|
1
|
Dogru M, Okada N, Asano-Kato N, Tanaka M,
Igarashi A, Takano Y, Fukagawa K, Shimazaki J, Tsubota K and
Fujishima H: Atopic ocular surface disease: Implications on tear
function and ocular surface mucins. Cornea. 24(8 Suppl): S18–S23.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gipson IK: The ocular surface: The
challenge to enable and protect vision: The Friedenwald lecture.
Invest Ophthalmol Vis Sci. 48:4390–4398. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Miano F, Mazzone M, Giannetto A, Enea V,
Mc Cauley P, Bailey A and Winlove PC: Interface properties of
simplified tear-like fluids in relation to lipid and aqueous layers
composition. Adv Exp Med Biol. 506:405–417. 2002. View Article : Google Scholar
|
|
4
|
King-Smith PE, Bailey MD and Braun RJ:
Four characteristics and a model of an effective tear film lipid
layer (TFLL). Ocul Surf. 11:236–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kijlstra A and Kuizenga A: Analysis and
function of the human tear proteins. Adv Exp Med Biol. 350:299–308.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Esmaeelpour M, Watts PO, Boulton ME, Cai J
and Murphy PJ: Tear film volume and protein analysis in full-term
newborn infants. Cornea. 30:400–404. 2011. View Article : Google Scholar
|
|
7
|
Sack RA, Sathe S and Beaton A: Tear
turnover and immune and inflammatory processes in the open-eye and
closed-eye environments: Relationship to extended wear contact lens
use. Eye Contact Lens. 29(Suppl 1): S80–S84. S192–S194. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Stern ME, Schaumburg CS, Dana R, Calonge
M, Niederkorn JY and Pflugfelder SC: Autoimmunity at the ocular
surface: Pathogenesis and regulation. Mucosal Immunol. 3:425–442.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schicht M, Garreis F, Hartjen N, Beileke
S, Jacobi C, Sahin A, Holland D, Schröder H, Hammer CM, Paulsen F
and Bräuer L: SFTA3-a novel surfactant protein of the ocular
surface and its role in corneal wound healing and tear film surface
tension. Sci Rep. 8:97912018. View Article : Google Scholar
|
|
10
|
Kwong MS, Evans DJ, Ni M, Cowell BA and
Fleiszig SM: Human tear fluid protects against Pseudomonas
aeruginosa keratitis in a murine experimental model. Infect Immun.
75:2325–2332. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou L and Beuerman RW: The power of
tears: How tear proteomics research could revolutionize the clinic.
Expert Rev Proteomics. 14:189–191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hagan S, Martin E and
Enriquez-de-Salamanca A: Tear fluid biomarkers in ocular and
systemic disease: Potential use for predictive, preventive and
personalised medicine. EPMA J. 7:152016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gachon AM and Lacazette E: Tear lipocalin
and the eye's front line of defence. Br J Ophthalmol. 82:453–455.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kuizenga A, van Haeringen NJ and Kijlstra
A: Identification of lectin binding proteins in human tears. Invest
Ophthalmol Vis Sci. 32:3277–3284. 1991.PubMed/NCBI
|
|
15
|
Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C,
Tanavde V, Li XR and Beuerman RW: In-depth analysis of the human
tear proteome. J Proteomics. 75:3877–3885. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mishima S, Gasset A, Klyce SD Jr and Baum
JL: Determination of tear volume and tear flow. Invest Ophthalmol.
5:264–276. 1966.PubMed/NCBI
|
|
17
|
Rentka A, Koroskenyi K, Harsfalvi J,
Szekanecz Z, Szucs G, Szodoray P and Kemeny-Beke A: Evaluation of
commonly used tear sampling methods and their relevance in
subsequent biochemical analysis. Ann Clin Biochem. 54:521–529.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Esmaeelpour M, Cai J, Watts P, Boulton M
and Murphy PJ: Tear sample collection using cellulose acetate
absorbent filters. Ophthalmic Physiol Opt. 28:577–583. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Inic-Kanada A, Nussbaumer A, Montanaro J,
Belij S, Schlacher S, Stein E, Bintner N, Merio M, Zlabinger GJ and
Barisani-Asenbauer T: Comparison of ophthalmic sponges and
extraction buffers for quantifying cytokine profiles in tears using
Luminex technology. Mol Vis. 18:2717–2725. 2012.PubMed/NCBI
|
|
20
|
López-Cisternas J, Castillo-Diaz J,
Traipe-Castro L and López-Solis RO: Use of polyurethane minisponges
to collect human tear fluid. Cornea. 25:312–318. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rohan LC, Edwards RP, Kelly LA, Colenello
KA, Bowman FP and Crowley-Nowick PA: Optimization of the weck-Cel
collection method for quantitation of cytokines in mucosal
secretions. Clin Diagn Lab Immunol. 7:45–48. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Posa A, Bräuer L, Schicht M, Garreis F,
Beileke S and Paulsen F: Schirmer strip vs capillary tube method:
Non-invasive methods of obtaining proteins from tear fluid. Ann
Anat. 195:137–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
VanDerMeid KR, Su SP, Krenzer KL, Ward KW
and Zhang JZ: A method to extract cytokines and matrix
metalloproteinases from Schirmer strips and analyze using Luminex.
Mol Vis. 17:1056–1063. 2011.PubMed/NCBI
|
|
24
|
Nättinen J, Aapola U, Jylhä A, Vaajanen A
and Uusitalo H: Comparison of capillary and Schirmer strip tear
fluid sampling methods using SWATH-MS proteomics approach. Transl
Vis Sci Technol. 9:162020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Stuchell RN, Feldman JJ, Farris RL and
Mandel ID: The effect of collection technique on tear composition.
Invest Ophthalmol Vis Sci. 25:374–377. 1984.PubMed/NCBI
|
|
26
|
Denisin AK, Karns K and Herr AE:
Post-collection processing of Schirmer strip-collected human tear
fluid impacts protein content. Analyst. 137:5088–5096. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
van Haeringen NJ and Glasius E: The origin
of some enzymes in tear fluid, determined by comparative
investigation with two collection methods. Exp Eye Res. 22:267–272.
1976. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou L and Beuerman RW: Tear analysis in
ocular surface diseases. Prog Retin Eye Res. 31:527–550. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Castelli S, Arasi S, Pawankar R and
Matricardi PM: Collection of nasal secretions and tears and their
use in allergology. Curr Opin Allergy Clin Immunol. 18:1–9. 2018.
View Article : Google Scholar
|
|
30
|
Leonardi A: Allergy and allergic mediators
in tears. Exp Eye Res. 117:106–117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Green-Church KB, Nichols KK, Kleinholz NM,
Zhang L and Nichols JJ: Investigation of the human tear film
proteome using multiple proteomic approaches. Mol Vis. 14:456–470.
2008.PubMed/NCBI
|
|
32
|
Kojima T, Dogru M, Kawashima M, Nakamura S
and Tsubota K: Advances in the diagnosis and treatment of dry eye.
Prog Retin Eye Res. Jan 29–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mainstone JC, Bruce AS and Golding TR:
Tear meniscus measurement in the diagnosis of dry eye. Curr Eye
Res. 15:653–661. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Altelaar AF, Munoz J and Heck AJ:
Next-generation proteomics: Towards an integrative view of proteome
dynamics. Nat Rev Genet. 14:35–48. 2013. View Article : Google Scholar
|
|
35
|
Schubert OT, Röst HL, Collins BC,
Rosenberger G and Aebersold R: Quantitative proteomics: Challenges
and opportunities in basic and applied research. Nat Protoc.
12:1289–1294. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao Y and Jensen ON:
Modification-specific proteomics: Strategies for characterization
of post-translational modifications using enrichment techniques.
Proteomics. 9:4632–4641. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li N, Wang N, Zheng J, Liu XM, Lever OW,
Erickson PM and Li L: Characterization of human tear proteome using
multiple proteomic analysis techniques. J Proteome Res.
4:2052–2061. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gillet LC, Navarro P, Tate S, Röst H,
Selevsek N, Reiter L, Bonner R and Aebersold R: Targeted data
extraction of the MS/MS spectra generated by data-independent
acquisition: A new concept for consistent and accurate proteome
analysis. Mol Cell Proteomics. 11:O111.0167172012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Collins BC, Hunter CL, Liu Y, Schilling B,
Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM,
et al: Multi-laboratory assessment of reproducibility, qualitative
and quantitative performance of SWATH-mass spectrometry. Nat
Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Molloy MP: The challenge of
industrializing proteomics. Nat Biotechnol. 21:5972003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Srinivasan S, Thangavelu M, Zhang L, Green
KB and Nichols KK: iTRAQ quantitative proteomics in the analysis of
tears in dry eye patients. Invest Ophthalmol Vis Sci. 53:5052–5059.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhao Z, Liu J, Wasinger VC, Malouf T,
Nguyen-Khuong T, Walsh B and Willcox MD: Tear lipocalin is the
predominant phosphoprotein in human tear fluid. Exp Eye Res.
90:344–349. 2010. View Article : Google Scholar
|
|
43
|
You J, Fitzgerald A, Cozzi PJ, Zhao Z,
Graham P, Russell PJ, Walsh BJ, Willcox M, Zhong L, Wasinger V and
Li Y: Post-translation modification of proteins in tears.
Electrophoresis. 31:1853–1861. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang Z, Du CX and Pan XD: The use of
in-strip digestion for fast proteomic analysis on tear fluid from
dry eye patients. PLoS One. 13:e02007022018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nguyen-Khuong T, Everest-Dass AV, Kautto
L, Zhao Z, Willcox MD and Packer NH: Glycomic characterization of
basal tears and changes with diabetes and diabetic retinopathy.
Glycobiology. 25:269–283. 2015. View Article : Google Scholar
|
|
46
|
Magdeldin S, Enany S, Yoshida Y, Xu B,
Zhang Y, Zureena Z, Lokamani I, Yaoita E and Yamamoto T: Basics and
recent advances of two dimensional-polyacrylamide gel
electrophoresis. Clin Proteomics. 11:162014. View Article : Google Scholar
|
|
47
|
Broekhuyse RM: Tear lactoferrin: A
bacteriostatic and complexing protein. Invest Ophthalmol.
13:550–554. 1974.PubMed/NCBI
|
|
48
|
Berta A: A polyacrylamide-gel
electrophoretic study of human tear proteins. Graefes Arch Clin Exp
Ophthalmol. 219:95–99. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Molloy MP, Bolis S, Herbert BR, Ou K,
Tyler MI, van Dyk DD, Willcox MD, Gooley AA, Williams KL, Morris CA
and Walsh BJ: Establishment of the human reflex tear
two-dimensional polyacrylamide gel electrophoresis reference map:
New proteins of potential diagnostic value. Electrophoresis.
18:2811–2815. 1997. View Article : Google Scholar
|
|
50
|
Perumal N, Funke S, Wolters D, Pfeiffer N
and Grus FH: Characterization of human reflex tear proteome reveals
high expression of lacrimal proline-rich protein 4 (PRR4).
Proteomics. 15:3370–3381. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ladner CL, Yang J, Turner RJ and Edwards
RA: Visible fluorescent detection of proteins in polyacrylamide
gels without staining. Anal Biochem. 326:13–20. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Williams JG and Gratzer WB: Limitations of
the detergent-polyacrylamide gel electrophoresis method for
molecular weight determination of proteins. J Chromatogr.
57:121–125. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Corthals GL, Wasinger VC, Hochstrasser DF
and Sanchez JC: The dynamic range of protein expression: A
challenge for proteomic research. Electrophoresis. 21:1104–1115.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gygi SP, Corthals GL, Zhang Y, Rochon Y
and Aebersold R: Evaluation of two-dimensional gel
electrophoresis-based proteome analysis technology. Proc Natl Acad
Sci USA. 97:9390–9395. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shi Y, Xiang R, Horvath C and Wilkins JA:
The role of liquid chromatography in proteomics. J Chromatogr A.
1053:27–36. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nagaraj N, Wisniewski JR, Geiger T, Cox J,
Kircher M, Kelso J, Pääbo S and Mann M: Deep proteome and
transcriptome mapping of a human cancer cell line. Mol Syst Biol.
7:5482011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Geyer PE, Kulak NA, Pichler G, Holdt LM,
Teupser D and Mann M: Plasma proteome profiling to assess human
health and disease. Cell Syst. 2:185–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nättinen J, Jylhä A, Aapola U, Mäkinen P,
Beuerman R, Pietilä J, Vaajanen A and Uusitalo H: Age-associated
changes in human tear proteome. Clin Proteomics. 16:112019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gilar M and Neue UD: Peak capacity in
gradient reversed-phase liquid chromatography of biopolymers.
Theoretical and practical implications for the separation of
oligonucleotides. J Chromatogr A. 1169:139–150. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shen Y, Zhao R, Belov ME, Conrads TP,
Anderson GA, Tang K, Pasa-Tolić L, Veenstra TD, Lipton MS, Udseth
HR and Smith RD: Packed capillary reversed-phase liquid
chromatography with high-performance electrospray ionization
Fourier transform ion cyclotron resonance mass spectrometry for
proteomics. Anal Chem. 73:1766–1775. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hsieh EJ, Bereman MS, Durand S, Valaskovic
GA and MacCoss MJ: Effects of column and gradient lengths on peak
capacity and peptide identification in nanoflow LC-MS/MS of complex
proteomic samples. J Am Soc Mass Spectrom. 24:148–153. 2013.
View Article : Google Scholar :
|
|
63
|
Doerr A: Mass spectrometry-based targeted
proteomics. Nat Methods. 10:232013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Carapito C and Aebersold R: Targeted
proteomics. Proteomics. 12:10732012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Borrebaeck CA: Precision diagnostics:
Moving towards protein biomarker signatures of clinical utility in
cancer. Nat Rev Cancer. 17:199–204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Z: An in vitro diagnostic
multivariate index assay (IVDMIA) for ovarian cancer: Harvesting
the power of multiple biomarkers. Rev Obstet Gynecol. 5:35–41.
2012.PubMed/NCBI
|
|
67
|
Ueland FR, Desimone CP, Seamon LG, Miller
RA, Goodrich S, Podzielinski I, Sokoll L, Smith A, van Nagell JR Jr
and Zhang Z: Effectiveness of a multivariate index assay in the
preoperative assessment of ovarian tumors. Obstet Gynecol.
117:1289–1297. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Janssen PT and van Bijsterveld OP: Origin
and biosynthesis of human tear fluid proteins. Invest Ophthalmol
Vis Sci. 24:623–630. 1983.PubMed/NCBI
|
|
69
|
Tsai PS, Evans JE, Green KM, Sullivan RM,
Schaumberg DA, Richards SM, Dana MR and Sullivan DA: Proteomic
analysis of human meibomian gland secretions. Br J Ophthalmol.
90:372–377. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gipson IK: Goblet cells of the
conjunctiva: A review of recent findings. Prog Retin Eye Res.
54:49–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
de Souza GA, Godoy LM and Mann M:
Identification of 491 proteins in the tear fluid proteome reveals a
large number of proteases and protease inhibitors. Genome Biol.
7:R722006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ananthi S, Santhosh RS, Nila MV, Prajna
NV, Lalitha P and Dharmalingam K: Comparative proteomics of human
male and female tears by two-dimensional electrophoresis. Exp Eye
Res. 92:454–463. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Seamon V, Vellala K, Zylberberg C,
Ponamareva O and Azzarolo AM: Sex hormone regulation of tear
lipocalin in the rabbit lacrimal gland. Exp Eye Res. 87:184–190.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tong L, Zhou XY, Jylha A, Aapola U, Liu
DN, Koh SK, Tian D, Quah J, Uusitalo H, Beuerman RW and Zhou L:
Quantitation of 47 human tear proteins using high resolution
multiple reaction monitoring (HR-MRM) based-mass spectrometry. J
Proteomics. 115:36–48. 2015. View Article : Google Scholar
|
|
75
|
Aass C, Norheim I, Eriksen EF, Thorsby PM
and Pepaj M: Single unit filter-aided method for fast proteomic
analysis of tear fluid. Anal Biochem. 480:1–5. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zubarev RA and Makarov A: Orbitrap mass
spectrometry. Anal Chem. 85:5288–5296. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Perry RH, Cooks RG and Noll RJ: Orbitrap
mass spectrometry: Instrumentation, ion motion and applications.
Mass Spectrom Rev. 27:661–699. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dor M, Eperon S, Lalive PH, Guex-Crosier
Y, Hamedani M, Salvisberg C and Turck N: Investigation of the
global protein content from healthy human tears. Exp Eye Res.
179:64–74. 2019. View Article : Google Scholar
|
|
79
|
Shamsi FA, Chen Z, Liang J, Li K, Al-Rajhi
AA, Chaudhry IA, Li M and Wu K: Analysis and comparison of
proteomic profiles of tear fluid from human, cow, sheep, and camel
eyes. Invest Ophthalmol Vis Sci. 52:9156–9165. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
The definition and classification of dry
eye disease: Report of the definition and classification
subcommittee of the international dry eye WorkShop (2007). Ocul
Surf. 5:75–92. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Craig JP, Nichols KK, Akpek EK, Caffery B,
Dua HS, Joo CK, Liu Z, Nelson JD, Nichols JJ, Tsubota K and
Stapleton F: TFOS DEWS II definition and classification report.
Ocul Surf. 15:276–283. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shimazaki J: Definition and diagnostic
criteria of dry eye disease: Historical overview and future
directions. Invest Ophthalmol Vis Sci. 59:DES7–DES12. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Abelson MB, Ousler GW III, Nally LA, Welch
D and Krenzer K: Alternative reference values for tear film break
up time in normal and dry eye populations. Adv Exp Med Biol.
506:1121–1125. 2002. View Article : Google Scholar
|
|
84
|
Senchyna M and Wax MB: Quantitative
assessment of tear production: A review of methods and utility in
dry eye drug discovery. J Ocul Biol Dis Infor. 1:1–6. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nichols KK, Mitchell GL and Zadnik K: The
repeatability of clinical measurements of dry eye. Cornea.
23:272–285. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang JF, Zhang Y, Rittenhouse KD,
Pickering EH and McDowell MT: Evaluations of tear protein markers
in dry eye disease: Repeatability of measurement and correlation
with disease. Invest Ophthalmol Vis Sci. 53:4556–4564. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li
XR, Yang H, Tong L, Liu S, Stern ME and Tan D: Identification of
tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative
proteomics. J Proteome Res. 8:4889–4905. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ryckman C, Vandal K, Rouleau P, Talbot M
and Tessier PA: Proinflammatory activities of S100: Proteins
S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and
adhesion. J Immunol. 170:3233–3242. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Danjo Y, Lee M, Horimoto K and Hamano T:
Ocular surface damage and tear lactoferrin in dry eye syndrome.
Acta Ophthalmol (Copenh). 72:433–437. 1994. View Article : Google Scholar
|
|
90
|
Breustedt DA, Schönfeld DL and Skerra A:
Comparative ligand-binding analysis of ten human lipocalins.
Biochim Biophys Acta. 1764:161–173. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tong L, Zhou L, Beuerman RW, Zhao SZ and
Li XR: Association of tear proteins with meibomian gland disease
and dry eye symptoms. Br J Ophthalmol. 95:848–852. 2011. View Article : Google Scholar
|
|
92
|
Foell D, Wittkowski H, Ren Z, Turton J,
Pang G, Daebritz J, Ehrchen J, Heidemann J, Borody T, Roth J and
Clancy R: Phagocyte-specific S100 proteins are released from
affected mucosa and promote immune responses during inflammatory
bowel disease. J Pathol. 216:183–192. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Versura P, Nanni P, Bavelloni A, Blalock
WL, Piazzi M, Roda A and Campos EC: Tear proteomics in evaporative
dry eye disease. Eye (Lond). 24:1396–1402. 2010. View Article : Google Scholar
|
|
94
|
Fukuda M, Fullard RJ, Willcox MD,
Baleriola-Lucas C, Bestawros F, Sweeney D and Holden BA:
Fibronectin in the tear film. Invest Ophthalmol Vis Sci.
37:459–467. 1996.PubMed/NCBI
|
|
95
|
Perumal N, Funke S, Pfeiffer N and Grus
FH: Proteomics analysis of human tears from aqueous-deficient and
evaporative dry eye patients. Sci Rep. 6:296292016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ligtenberg AJ, Veerman EC, Nieuw Amerongen
AV and Mollenhauer J: Salivary agglutinin/glycoprotein-340/DMBT1: A
single molecule with variable composition and with different
functions in infection, inflammation and cancer. Biol Chem.
388:1275–1289. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Boucher Y, Braud A, Dufour E, Agbo-Godeau
S, Baaroun V, Descroix V, Guinnepain MT, Ungeheuer MN, Ottone C and
Rougeot C: Opiorphin levels in fluids of burning mouth syndrome
patients: A case-control study. Clin Oral Investig. 21:2157–2164.
2017. View Article : Google Scholar
|
|
98
|
Pappa A, Chen C, Koutalos Y, Townsend AJ
and Vasiliou V: Aldh3a1 protects human corneal epithelial cells
from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage.
Free Radic Biol Med. 34:1178–1189. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Soria J, Acera A, Merayo-LLoves J, Durán
JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF,
Peter H, et al: Tear proteome analysis in ocular surface diseases
using label-free LC-MS/MS and multiplexed-microarray biomarker
validation. Sci Rep. 7:174782017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Messmer EM, von Lindenfels V, Garbe A and
Kampik A: Matrix metalloproteinase 9 testing in dry eye disease
using a commercially available point-of-care immunoassay.
Ophthalmology. 123:2300–2308. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jonsson R, Vogelsang P, Volchenkov R,
Espinosa A, Wahren-Herlenius M and Appel S: The complexity of
Sjogren's syndrome: Novel aspects on pathogenesis. Immunol Lett.
141:1–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kuo MT, Fang PC, Chao TL, Chen A, Lai YH,
Huang YT and Tseng CY: Tear proteomics approach to monitoring
sjogren syndrome or dry eye disease. Int J Mol Sci. 20:19322019.
View Article : Google Scholar
|
|
103
|
Aqrawi LA, Galtung HK, Vestad B, Øvstebø
R, Thiede B, Rusthen S, Young A, Guerreiro EM, Utheim TP, Chen X,
et al: Identification of potential saliva and tear biomarkers in
primary Sjögren's syndrome, utilising the extraction of
extracellular vesicles and proteomics analysis. Arthritis Res Ther.
19:142017. View Article : Google Scholar
|
|
104
|
Aqrawi LA, Galtung HK, Guerreiro EM,
Øvstebø R, Thiede B, Utheim TP, Chen X, Utheim ØA, Palm Ø,
Skarstein K and Jensen JL: Proteomic and histopathological
characterisation of sicca subjects and primary Sjögren's syndrome
patients reveals promising tear, saliva and extracellular vesicle
disease biomarkers. Arthritis Res Ther. 21:1812019. View Article : Google Scholar
|
|
105
|
Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li
XR, Yu SJ, Koh SK and Beuerman RW: Proteomic profiling of
inflammatory signaling molecules in the tears of patients on
chronic glaucoma medication. Invest Ophthalmol Vis Sci.
52:7385–7391. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Csősz É, Deák E, Kalló G, Csutak A and
Tőzsér J: Diabetic retinopathy: Proteomic approaches to help the
differential diagnosis and to understand the underlying molecular
mechanisms. J Proteomics. 150:351–358. 2017. View Article : Google Scholar
|
|
107
|
Csősz É, Boross P, Csutak A, Berta A, Tóth
F, Póliska S, Török Z and Tőzsér J: Quantitative analysis of
proteins in the tear fluid of patients with diabetic retinopathy. J
Proteomics. 75:2196–2204. 2012. View Article : Google Scholar
|
|
108
|
Zhou X, Qu J, Xie R, Wang R, Jiang L, Zhao
H, Wen J and Lu F: Normal development of refractive state and
ocular dimensions in guinea pigs. Vision Res. 46:2815–2823. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Bartalena L and Fatourechi V:
Extrathyroidal manifestations of Graves' disease: A 2014 update. J
Endocrinol Invest. 37:691–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lehmann GM, Garcia-Bates TM, Smith TJ,
Feldon SE and Phipps RP: Regulation of lymphocyte function by
PPARgamma: Relevance to thyroid eye disease-related inflammation.
PPAR Res. 2008:8959012008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mourits MP, Prummel MF, Wiersinga WM and
Koornneef L: Clinical activity score as a guide in the management
of patients with Graves' ophthalmopathy. Clin Endocrinol (Oxf).
47:9–14. 1997. View Article : Google Scholar
|
|
112
|
Turck N, Eperon S, De Los Angeles Gracia
M, Obéric A and Hamédani M: Thyroid-associated orbitopathy and
biomarkers: Where we are and what we can hope for the future. Dis
Markers. 2018:70101962018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Chelala E, El Rami H, Dirani A, Fakhoury H
and Fadlallah A: Extensive superior limbic keratoconjunctivitis in
Graves' disease: Case report and mini-review of the literature.
Clin Ophthalmol. 9:467–468. 2015.PubMed/NCBI
|
|
114
|
Matheis N, Okrojek R, Grus FH and Kahaly
GJ: Proteomics of tear fluid in thyroid-associated orbitopathy.
Thyroid. 22:1039–1045. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Torsteinsdóttir I, Hâkansson L, Hällgren
R, Gudbjörnsson B, Arvidson NG and Venge P: Serum lysozyme: A
potential marker of monocyte/macrophage activity in rheumatoid
arthritis. Rheumatology (Oxford). 38:1249–1254. 1999. View Article : Google Scholar
|
|
116
|
Barrett AJ: The cystatins: Small protein
inhibitors of cysteine proteinases. Prog Clin Biol Res.
180:105–116. 1985.PubMed/NCBI
|
|
117
|
Matheis N, Grus FH, Breitenfeld M, Knych
I, Funke S, Pitz S, Ponto KA, Pfeiffer N and Kahaly GJ: Proteomics
differentiate between thyroid-associated orbitopathy and dry eye
syndrome. Invest Ophthalmol Vis Sci. 56:2649–2656. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wiesner J and Vilcinskas A: Antimicrobial
peptides: The ancient arm of the human immune system. Virulence.
1:440–464. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ozyildirim AM, Wistow GJ, Gao J, Wang J,
Dickinson DP, Frierson HF Jr and Laurie GW: The lacrimal gland
transcriptome is an unusually rich source of rare and poorly
characterized gene transcripts. Invest Ophthalmol Vis Sci.
46:1572–1580. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Barka T, Asbell PA, van der Noen H and
Prasad A: Cystatins in human tear fluid. Curr Eye Res. 10:25–34.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Turcu AF, Kumar S, Neumann S, Coenen M,
Iyer S, Chiriboga P, Gershengorn MC and Bahn RS: A small molecule
antagonist inhibits thyrotropin receptor antibody-induced orbital
fibroblast functions involved in the pathogenesis of Graves
ophthalmopathy. J Clin Endocrinol Metab. 98:2153–2159. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Aass C, Norheim I, Eriksen EF, Børnick EC,
Thorsby PM and Pepaj M: Comparative proteomic analysis of tear
fluid in Graves' disease with and without orbitopathy. Clin
Endocrinol (Oxf). 85:805–812. 2016. View Article : Google Scholar
|
|
123
|
McIntosh RS, Cade JE, Al-Abed M,
Shanmuganathan V, Gupta R, Bhan A, Tighe PJ and Dua HS: The
spectrum of antimicrobial peptide expression at the ocular surface.
Invest Ophthalmol Vis Sci. 46:1379–1385. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wei YH, Chen WL, Hu FR and Liao SL: In
vivo confocal microscopy of bulbar conjunctiva in patients with
Graves' ophthalmopathy. J Formos Med Assoc. 114:965–972. 2015.
View Article : Google Scholar
|
|
125
|
Kishazi E, Dor M, Eperon S, Oberic A,
Hamedani M and Turck N: Thyroid-associated orbitopathy and tears: A
proteomics study. J Proteomics. 170:110–116. 2018. View Article : Google Scholar
|
|
126
|
Paraoan L, Grierson I and Maden BE:
Analysis of expressed sequence tags of retinal pigment epithelium:
Cystatin C is an abundant transcript. Int J Biochem Cell Biol.
32:417–426. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yoshida A, Hsu LC and Dave V: Retinal
oxidation activity and biological role of human cytosolic aldehyde
dehydrogenase. Enzyme. 46:239–244. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Sahu B and Maeda A: Retinol dehydrogenases
regulate vitamin A metabolism for visual function. Nutrients.
8:7462016. View Article : Google Scholar :
|
|
129
|
Weinreb RN, Aung T and Medeiros FA: The
pathophysiology and treatment of glaucoma: A review. JAMA.
311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bourne RR, Taylor HR, Flaxman SR, Keeffe
J, Leasher J, Naidoo K, Pesudovs K, White RA, Wong TY, Resnikoff S,
et al: Number of people blind or visually impaired by glaucoma
worldwide and in world regions 1990-2010: A meta-analysis. PLoS
One. 11:e01622292016. View Article : Google Scholar
|
|
131
|
Harwerth RS and Quigley HA: Visual field
defects and retinal ganglion cell losses in patients with glaucoma.
Arch Ophthalmol. 124:853–859. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Rahmani B, Tielsch JM, Katz J, Gottsch J,
Quigley H, Javitt J and Sommer A: The cause-specific prevalence of
visual impairment in an urban population. The baltimore eye survey.
Ophthalmology. 103:1721–1726. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Braunger BM, Fuchshofer R and Tamm ER: The
aqueous humor outflow pathways in glaucoma: A unifying concept of
disease mechanisms and causative treatment. Eur J Pharm Biopharm.
95:173–181. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Elhawy E, Kamthan G, Dong CQ and Danias J:
Pseudoexfoliation syndrome, a systemic disorder with ocular
manifestations. Hum Genomics. 6:222012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Weinreb RN, Leung CK, Crowston JG,
Medeiros FA, Friedman DS, Wiggs JL and Martin KR: Primary
open-angle glaucoma. Nat Rev Dis Primers. 2:160672016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Pieragostino D, Bucci S, Agnifili L,
Fasanella V, D'Aguanno S, Mastropasqua A, Ciancaglini M,
Mastropasqua L, Di Ilio C, Sacchetta P, et al: Differential protein
expression in tears of patients with primary open angle and
pseudoexfoliative glaucoma. Mol Biosyst. 8:1017–1028. 2012.
View Article : Google Scholar
|
|
137
|
Pieragostino D, Agnifili L, Fasanella V,
D'Aguanno S, Mastropasqua R, Di Ilio C, Sacchetta P, Urbani A and
Del Boccio P: Shotgun proteomics reveals specific modulated protein
patterns in tears of patients with primary open angle glaucoma
naïve to therapy. Mol Biosyst. 9:1108–1116. 2013. View Article : Google Scholar : PubMed/NCBI
|