Koroskenyi K, Harsfalvi J, Szekanecz Z, Szucs G, Szodoray P and Kemeny-Beke A: Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann Clin Biochem. 54:521–529. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Esmaeelpour M, Cai J, Watts P, Boulton M and Murphy PJ: Tear sample collection using cellulose acetate absorbent filters. Ophthalmic Physiol Opt. 28:577–583. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S, Schlacher S, Stein E, Bintner N, Merio M, Zlabinger GJ and Barisani-Asenbauer T: Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis. 18:2717–2725. 2012.PubMed/NCBI

20 

López-Cisternas J, Castillo-Diaz J, Traipe-Castro L and López-Solis RO: Use of polyurethane minisponges to collect human tear fluid. Cornea. 25:312–318. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Rohan LC, Edwards RP, Kelly LA, Colenello KA, Bowman FP and Crowley-Nowick PA: Optimization of the weck-Cel collection method for quantitation of cytokines in mucosal secretions. Clin Diagn Lab Immunol. 7:45–48. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Posa A, Bräuer L, Schicht M, Garreis F, Beileke S and Paulsen F: Schirmer strip vs capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 195:137–142. 2013. View Article : Google Scholar : PubMed/NCBI

23 

VanDerMeid KR, Su SP, Krenzer KL, Ward KW and Zhang JZ: A method to extract cytokines and matrix metalloproteinases from Schirmer strips and analyze using Luminex. Mol Vis. 17:1056–1063. 2011.PubMed/NCBI

24 

Nättinen J, Aapola U, Jylhä A, Vaajanen A and Uusitalo H: Comparison of capillary and Schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach. Transl Vis Sci Technol. 9:162020. View Article : Google Scholar : PubMed/NCBI

25 

Stuchell RN, Feldman JJ, Farris RL and Mandel ID: The effect of collection technique on tear composition. Invest Ophthalmol Vis Sci. 25:374–377. 1984.PubMed/NCBI

26 

Denisin AK, Karns K and Herr AE: Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Analyst. 137:5088–5096. 2012. View Article : Google Scholar : PubMed/NCBI

27 

van Haeringen NJ and Glasius E: The origin of some enzymes in tear fluid, determined by comparative investigation with two collection methods. Exp Eye Res. 22:267–272. 1976. View Article : Google Scholar : PubMed/NCBI

28 

Zhou L and Beuerman RW: Tear analysis in ocular surface diseases. Prog Retin Eye Res. 31:527–550. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Castelli S, Arasi S, Pawankar R and Matricardi PM: Collection of nasal secretions and tears and their use in allergology. Curr Opin Allergy Clin Immunol. 18:1–9. 2018. View Article : Google Scholar

30 

Leonardi A: Allergy and allergic mediators in tears. Exp Eye Res. 117:106–117. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Green-Church KB, Nichols KK, Kleinholz NM, Zhang L and Nichols JJ: Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis. 14:456–470. 2008.PubMed/NCBI

32 

Kojima T, Dogru M, Kawashima M, Nakamura S and Tsubota K: Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res. Jan 29–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

33 

Mainstone JC, Bruce AS and Golding TR: Tear meniscus measurement in the diagnosis of dry eye. Curr Eye Res. 15:653–661. 1996. View Article : Google Scholar : PubMed/NCBI

34 

Altelaar AF, Munoz J and Heck AJ: Next-generation proteomics: Towards an integrative view of proteome dynamics. Nat Rev Genet. 14:35–48. 2013. View Article : Google Scholar

35 

Schubert OT, Röst HL, Collins BC, Rosenberger G and Aebersold R: Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat Protoc. 12:1289–1294. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Zhao Y and Jensen ON: Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 9:4632–4641. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Li N, Wang N, Zheng J, Liu XM, Lever OW, Erickson PM and Li L: Characterization of human tear proteome using multiple proteomic analysis techniques. J Proteome Res. 4:2052–2061. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R and Aebersold R: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 11:O111.0167172012. View Article : Google Scholar : PubMed/NCBI

39 

Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI

40 

Molloy MP: The challenge of industrializing proteomics. Nat Biotechnol. 21:5972003. View Article : Google Scholar : PubMed/NCBI

41 

Srinivasan S, Thangavelu M, Zhang L, Green KB and Nichols KK: iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 53:5052–5059. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Zhao Z, Liu J, Wasinger VC, Malouf T, Nguyen-Khuong T, Walsh B and Willcox MD: Tear lipocalin is the predominant phosphoprotein in human tear fluid. Exp Eye Res. 90:344–349. 2010. View Article : Google Scholar

43 

You J, Fitzgerald A, Cozzi PJ, Zhao Z, Graham P, Russell PJ, Walsh BJ, Willcox M, Zhong L, Wasinger V and Li Y: Post-translation modification of proteins in tears. Electrophoresis. 31:1853–1861. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Huang Z, Du CX and Pan XD: The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One. 13:e02007022018. View Article : Google Scholar : PubMed/NCBI

45 

Nguyen-Khuong T, Everest-Dass AV, Kautto L, Zhao Z, Willcox MD and Packer NH: Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology. 25:269–283. 2015. View Article : Google Scholar

46 

Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E and Yamamoto T: Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics. 11:162014. View Article : Google Scholar

47 

Broekhuyse RM: Tear lactoferrin: A bacteriostatic and complexing protein. Invest Ophthalmol. 13:550–554. 1974.PubMed/NCBI

48 

Berta A: A polyacrylamide-gel electrophoretic study of human tear proteins. Graefes Arch Clin Exp Ophthalmol. 219:95–99. 1982. View Article : Google Scholar : PubMed/NCBI

49 

Molloy MP, Bolis S, Herbert BR, Ou K, Tyler MI, van Dyk DD, Willcox MD, Gooley AA, Williams KL, Morris CA and Walsh BJ: Establishment of the human reflex tear two-dimensional polyacrylamide gel electrophoresis reference map: New proteins of potential diagnostic value. Electrophoresis. 18:2811–2815. 1997. View Article : Google Scholar

50 

Perumal N, Funke S, Wolters D, Pfeiffer N and Grus FH: Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics. 15:3370–3381. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Ladner CL, Yang J, Turner RJ and Edwards RA: Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem. 326:13–20. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Williams JG and Gratzer WB: Limitations of the detergent-polyacrylamide gel electrophoresis method for molecular weight determination of proteins. J Chromatogr. 57:121–125. 1971. View Article : Google Scholar : PubMed/NCBI

53 

Corthals GL, Wasinger VC, Hochstrasser DF and Sanchez JC: The dynamic range of protein expression: A challenge for proteomic research. Electrophoresis. 21:1104–1115. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Gygi SP, Corthals GL, Zhang Y, Rochon Y and Aebersold R: Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 97:9390–9395. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Shi Y, Xiang R, Horvath C and Wilkins JA: The role of liquid chromatography in proteomics. J Chromatogr A. 1053:27–36. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI

57 

Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S and Mann M: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 7:5482011. View Article : Google Scholar : PubMed/NCBI

58 

Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D and Mann M: Plasma proteome profiling to assess human health and disease. Cell Syst. 2:185–195. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Nättinen J, Jylhä A, Aapola U, Mäkinen P, Beuerman R, Pietilä J, Vaajanen A and Uusitalo H: Age-associated changes in human tear proteome. Clin Proteomics. 16:112019. View Article : Google Scholar : PubMed/NCBI

60 

Gilar M and Neue UD: Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. J Chromatogr A. 1169:139–150. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Shen Y, Zhao R, Belov ME, Conrads TP, Anderson GA, Tang K, Pasa-Tolić L, Veenstra TD, Lipton MS, Udseth HR and Smith RD: Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal Chem. 73:1766–1775. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Hsieh EJ, Bereman MS, Durand S, Valaskovic GA and MacCoss MJ: Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. J Am Soc Mass Spectrom. 24:148–153. 2013. View Article : Google Scholar :

63 

Doerr A: Mass spectrometry-based targeted proteomics. Nat Methods. 10:232013. View Article : Google Scholar : PubMed/NCBI

64 

Carapito C and Aebersold R: Targeted proteomics. Proteomics. 12:10732012. View Article : Google Scholar : PubMed/NCBI

65 

Borrebaeck CA: Precision diagnostics: Moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 17:199–204. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Zhang Z: An in vitro diagnostic multivariate index assay (IVDMIA) for ovarian cancer: Harvesting the power of multiple biomarkers. Rev Obstet Gynecol. 5:35–41. 2012.PubMed/NCBI

67 

Ueland FR, Desimone CP, Seamon LG, Miller RA, Goodrich S, Podzielinski I, Sokoll L, Smith A, van Nagell JR Jr and Zhang Z: Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet Gynecol. 117:1289–1297. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Janssen PT and van Bijsterveld OP: Origin and biosynthesis of human tear fluid proteins. Invest Ophthalmol Vis Sci. 24:623–630. 1983.PubMed/NCBI

69 

Tsai PS, Evans JE, Green KM, Sullivan RM, Schaumberg DA, Richards SM, Dana MR and Sullivan DA: Proteomic analysis of human meibomian gland secretions. Br J Ophthalmol. 90:372–377. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Gipson IK: Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res. 54:49–63. 2016. View Article : Google Scholar : PubMed/NCBI

71 

de Souza GA, Godoy LM and Mann M: Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 7:R722006. View Article : Google Scholar : PubMed/NCBI

72 

Ananthi S, Santhosh RS, Nila MV, Prajna NV, Lalitha P and Dharmalingam K: Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res. 92:454–463. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Seamon V, Vellala K, Zylberberg C, Ponamareva O and Azzarolo AM: Sex hormone regulation of tear lipocalin in the rabbit lacrimal gland. Exp Eye Res. 87:184–190. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Tong L, Zhou XY, Jylha A, Aapola U, Liu DN, Koh SK, Tian D, Quah J, Uusitalo H, Beuerman RW and Zhou L: Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry. J Proteomics. 115:36–48. 2015. View Article : Google Scholar

75 

Aass C, Norheim I, Eriksen EF, Thorsby PM and Pepaj M: Single unit filter-aided method for fast proteomic analysis of tear fluid. Anal Biochem. 480:1–5. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Zubarev RA and Makarov A: Orbitrap mass spectrometry. Anal Chem. 85:5288–5296. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Perry RH, Cooks RG and Noll RJ: Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrom Rev. 27:661–699. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Dor M, Eperon S, Lalive PH, Guex-Crosier Y, Hamedani M, Salvisberg C and Turck N: Investigation of the global protein content from healthy human tears. Exp Eye Res. 179:64–74. 2019. View Article : Google Scholar

79 

Shamsi FA, Chen Z, Liang J, Li K, Al-Rajhi AA, Chaudhry IA, Li M and Wu K: Analysis and comparison of proteomic profiles of tear fluid from human, cow, sheep, and camel eyes. Invest Ophthalmol Vis Sci. 52:9156–9165. 2011. View Article : Google Scholar : PubMed/NCBI

80 

The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye WorkShop (2007). Ocul Surf. 5:75–92. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, Liu Z, Nelson JD, Nichols JJ, Tsubota K and Stapleton F: TFOS DEWS II definition and classification report. Ocul Surf. 15:276–283. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Shimazaki J: Definition and diagnostic criteria of dry eye disease: Historical overview and future directions. Invest Ophthalmol Vis Sci. 59:DES7–DES12. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Abelson MB, Ousler GW III, Nally LA, Welch D and Krenzer K: Alternative reference values for tear film break up time in normal and dry eye populations. Adv Exp Med Biol. 506:1121–1125. 2002. View Article : Google Scholar

84 

Senchyna M and Wax MB: Quantitative assessment of tear production: A review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor. 1:1–6. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Nichols KK, Mitchell GL and Zadnik K: The repeatability of clinical measurements of dry eye. Cornea. 23:272–285. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Huang JF, Zhang Y, Rittenhouse KD, Pickering EH and McDowell MT: Evaluations of tear protein markers in dry eye disease: Repeatability of measurement and correlation with disease. Invest Ophthalmol Vis Sci. 53:4556–4564. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, Tong L, Liu S, Stern ME and Tan D: Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 8:4889–4905. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Ryckman C, Vandal K, Rouleau P, Talbot M and Tessier PA: Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol. 170:3233–3242. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Danjo Y, Lee M, Horimoto K and Hamano T: Ocular surface damage and tear lactoferrin in dry eye syndrome. Acta Ophthalmol (Copenh). 72:433–437. 1994. View Article : Google Scholar

90 

Breustedt DA, Schönfeld DL and Skerra A: Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta. 1764:161–173. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Tong L, Zhou L, Beuerman RW, Zhao SZ and Li XR: Association of tear proteins with meibomian gland disease and dry eye symptoms. Br J Ophthalmol. 95:848–852. 2011. View Article : Google Scholar

92 

Foell D, Wittkowski H, Ren Z, Turton J, Pang G, Daebritz J, Ehrchen J, Heidemann J, Borody T, Roth J and Clancy R: Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J Pathol. 216:183–192. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, Roda A and Campos EC: Tear proteomics in evaporative dry eye disease. Eye (Lond). 24:1396–1402. 2010. View Article : Google Scholar

94 

Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C, Bestawros F, Sweeney D and Holden BA: Fibronectin in the tear film. Invest Ophthalmol Vis Sci. 37:459–467. 1996.PubMed/NCBI

95 

Perumal N, Funke S, Pfeiffer N and Grus FH: Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep. 6:296292016. View Article : Google Scholar : PubMed/NCBI

96 

Ligtenberg AJ, Veerman EC, Nieuw Amerongen AV and Mollenhauer J: Salivary agglutinin/glycoprotein-340/DMBT1: A single molecule with variable composition and with different functions in infection, inflammation and cancer. Biol Chem. 388:1275–1289. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Boucher Y, Braud A, Dufour E, Agbo-Godeau S, Baaroun V, Descroix V, Guinnepain MT, Ungeheuer MN, Ottone C and Rougeot C: Opiorphin levels in fluids of burning mouth syndrome patients: A case-control study. Clin Oral Investig. 21:2157–2164. 2017. View Article : Google Scholar

98 

Pappa A, Chen C, Koutalos Y, Townsend AJ and Vasiliou V: Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med. 34:1178–1189. 2003. View Article : Google Scholar : PubMed/NCBI

99 

Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, et al: Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep. 7:174782017. View Article : Google Scholar : PubMed/NCBI

100 

Messmer EM, von Lindenfels V, Garbe A and Kampik A: Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology. 123:2300–2308. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Jonsson R, Vogelsang P, Volchenkov R, Espinosa A, Wahren-Herlenius M and Appel S: The complexity of Sjogren's syndrome: Novel aspects on pathogenesis. Immunol Lett. 141:1–9. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Kuo MT, Fang PC, Chao TL, Chen A, Lai YH, Huang YT and Tseng CY: Tear proteomics approach to monitoring sjogren syndrome or dry eye disease. Int J Mol Sci. 20:19322019. View Article : Google Scholar

103 

Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, Young A, Guerreiro EM, Utheim TP, Chen X, et al: Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther. 19:142017. View Article : Google Scholar

104 

Aqrawi LA, Galtung HK, Guerreiro EM, Øvstebø R, Thiede B, Utheim TP, Chen X, Utheim ØA, Palm Ø, Skarstein K and Jensen JL: Proteomic and histopathological characterisation of sicca subjects and primary Sjögren's syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers. Arthritis Res Ther. 21:1812019. View Article : Google Scholar

105 

Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, Yu SJ, Koh SK and Beuerman RW: Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci. 52:7385–7391. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Csősz É, Deák E, Kalló G, Csutak A and Tőzsér J: Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics. 150:351–358. 2017. View Article : Google Scholar

107 

Csősz É, Boross P, Csutak A, Berta A, Tóth F, Póliska S, Török Z and Tőzsér J: Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics. 75:2196–2204. 2012. View Article : Google Scholar

108 

Zhou X, Qu J, Xie R, Wang R, Jiang L, Zhao H, Wen J and Lu F: Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res. 46:2815–2823. 2006. View Article : Google Scholar : PubMed/NCBI

109 

Bartalena L and Fatourechi V: Extrathyroidal manifestations of Graves' disease: A 2014 update. J Endocrinol Invest. 37:691–700. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Lehmann GM, Garcia-Bates TM, Smith TJ, Feldon SE and Phipps RP: Regulation of lymphocyte function by PPARgamma: Relevance to thyroid eye disease-related inflammation. PPAR Res. 2008:8959012008. View Article : Google Scholar : PubMed/NCBI

111 

Mourits MP, Prummel MF, Wiersinga WM and Koornneef L: Clinical activity score as a guide in the management of patients with Graves' ophthalmopathy. Clin Endocrinol (Oxf). 47:9–14. 1997. View Article : Google Scholar

112 

Turck N, Eperon S, De Los Angeles Gracia M, Obéric A and Hamédani M: Thyroid-associated orbitopathy and biomarkers: Where we are and what we can hope for the future. Dis Markers. 2018:70101962018. View Article : Google Scholar : PubMed/NCBI

113 

Chelala E, El Rami H, Dirani A, Fakhoury H and Fadlallah A: Extensive superior limbic keratoconjunctivitis in Graves' disease: Case report and mini-review of the literature. Clin Ophthalmol. 9:467–468. 2015.PubMed/NCBI

114 

Matheis N, Okrojek R, Grus FH and Kahaly GJ: Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid. 22:1039–1045. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Torsteinsdóttir I, Hâkansson L, Hällgren R, Gudbjörnsson B, Arvidson NG and Venge P: Serum lysozyme: A potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology (Oxford). 38:1249–1254. 1999. View Article : Google Scholar

116 

Barrett AJ: The cystatins: Small protein inhibitors of cysteine proteinases. Prog Clin Biol Res. 180:105–116. 1985.PubMed/NCBI

117 

Matheis N, Grus FH, Breitenfeld M, Knych I, Funke S, Pitz S, Ponto KA, Pfeiffer N and Kahaly GJ: Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Ophthalmol Vis Sci. 56:2649–2656. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Wiesner J and Vilcinskas A: Antimicrobial peptides: The ancient arm of the human immune system. Virulence. 1:440–464. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Ozyildirim AM, Wistow GJ, Gao J, Wang J, Dickinson DP, Frierson HF Jr and Laurie GW: The lacrimal gland transcriptome is an unusually rich source of rare and poorly characterized gene transcripts. Invest Ophthalmol Vis Sci. 46:1572–1580. 2005. View Article : Google Scholar : PubMed/NCBI

120 

Barka T, Asbell PA, van der Noen H and Prasad A: Cystatins in human tear fluid. Curr Eye Res. 10:25–34. 1991. View Article : Google Scholar : PubMed/NCBI

121 

Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC and Bahn RS: A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab. 98:2153–2159. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Aass C, Norheim I, Eriksen EF, Børnick EC, Thorsby PM and Pepaj M: Comparative proteomic analysis of tear fluid in Graves' disease with and without orbitopathy. Clin Endocrinol (Oxf). 85:805–812. 2016. View Article : Google Scholar

123 

McIntosh RS, Cade JE, Al-Abed M, Shanmuganathan V, Gupta R, Bhan A, Tighe PJ and Dua HS: The spectrum of antimicrobial peptide expression at the ocular surface. Invest Ophthalmol Vis Sci. 46:1379–1385. 2005. View Article : Google Scholar : PubMed/NCBI

124 

Wei YH, Chen WL, Hu FR and Liao SL: In vivo confocal microscopy of bulbar conjunctiva in patients with Graves' ophthalmopathy. J Formos Med Assoc. 114:965–972. 2015. View Article : Google Scholar

125 

Kishazi E, Dor M, Eperon S, Oberic A, Hamedani M and Turck N: Thyroid-associated orbitopathy and tears: A proteomics study. J Proteomics. 170:110–116. 2018. View Article : Google Scholar

126 

Paraoan L, Grierson I and Maden BE: Analysis of expressed sequence tags of retinal pigment epithelium: Cystatin C is an abundant transcript. Int J Biochem Cell Biol. 32:417–426. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Yoshida A, Hsu LC and Dave V: Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 46:239–244. 1992. View Article : Google Scholar : PubMed/NCBI

128 

Sahu B and Maeda A: Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients. 8:7462016. View Article : Google Scholar :

129 

Weinreb RN, Aung T and Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Bourne RR, Taylor HR, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, White RA, Wong TY, Resnikoff S, et al: Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990-2010: A meta-analysis. PLoS One. 11:e01622292016. View Article : Google Scholar

131 

Harwerth RS and Quigley HA: Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 124:853–859. 2006. View Article : Google Scholar : PubMed/NCBI

132 

Rahmani B, Tielsch JM, Katz J, Gottsch J, Quigley H, Javitt J and Sommer A: The cause-specific prevalence of visual impairment in an urban population. The baltimore eye survey. Ophthalmology. 103:1721–1726. 1996. View Article : Google Scholar : PubMed/NCBI

133 

Braunger BM, Fuchshofer R and Tamm ER: The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 95:173–181. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Elhawy E, Kamthan G, Dong CQ and Danias J: Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 6:222012. View Article : Google Scholar : PubMed/NCBI

135 

Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL and Martin KR: Primary open-angle glaucoma. Nat Rev Dis Primers. 2:160672016. View Article : Google Scholar : PubMed/NCBI

136 

Pieragostino D, Bucci S, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua A, Ciancaglini M, Mastropasqua L, Di Ilio C, Sacchetta P, et al: Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol Biosyst. 8:1017–1028. 2012. View Article : Google Scholar

137 

Pieragostino D, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua R, Di Ilio C, Sacchetta P, Urbani A and Del Boccio P: Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 9:1108–1116. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma JY, Sze YH, Bian JF and Lam TC: Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). Int J Mol Med 47: 83, 2021.
APA
Ma, J.Y., Sze, Y.H., Bian, J.F., & Lam, T.C. (2021). Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). International Journal of Molecular Medicine, 47, 83. https://doi.org/10.3892/ijmm.2021.4916
MLA
Ma, J. Y., Sze, Y. H., Bian, J. F., Lam, T. C."Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)". International Journal of Molecular Medicine 47.5 (2021): 83.
Chicago
Ma, J. Y., Sze, Y. H., Bian, J. F., Lam, T. C."Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 83. https://doi.org/10.3892/ijmm.2021.4916
Copy and paste a formatted citation
x
Spandidos Publications style
Ma JY, Sze YH, Bian JF and Lam TC: Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). Int J Mol Med 47: 83, 2021.
APA
Ma, J.Y., Sze, Y.H., Bian, J.F., & Lam, T.C. (2021). Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). International Journal of Molecular Medicine, 47, 83. https://doi.org/10.3892/ijmm.2021.4916
MLA
Ma, J. Y., Sze, Y. H., Bian, J. F., Lam, T. C."Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)". International Journal of Molecular Medicine 47.5 (2021): 83.
Chicago
Ma, J. Y., Sze, Y. H., Bian, J. F., Lam, T. C."Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 83. https://doi.org/10.3892/ijmm.2021.4916
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team