|
1
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen M, Xu Y, Hong N, Yang Y, Lei W, Du L,
Zhao J, Lei X, Xiong L, Cai L, et al: Epidemiology of fungal
infections in China. Front Med. 12:58–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tan KE and Lim YY: Viruses join the
circular RNA world. FEBS J. Nov 25–2020.Epub ahead of print.
View Article : Google Scholar :
|
|
4
|
Xie H, Sun H, Mu R, Li S, Li Y, Yang C, Xu
M, Duan X and Chen L: The role of circular RNAs in viral infection
and related diseases. Virus Res. 291:1982052021. View Article : Google Scholar
|
|
5
|
Garassino MC, Whisenant JG, Huang LC,
Trama A, Torri V, Agustoni F, Baena J, Banna G, Berardi R, Bettini
AC, et al: COVID-19 in patients with thoracic malignancies
(TERAVOLT): First results of an international, registry-based,
cohort study. Lancet Oncol. 21:914–922. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun X, Wang L, Ding J, Wang Y, Wang J,
Zhang X, Che Y, Liu Z, Zhang X, Ye J, et al: Integrative analysis
of Arabidopsis thaliana transcriptomics reveals intuitive splicing
mechanism for circular RNA. FEBS Lett. 590:3510–3516. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar :
|
|
8
|
Zhang Y, Xue W, Li X, Zhang J, Chen S,
Zhang JL, Yang L and Chen LL: The biogenesis of nascent circular
RNAs. Cell Rep. 15:611–624. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liang D, Tatomer DC, Luo Z, Wu H, Yang L,
Chen LL, Cherry S and Wilusz JE: The output of protein-coding genes
shifts to circular RNAs when the Pre-mRNA processing machinery is
limiting. Mol Cell. 68:940–954.e3. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin
QF, Wei J, Yao RW, Yang L and Chen LL: Coordinated circRNA
biogenesis and function with NF90/NF110 in viral infection. Mol
Cell. 67:214–227.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zou Y, Zheng S, Deng X, Yang A and Xie X,
Tang H and Xie X: The role of circular RNA CDR1as/ciRS-7 in
regulating tumor microenvironment: A pan-cancer analysis.
Biomolecules. 9:4292019. View Article : Google Scholar :
|
|
13
|
Akhter R: Circular RNA and Alzheimer's
disease. Adv Exp Med Biol. 1087:239–243. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xiao R, Chen JY, Liang Z, Luo D, Chen G,
Lu ZJ, Chen Y, Zhou B, Li H, Du X, et al: Pervasive chromatin-RNA
binding protein interactions enable RNA-Based regulation of
transcription. Cell. 178:107–121.e18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ule J and Blencowe BJ: Alternative
splicing regulatory networks: Functions, mechanisms, and evolution.
Mol Cell. 76:329–345. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Williams T, Ngo LH and Wickramasinghe VO:
Nuclear export of RNA: Different sizes, shapes and functions. Semin
Cell Dev Biol. 75:70–77. 2018. View Article : Google Scholar
|
|
17
|
Martinez-Salas E, Lozano G,
Fernandez-Chamorro J, Francisco-Velilla R, Galan A and Diaz R:
RNA-binding proteins impacting on internal initiation of
translation. Int J Mol Sci. 14:21705–21726. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu KS, Pan F, Mao XD, Liu C and Chen YJ:
Biological functions of circular RNAs and their roles in occurrence
of reproduction and gynecological diseases. Am J Transl Res.
11:1–15. 2019.PubMed/NCBI
|
|
19
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: CircRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang Y, Yang L and Chen LL: Life without
A tail: New formats of long noncoding RNAs. Int J Biochem Cell
Biol. 54:338–349. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Awan FM, Yang BB, Naz A, Hanif A, Ikram A,
Obaid A, Malik A, Janjua HA, Ali A and Sharif S: The emerging role
and significance of circular RNAs in viral infections and antiviral
immune responses: Possible implication as theranostic agents. RNA
Biol. 18:1–15. 2021. View Article : Google Scholar
|
|
25
|
Zhao T, Zheng Y, Hao D, Jin X, Luo Q, Guo
Y, Li D, Xi W, Xu Y, Chen Y, et al: Blood circRNAs as biomarkers
for the diagnosis of community-acquired pneumonia. J Cell Biochem.
120:16483–16494. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Trepo C, Chan HL and Lok A: Hepatitis B
virus infection. Lancet. 384:2053–2063. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schweitzer A, Horn J, Mikolajczyk RT,
Krause G and Ott JJ: Estimations of worldwide prevalence of chronic
hepatitis B virus infection: A systematic review of data published
between 1965 and 2013. Lancet. 386:1546–1555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou TC, Li X, Chen LJ, Fan JH, Lai X,
Tang Y, Zhang L and Wei J: Differential expression profile of
hepatic circular RNAs in chronic hepatitis B. J Viral Hepat.
25:1341–1351. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang L, Zhao J, Ren J, Hall KH, Moorman
JP, Yao ZQ and Ning S: Protein phosphatase 1 abrogates
IRF7-mediated type I IFN response in antiviral immunity. Eur J
Immunol. 46:2409–2419. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Belloni L, Allweiss L, Guerrieri F,
Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M
and Levrero M: IFN-α inhibits HBV transcription and replication in
cell culture and in humanized mice by targeting the epigenetic
regulation of the nuclear cccDNA minichromosome. J Clin Invest.
122:529–537. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fan H, Lv P, Lv J, Zhao X, Liu M, Zhang G
and Tang H: MiR-370 suppresses HBV gene expression and replication
by targeting nuclear factor IA. J Med Virol. 89:834–844. 2017.
View Article : Google Scholar
|
|
32
|
Chen C, Wu M, Zhang W, Lu W, Zhang M,
Zhang Z, Zhang X and Yuan Z: MicroRNA-939 restricts hepatitis B
virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin
remodeling. Sci Rep. 6:359742016. View Article : Google Scholar
|
|
33
|
Shi J, Zhao J, Zhang X, Cheng Y, Hu J, Li
Y, Zhao X, Shang Q, Sun Y, Tu B, et al: Activated hepatic stellate
cells impair NK cell anti-fibrosis capacity through a
TGF-β-dependent emperipolesis in HBV cirrhotic patients. Sci Rep.
7:445442017. View Article : Google Scholar
|
|
34
|
Song G, Jia H, Xu H, Liu W, Zhu H, Li S,
Shi J, Li Z, He J and Chen Z: Studying the association of
microRNA-210 level with chronic hepatitis B progression. J Viral
Hepat. 21:272–280. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang GL, Li YX, Zheng SQ, Liu M, Li X and
Tang H: Suppression of hepatitis B virus replication by
microRNA-199a-3p and microRNA-210. Antiviral Res. 88:169–175. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li J, Zhang X, Chen L, Zhang Z, Zhang J,
Wang W, Wu M, Shi B, Zhang X, Kozlowski M, et al: Circulating
miR-210 and miR-22 combined with ALT predict the virological
response to interferon-alpha therapy of CHB patients. Sci Rep.
7:156582017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang L and Wang Z: Circular RNA
hsa_circ_0004812 impairs IFN-induced immune response by sponging
miR-1287-5p to regulate FSTL1 in chronic hepatitis B. Virol J.
17:402020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang MH, Chen M, Mo HH, Tsai WC, Chang YC,
Chang CC, Chen KC, Wu HY, Yuan CH, Lee CH, et al: Utilizing
experimental mouse model to identify effectors of hepatocellular
carcinoma induced by HBx antigen. Cancers (Basel). 12:4092020.
View Article : Google Scholar
|
|
39
|
Li Y, Gao X, Wang Z, Liu W, Xu F, Hu Y, Li
Y and Shi L: Circular RNA 4099 aggravates hydrogen peroxide-induced
injury by down-regulating microRNA-706 in L02 cells. Life Sci.
241:1168262020. View Article : Google Scholar
|
|
40
|
Yin R, Guo D, Zhang S and Zhang X: miR-706
inhibits the oxidative stress-induced activation of PKCα/TAOK1 in
liver fibrogenesis. Sci Rep. 6:375092016. View Article : Google Scholar
|
|
41
|
Yu J, Ding WB, Wang MC, Guo XG, Xu J, Xu
QG, Yang Y, Sun SH, Liu JF, Qin LX, et al: Plasma circular RNA
panel to diagnose hepatitis B virus-related hepatocellular
carcinoma: A large-scale, multicenter study. Int J Cancer.
146:1754–1763. 2020. View Article : Google Scholar
|
|
42
|
Kohno T, Tsuge M, Murakami E, Hiraga N,
Abe H, Miki D, Imamura M, Ochi H, Hayes CN and Chayama K: Human
microRNA hsa-miR-1231 suppresses hepatitis B virus replication by
targeting core mRNA. J Viral Hepat. 21:e89–e97. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhu K, Zhan H, Peng Y, Yang L, Gao Q, Jia
H, Dai Z, Tang Z, Fan J and Zhou J: Plasma hsa_circ_0027089 is a
diagnostic biomarker for hepatitis B virus-related hepatocellular
carcinoma. Carcinogenesis. 41:296–302. 2020. View Article : Google Scholar :
|
|
44
|
Hu W, Wang X, Ding X, Li Y, Zhang X, Xie
P, Yang J and Wang S: MicroRNA-141 represses HBV replication by
targeting PPARA. PLoS One. 7:e341652012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang XY, Huang ZL, Xu YH, Zheng Q, Chen
Z, Song W, Zhou J, Tang ZY and Huang XY: Comprehensive circular RNA
profiling reveals the regulatory role of the
circRNA-100338/miR-141-3p pathway in hepatitis B-related
hepatocellular carcinoma. Sci Rep. 7:54282017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sekiba K, Otsuka M, Ohno M, Kishikawa T,
Yamagami M, Suzuki T, Ishibashi R, Seimiya T, Tanaka E and Koike K:
DHX9 regulates production of hepatitis B virus-derived circular RNA
and viral protein levels. Oncotarget. 9:20953–20964. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ungerleider NA, Tibbetts SA, Renne R and
Flemington EK: Gammaherpesvirus RNAs come full circle. mBio.
10:e00071–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Toptan T, Abere B, Nalesnik MA, Swerdlow
SH, Ranganathan S, Lee N, Shair KH, Moore PS and Chang Y: Circular
DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA.
115:E8737–E8745. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ungerleider NA, Jain V, Wang Y, Maness NJ,
Blair RV, Alvarez X, Midkiff C, Kolson D, Bai S, Roberts C, et al:
Comparative analysis of gammaherpesvirus circular RNA repertoires:
Conserved and unique viral circular RNAs. J Virol. 93:e01952–18.
2019.
|
|
50
|
Tagawa T, Gao S, Koparde VN, Gonzalez M,
Spouge JL, Serquiña AP, Lurain K, Ramaswami R, Uldrick TS, Yarchoan
R and Ziegelbauer JM: Discovery of Kaposi's sarcoma
herpes-virus-encoded circular RNAs and a human antiviral circular
RNA. Proc Natl Acad Sci USA. 115:12805–12810. 2018. View Article : Google Scholar
|
|
51
|
Abere B, Li J, Zhou H, Toptan T, Moore PS
and Chang Y: Kaposi's sarcoma-associated herpesvirus-encoded
circRNAs are expressed in infected tumor tissues and are
incorporated into virions. mBio. 11:e03027–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Preusser C, Hung LH, Schneider T,
Schreiner S, Hardt M, Moebus A, Santoso S and Bindereif A:
Selective release of circRNAs in platelet-derived extracellular
vesicles. J Extracell Vesicles. 7:14244732018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shi J, Hu N, Mo L, Zeng Z, Sun J and Hu Y:
Deep RNA sequencing reveals a repertoire of human fibroblast
circular RNAs associated with cellular responses to herpes simplex
virus 1 infection. Cell Physiol Biochem. 47:2031–2045. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang JT, Chen JN, Gong LP, Bi YH, Liang
J, Zhou L, He D and Shao CK: Identification of virus-encoded
circular RNA. Virology. 529:144–151. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sun G, Shi L, Yan S, Wan Z, Jiang N, Fu L,
Li M and Guo J: MiR-15b targets cyclin D1 to regulate proliferation
and apoptosis in glioma cells. Biomed Res Int. 2014:6878262014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lovat F, Fassan M, Gasparini P, Rizzotto
L, Cascione L, Pizzi M, Vicentini C, Balatti V, Palmieri D,
Costinean S and Croce CM: miR-15b/16-2 deletion promotes B-cell
malignancies. Proc Natl Acad Sci USA. 112:11636–11641. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Qiao Y, Zhao X, Liu J and Yang W:
Epstein-Barr virus circRNAome as host miRNA sponge regulates virus
infection, cell cycle, and oncogenesis. Bioengineered. 10:593–603.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vincent HA, Ziehr B, Lenarcic EM and
Moorman NJ: Human cytomegalovirus pTRS1 stimulates cap-independent
translation. Virology. 537:246–253. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lou YY, Wang QD, Lu YT, Tu MY, Xu X, Xia
Y, Peng Y, Lai MM and Zheng XQ: Differential circRNA expression
profiles in latent human cytomegalovirus infection and validation
using clinical samples. Physiol Genomics. 51:51–58. 2019.
View Article : Google Scholar
|
|
60
|
Zhang Y, Zhang H, An M, Zhao B, Ding H,
Zhang Z, He Y, Shang H and Han X: Crosstalk in competing endogenous
RNA networks reveals new circular RNAs involved in the pathogenesis
of early HIV infection. J Transl Med. 16:3322018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M,
Mellon K, Hu W and de Noronha CMC: Inhibition of HIV early
replication by the p53 and its downstream gene p21. Virol J.
15:532018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Khan SZ and Mitra D: Cyclin K inhibits
HIV-1 gene expression and replication by interfering with
cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in
Nef-dependent manner. J Biol Chem. 286:22943–22954. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Manganaro L, Hong P, Hernandez MM, Argyle
D, Mulder LCF, Potla U, Diaz-Griffero F, Lee B, Fernandez-Sesma A
and Simon V: IL-15 regulates susceptibility of CD4+ T
cells to HIV infection. Proc Natl Acad Sci USA. 115:E9659–E9667.
2018. View Article : Google Scholar
|
|
64
|
Zhao J, Lee EE, Kim J, Yang R, Chamseddin
B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming
activity of an oncoprotein-encoding circular RNA from human
papilloma-virus. Nat Commun. 10:23002019. View Article : Google Scholar
|
|
65
|
Chan JF, Lau SK, To KK, Cheng VC, Woo PC
and Yuen KY: Middle East respiratory syndrome coronavirus: Another
zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol
Rev. 28:465–522. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zumla A, Chan JF, Azhar EI, Hui DS and
Yuen KY: Coronaviruses-drug discovery and therapeutic options. Nat
Rev Drug Discov. 15:327–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang X, Chu H, Wen L, Shuai H, Yang D,
Wang Y, Hou Y, Zhu Z, Yuan S, Yin F, et al: Competing endogenous
RNA network profiling reveals novel host dependency factors
required for MERS-CoV propagation. Emerg Microbes Infect.
9:733–746. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Morrison DK: MAP kinase pathways. Cold
Spring Harb Perspect Biol. 4:a0112542012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kindrachuk J, Ork B, Hart BJ, Mazur S,
Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH,
et al: Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling
modulation for Middle East respiratory syndrome coronavirus
infection as identified by temporal kinome analysis. Antimicrob
Agents Chemother. 59:1088–1099. 2015. View Article : Google Scholar :
|
|
70
|
Echterdiek F, Kitterer D, Alscher MD,
Schwenger V, Ruckenbrod B, Bald M and Latus J: Clinical course of
hanta-virus-induced nephropathia epidemica in children compared to
adults in Germany-analysis of 317 patients. Pediatr Nephrol.
34:1247–1252. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lu S, Zhu N, Guo W, Wang X, Li K, Yan J,
Jiang C, Han S, Xiang H, Wu X, et al: RNA-Seq revealed a circular
RNA-microRNA-mRNA regulatory network in hantaan virus infection.
Front Cell Infect Microbiol. 10:972020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Power D, Santoso N, Dieringer M, Yu J,
Huang H, Simpson S, Seth I, Miao H and Zhu J: IFI44 suppresses
HIV-1 LTR promoter activity and facilitates its latency. Virology.
481:142–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
DeDiego ML, Nogales A, Martinez-Sobrido L
and Topham DJ: Interferon-induced protein 44 interacts with
cellular FK506-binding protein 5, negatively regulates host
antiviral responses, and supports virus replication. mBio.
10:e01839–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Melchjorsen J, Kristiansen H, Christiansen
R, Rintahaka J, Matikainen S, Paludan SR and Hartmann R:
Differential regulation of the OASL and OAS1 genes in response to
viral infections. J Interferon Cytokine Res. 29:199–207. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Leung DW: Mechanisms of non-segmented
negative sense RNA viral antagonism of host RIG-I-Like receptors. J
Mol Biol. 431:4281–4289. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lupfer C, Malik A and Kanneganti TD:
Inflammasome control of viral infection. Curr Opin Virol. 12:38–46.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Arora S, Singh P, Dohare R, Jha R and Ali
Syed M: Unravelling host-pathogen interactions: ceRNA network in
SARS-CoV-2 infection (COVID-19). Gene. 762:1450572020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Farberov L, Herzig E, Modai S, Isakov O,
Hizi A and Shomron N: MicroRNA-mediated regulation of p21 and TASK1
cellular restriction factors enhances HIV-1 infection. J Cell Sci.
128:1607–1616. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yu T, Ding Y, Zhang Y, Liu Y, Li Y, Lei J,
Zhou J, Song S and Hu B: Circular RNA GATAD2A promotes H1N1
replication through inhibiting autophagy. Vet Microbiol.
231:238–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang ZY, Guo ZD, Li JM, Zhao ZZ, Fu YY,
Zhang CM, Zhang Y and Liu LN, Qian J and Liu LN: Genome-wide search
for competing endogenous RNAs responsible for the effects induced
by ebola virus replication and transcription using a trVLP system.
Front Cell Infect Microbiol. 7:4792017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yao F, Kausalya JP, Sia YY, Teo AS, Lee
WH, Ong AG, Zhang Z, Tan JH, Li G, Bertrand D, et al: Recurrent
fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of
epithelial integrity. Cell Rep. 12:272–285. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Barba-Spaeth G, Dejnirattisai W, Rouvinski
A, Vaney MC, Medits I, Sharma A, Simon-Lorière E, Sakuntabhai A,
Cao-Lormeau VM, Haouz A, et al: Structural basis of potent
Zika-dengue virus antibody cross-neutralization. Nature. 536:48–53.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Swanstrom JA, Plante JA, Plante KS, Young
EF, McGowan E, Gallichotte EN, Widman DG, Heise MT, de Silva AM and
Baric RS: Dengue virus envelope dimer epitope monoclonal antibodies
isolated from dengue patients are protective against Zika virus.
mBio. 7:e01123–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
He J, Ming Y, MinLi Y, Han Z, Jiang J,
Zhou J, Dai B, Lv Y, He ML, Fang M and Li Y: hsa_circ_0006459 and
hsa_circ_0015962 affect prognosis of dengue fever. Sci Rep.
9:194252019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhao K, Zhao Q, Guo Z, Chen Z, Hu Y, Su J,
Chen L, He Z, Cai X, Chen M, et al: Hsa_Circ_0001275: A potential
novel diagnostic biomarker for postmenopausal osteoporosis. Cell
Physiol Biochem. 46:2508–2516. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Q, Shuai M and Xia Y: Knockdown of
EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma
cell proliferation and metastasis through sponging multiple miRNAs.
Cancer Manag Res. 11:8023–8031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shuai M and Huang L: High expression of
hsa_circRNA_001387 in nasopharyngeal carcinoma and the effect on
efficacy of radiotherapy. Onco Targets Ther. 13:3965–3973. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhou Y, Shen L, Wang YZ and Zhou CC: The
potential of ciRS-7 for predicting onset and prognosis of cervical
cancer. Neoplasma. 67:312–322. 2020. View Article : Google Scholar
|
|
89
|
Wang M, Gu B, Yao G, Li P and Wang K:
Circular RNA expression profiles and the pro-tumorigenic function
of CircRNA_10156 in Hepatitis B virus-related liver cancer. Int J
Med Sci. 17:1351–1365. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen J, Chan AW, To KF, Chen W, Zhang Z,
Ren J, Song C, Cheung YS, Lai PB, Cheng SH, et al: SIRT2
overexpression in hepatocellular carcinoma mediates epithelial to
mesenchymal transition by protein kinase B/glycogen synthase
kinase-3β/β-catenin signaling. Hepatology. 57:2287–2298. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Guo H, Zhou T, Jiang D, Cuconati A, Xiao
GH, Block TM and Guo JT: Regulation of hepatitis B virus
replication by the phosphatidylinositol 3-kinase-akt signal
transduction pathway. J Virol. 81:10072–10080. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jiang W, Wang L, Zhang Y and Li H:
Circ-ATP5H induces hepatitis B virus replication and expression by
regulating miR-138-5p/TNFAIP3 axis. Cancer Manag Res.
12:11031–11040. 2020. View Article : Google Scholar :
|
|
93
|
Cheung CC, Chung GT, Lun SW, To KF, Choy
KW, Lau KM, Siu SP, Guan XY, Ngan RK, Yip TT, et al: miR-31 is
consistently inactivated in EBV-associated nasopharyngeal carcinoma
and contributes to its tumorigenesis. Mol Cancer. 13:1842014.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu N, Jiang N, Guo R, Jiang W, He QM, Xu
YF, Li YQ, Tang LL, Mao YP, Sun Y and Ma J: MiR-451 inhibits cell
growth and invasion by targeting MIF and is associated with
survival in nasopharyngeal carcinoma. Mol Cancer. 12:1232013.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ungerleider N, Concha M, Lin Z, Roberts C,
Wang X, Cao S, Baddoo M, Moss WN, Yu Y, Seddon M, et al: The
Epstein Barr virus circRNAome. PLoS Pathog. 14:e10072062018.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Gong LP, Chen JN, Dong M, Xiao ZD, Feng
ZY, Pan YH, Zhang Y, Du Y, Zhang JY, Bi YH, et al: Epstein-Barr
virus-derived circular RNA LMP2A induces stemness in EBV-associated
gastric cancer. EMBO Rep. 21:e496892020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li Y, Masaki T, Yamane D, McGivern DR and
Lemon SM: Competing and noncompeting activities of miR-122 and the
5' exonuclease Xrn1 in regulation of hepatitis C virus replication.
Proc Natl Acad Sci USA. 110:1881–1886. 2013. View Article : Google Scholar
|
|
98
|
Jost I, Shalamova LA, Gerresheim GK,
Niepmann M, Bindereif A and Rossbach O: Functional sequestration of
microRNA-122 from hepatitis C virus by circular RNA sponges. RNA
Biol. 15:1032–1039. 2018.PubMed/NCBI
|