Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The potential role of necroptosis in clinical diseases (Review)

  • Authors:
    • Wenli Dai
    • Jin Cheng
    • Xi Leng
    • Xiaoqing Hu
    • Yingfang Ao
  • View Affiliations / Copyright

    Affiliations: Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China, Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 89
    |
    Published online on: March 26, 2021
       https://doi.org/10.3892/ijmm.2021.4922
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As an important type of programmed cell death in addition to apoptosis, necroptosis occurs in a variety of pathophysiological processes, including infections, liver diseases, kidney injury, neurodegenerative diseases, cardiovascular diseases, and human tumors. It can be triggered by a variety of factors, such as tumor necrosis factor receptor and Toll‑like receptor families, intracellular DNA and RNA sensors, and interferon, and is mainly mediated by receptor‑interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain‑like protein. A better understanding of the mechanism of necroptosis may be useful in the development of novel drugs for necroptosis‑related diseases. In this review, the focus is on the molecular mechanisms of necroptosis, exploring the role of necroptosis in different pathologies, discussing their potential as a novel therapeutic target for disease therapy, and providing suggestions for further study in this area.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al: Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19:107–120. 2012. View Article : Google Scholar :

2 

Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J and Chan FK: The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 41:567–578. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1:489–495. 2000. View Article : Google Scholar

4 

He S, Wang L, Miao L, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N and Vandenabeele P: Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol. 35:2–13. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Upton JW, Kaiser WJ and Mocarski ES: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Oberst A and Green DR: It cuts both ways: Reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol. 12:757–763. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T and Mocarski ES: RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471:368–372. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar

13 

Sun X, Yin J, Starovasnik MA, Fairbrother WJ and Dixit VM: Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem. 277:9505–9511. 2002. View Article : Google Scholar

14 

Sun X, Lee J, Navas T, Baldwin DT, Stewart TA and Dixit VM: RIP3, a novel apoptosis-inducing kinase. J Biol Chem. 274:16871–16875. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Shan B, Pan H, Najafov A and Yuan J: Necroptosis in development and diseases. Genes Dev. 32:327–340. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Dillon CP, Tummers B, Baran K and Green DR: Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci. 73:2125–2136. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Hacker G: The morphology of apoptosis. Cell Tissue Res. 301:5–17. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Ch'en IL, Tsau JS, Molkentin JD, Komatsu M and Hedrick SM: Mechanisms of necroptosis in T cells. J Exp Med. 208:633–641. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J and Zheng L: Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol. 17:221–253. 1999. View Article : Google Scholar

20 

Chen D, Yu J and Zhang L: Necroptosis: An alternative cell death program defending against cancer. Biochim Biophys Acta. 1865:228–236. 2016.PubMed/NCBI

21 

He S, Huang S and Shen Z: Biomarkers for the detection of necroptosis. Cell Mol Life Sci. 73:2177–2181. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI

23 

Dong K, Zhu H, Song Z, Gong Y, Wang F, Wang W, Zheng Z, Yu Z, Gu Q, Xu X and Sun X: Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment. Am J Pathol. 181:1634–1641. 2012. View Article : Google Scholar : PubMed/NCBI

24 

McQuade T, Cho Y and Chan FK: Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis. Biochem J. 456:409–415. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su Y, Shen YY, Chen Y, Xiong B, Yang CH, et al: The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 5:e12782014. View Article : Google Scholar : PubMed/NCBI

27 

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Conrad M, Angeli JP, Vandenabeele P and Stockwell BR: Regulated necrosis: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 15:348–366. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, et al: RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 513:90–94. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Gonçalves A, Sze M, Gilbert B, Kourula S, et al: RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature. 513:95–99. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF and Becker C: Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature. 477:335–339. 2011. View Article : Google Scholar

32 

Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D, Bankovacki A, Anderton H, Metcalf D, O'Reilly L, Jost PJ, et al: cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood. 123:2562–2572. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A, Pasparakis M and Kelliher MA: Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA. 111:14436–14441. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, et al: RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 157:1175–1188. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157:1189–1202. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Matsuoka Y and Tsujimoto Y: Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death. Genes Cells. 20:11–28. 2015. View Article : Google Scholar

38 

Huang Z, Wu SQ, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, et al: RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe. 17:229–242. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ and Mocarski ES: Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem. 290:11635–11648. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH III, Ingram JP, Rodriguez DA, Kosoff R, Sharma S, Sturm O, et al: RIPK3 activates parallel pathways of MLKL-Driven necroptosis and FADD-Mediated apoptosis to protect against influenza a virus. Cell Host Microbe. 20:13–24. 2016. View Article : Google Scholar :

41 

Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, et al: A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature. 501:247–251. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X, et al: Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature. 501:242–246. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, et al: Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA. 111:7391–7396. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA, Zwack EE, Hu B, Fitzgerald L, Mauldin EA, Copenhaver AM, et al: Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci USA. 111:7385–7390. 2014. View Article : Google Scholar

45 

Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L and Sad S: Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol. 13:954–962. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Bleriot C and Lecuit M: The interplay between regulated necrosis and bacterial infection. Cell Mol Life Sci. 73:2369–2378. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Hu GQ, Yang YJ, Qin XX, Qi S, Zhang J, Yu SX, Du CT and Chen W: Salmonella outer protein B suppresses colitis development via protecting cell from necroptosis. Front Cell Infect Microbiol. 9:872019. View Article : Google Scholar :

48 

Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, Souto-Padron T, De Rosa MJ, Kelliher M, Golenbock D, et al: Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 119:2368–2375. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Yao Y, Liu M, Ren C, Shen J and Ji Y: Exogenous tumor necrosis factor-alpha could induce egress of Toxoplasma gondii from human foreskin fibroblast cells. Parasite. 24:452017. View Article : Google Scholar

50 

Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R and Wang Y: RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med. 44:771–786. 2019.PubMed/NCBI

51 

Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al: Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L and Kroemer G: Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology. 6:e12993022017. View Article : Google Scholar : PubMed/NCBI

53 

Feng X, Song Q, Yu A, Tang H, Peng Z and Wang X: Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma. 62:592–601. 2015. View Article : Google Scholar

54 

Moriwaki K, Bertin J, Gough PJ, Orlowski GM and Chan FK: Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6:e16362015. View Article : Google Scholar : PubMed/NCBI

55 

Li X, Guo J, Ding AP, Qi WW, Zhang PH, Lv J, Qiu WS and Sun ZQ: Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer. Technol Cancer Res Treat. 16:428–434. 2017. View Article : Google Scholar :

56 

Nugues AL, El Bouazzati H, Hetuin D, Berthon C, Loyens A, Bertrand E, Jouy N, Idziorek T and Quesnel B: RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis. 5:e13842014. View Article : Google Scholar : PubMed/NCBI

57 

Hockendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, et al: RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell. 30:75–91. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, Gough PJ, Feoktistova M and Leverkus M: Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6:e18842015. View Article : Google Scholar : PubMed/NCBI

59 

Ke H, Augustine CK, Gandham VD, Jin JY, Tyler DS, Akiyama SK, Hall RP and Zhang JY: CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and beta1-integrin signaling pathways. J Invest Dermatol. 133:221–229. 2013. View Article : Google Scholar

60 

McCormick KD, Ghosh A, Trivedi S, Wang L, Coyne CB, Ferris RL and Sarkar SN: Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis. 37:522–529. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Ertao Z, Jianhui C, Kang W, Zhijun Y, Hui W, Chuangqi C, Changjiang Q, Sile C, Yulong H and Shirong C: Prognostic value of mixed lineage kinase domain-like protein expression in the survival of patients with gastric caner. Tumour Biol. 37:13679–13685. 2016. View Article : Google Scholar : PubMed/NCBI

62 

He L, Peng K, Liu Y, Xiong J and Zhu FF: Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther. 6:1539–1543. 2013.PubMed/NCBI

63 

Ruan J, Mei L, Zhu Q, Shi G and Wang H: Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int J Clin Exp Pathol. 8:15035–15038. 2015.

64 

Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, Ramnarain DB, Xiao G, Saha D, Boothman DA, et al: The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res. 69:2809–2816. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, Jang JH, Nyunoya T, Amin S, Wang X and Lin Y: RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species. Carcinogenesis. 34:2119–2128. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH, et al: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 532:245–249. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Colbert LE, Fisher SB, Hardy CW, Hall WA, Saka B, Shelton JW, Petrova AV, Warren MD, Pantazides BG, Gandhi K, et al: Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer. 119:3148–3155. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Cabal-Hierro L and O'Dwyer PJ: TNF signaling through RIP1 kinase enhances SN38-Induced death in colon adenocarcinoma. Mol Cancer Res. 15:395–404. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Wu Y and Zhou BP: Inflammation: A driving force speeds cancer metastasis. Cell Cycle. 8:3267–3273. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Liu ZY, Wu B, Guo YS, Zhou YH, Fu ZG, Xu BQ, Li JH, Jing L, Jiang JL, Tang J and Chen ZN: Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res. 5:3174–3185. 2015.PubMed/NCBI

71 

Exner N, Lutz AK, Haass C and Winklhofer KF: Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 31:3038–3062. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L, et al: Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson's disease models. Cell Rep. 22:2066–2079. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Wu JR, Wang J, Zhou SK, Yang L, Yin JL, Cao JP and Cheng YB: Necrostatin-1 protection of dopaminergic neurons. Neural Regen Res. 10:1120–1124. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Amin P, Florez M, Najafov A, Pan H, Geng J, Ofengeim D, Dziedzic SA, Wang H, Barrett VJ, Ito Y, et al: Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFalpha-mediated apoptosis. Proc Natl Acad Sci USA. 115:E5944–E5953. 2018. View Article : Google Scholar

75 

Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, et al: Necroptosis activation in Alzheimer's disease. Nat Neurosci. 20:1236–1246. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X, Chen H, Zhu H, et al: RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci USA. 114:E8788–E8797. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, et al: RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 353:603–608. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, et al: Activation of necroptosis in multiple sclerosis. Cell Rep. 10:1836–1849. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Zhang S, Su Y, Ying Z, Guo D, Pan C, Guo J, Zou Z, Wang L, Zhang Z, Jiang Z, et al: RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc Natl Acad Sci USA. 116:5675–5680. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Roychowdhury S, McCullough RL, Sanz-Garcia C, Saikia P, Alkhouri N, Matloob A, Pollard KA, McMullen MR, Croniger CM and Nagy LE: Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 64:1518–1533. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Xu H, Du X, Liu G, Huang S, Du W, Zou S, Tang D, Fan C, Xie Y, Wei Y, et al: The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab. 23:14–23. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Saeed WK, Jun DW, Jang K, Ahn SB, Oh JH, Chae YJ, Lee JS and Kang HT: Mismatched effects of receptor interacting protein kinase-3 on hepatic steatosis and inflammation in non-alcoholic fatty liver disease. World J Gastroenterol. 24:5477–5490. 2018. View Article : Google Scholar

83 

Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C, Koppe C, Kreggenwinkel K, Schneider AT, Bartneck M, Neumann UP, et al: A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med. 6:1062–1074. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Gautheron J, Vucur M, Schneider AT, Severi I, Roderburg C, Roy S, Bartneck M, Schrammen P, Diaz MB, Ehling J, et al: The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 7:118692016. View Article : Google Scholar : PubMed/NCBI

85 

Afonso MB, Rodrigues PM, Carvalho T, Caridade M, Borralho P, Cortez-Pinto H, Castro RE and Rodrigues CM: Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond). 129:721–739. 2015. View Article : Google Scholar

86 

Roychowdhury S, McMullen MR, Pisano SG, Liu X and Nagy LE: Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 57:1773–1783. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM, Nawabi A, Komatsu M, Huang H and Ding WX: Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget. 7:17681–17698. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Jia Y, Wang F, Guo Q, Li M, Wang L, Zhang Z, Jiang S, Jin H, Chen A, Tan S, et al: Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol. 19:375–387. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Dal-Re R: Worldwide behavioral research on major global causes of mortality. Health Educ Behav. 38:433–440. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, et al: Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 124:3987–4003. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P, de Vries M, van Oosterhout AJ, et al: Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 310:L377–L386. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Wang Y, Zhou JS, Xu XC, Li ZY, Chen HP, Ying SM, Li W, Shen HH and Chen ZH: Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium. Int J Chron Obstruct Pulmon Dis. 13:571–581. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ and Hudson LD: Incidence and outcomes of acute lung injury. N Engl J Med. 353:1685–1693. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Syed MA, Shah D, Das P, Andersson S, Pryhuber G and Bhandari V: TREM-1 Attenuates RIPK3-mediated necroptosis in hyperoxia-induced lung injury in neonatal mice. Am J Respir Cell Mol Biol. 60:308–322. 2019. View Article : Google Scholar :

95 

Chen J, Wang S, Fu R, Zhou M, Zhang T, Pan W, Yang N and Huang Y: RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice. J Transl Med. 16:2332018. View Article : Google Scholar : PubMed/NCBI

96 

Siempos II, Ma KC, Imamura M, Baron RM, Fredenburgh LE, Huh JW, Moon JS, Finkelsztein EJ, Jones DS, Lizardi MT, et al: RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight. 3:e971022018. View Article : Google Scholar :

97 

Bolognese AC, Yang WL, Hansen LW, Denning NL, Nicastro JM, Coppa GF and Wang P: Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis. Surgery. Apr 27–2018.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

98 

Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, Sato N, Yoshida M, Tsubouchi K, Kurita Y, et al: Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 197:504–516. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR, Jang AS, Kim DJ, Minagawa S, Chin SS, Park CS, et al: Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 59:215–224. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Papi A, Brightling C, Pedersen SE and Reddel HK: Asthma. Lancet. 391:783–800. 2018. View Article : Google Scholar

101 

Cerps SC, Menzel M, Mahmutovic Persson I, Bjermer L, Akbarshahi H and Uller L: Interferon-beta deficiency at asthma exacerbation promotes MLKL mediated necroptosis. Sci Rep. 8:42482018. View Article : Google Scholar

102 

Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA and Gerlic M: Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J. 286:507–522. 2019. View Article : Google Scholar

103 

Zhang H, Ji J, Liu Q and Xu S: MUC1 downregulation promotes TNF-α-induced necroptosis in human bronchial epithelial cells via regulation of the RIPK1/RIPK3 pathway. J Cell Physiol. 234:15080–15088. 2019. View Article : Google Scholar :

104 

Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, et al: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA. 110:12024–12029. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, et al: Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 111:16836–16841. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U and Krautwald S: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81:751–761. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, Grigorescu M, Kulkarni OP, Popper B, Vielhauer V, et al: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 7:102742016. View Article : Google Scholar : PubMed/NCBI

108 

Tristao VR, Goncalves PF, Dalboni MA, Batista MC, Durao Mde S Jr and Monte JC: Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail. 34:373–377. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Linkermann A, Heller JO, Prokai A, Weinberg JM, De Zen F, Himmerkus N, Szabó AJ, Bräsen JH, Kunzendorf U and Krautwald S: The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol. 24:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, et al: A role for tubular necroptosis in Cisplatin-Induced AKI. J Am Soc Nephrol. 26:2647–2658. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Tristao VR, Pessoa EA, Nakamichi R, Reis LA, Batista MC, Durão Junior Mde S and Monte JC: Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis. 21:51–59. 2016. View Article : Google Scholar

112 

Zhu Y, Cui H, Gan H, Xia Y, Wang L, Wang Y and Sun Y: Necroptosis mediated by receptor interaction protein kinase 1 and 3 aggravates chronic kidney injury of subtotal nephrectomised rats. Biochem Biophys Res Commun. 461:575–581. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Chen H, Fang Y, Wu J, Chen H, Zou Z, Zhang X, Shao J and Xu Y: RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 9:8782018. View Article : Google Scholar : PubMed/NCBI

114 

McManus DD, Piacentine SM, Lessard D, Gore JM, Yarzebski J, Spencer FA and Goldberg RJ: Thirty-year (1975 to 2005) trends in the incidence rates, clinical features, treatment practices, and short-term outcomes of patients <55 years of age hospitalized with an initial acute myocardial infarction. Am J Cardiol. 108:477–482. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Lusis AJ: Atherosclerosis. Nature. 407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI

118 

Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI

119 

Henderson B, Revell PA and Edwards JC: Synovial lining cell hyperplasia in rheumatoid arthritis: Dogma and fact. Ann Rheum Dis. 47:348–349. 1988. View Article : Google Scholar : PubMed/NCBI

120 

Lee SH, Kwon JY, Kim SY, Jung K and Cho ML: Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep. 7:101332017. View Article : Google Scholar : PubMed/NCBI

121 

Jhun J, Lee SH, Kim SY, Ryu J, Kwon JY, Na HS, Jung K, Moon SJ, Cho ML and Min JK: RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis. J Transl Med. 17:842019. View Article : Google Scholar : PubMed/NCBI

122 

Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Riegger J and Brenner RE: Evidence of necroptosis in osteoarthritic disease: Investigation of blunt mechanical impact as possible trigger in regulated necrosis. Cell Death Dis. 10:6832019. View Article : Google Scholar : PubMed/NCBI

124 

Galluzzi L, Kepp O, Chan FK and Kroemer G: Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol. 12:103–130. 2017. View Article : Google Scholar

125 

Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V and Altucci L: The role of necroptosis: Biological relevance and its involvement in cancer. Cancers (Basel). 13:6842021. View Article : Google Scholar

126 

Martens S, Hofmans S, Declercq W, Augustyns K and Vandenabeele P: Inhibitors Targeting RIPK1/RIPK3: Old and new drugs. Trends Pharmacol Sci. 41:209–224. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A and Balachandran S: Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA. 110:E3109–E3118. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Bollino D, Balan I and Aurelian L: Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem. 133:174–186. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Kim HJ, Hwang KE, Park DS, Oh SH, Jun HY, Yoon KH, Jeong ET, Kim HR and Kim YS: Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 15:1232017. View Article : Google Scholar : PubMed/NCBI

130 

Zhou J, Li G, Han G, Feng S, Liu Y, Chen J, Liu C, Zhao L and Jin F: Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway. Invest New Drugs. 38:50–59. 2020. View Article : Google Scholar

131 

Li Y, Tian X, Liu X and Gong P: Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-mediated RIP1/RIP3/PARP-1 pathways. Carcinogenesis. 39:700–707. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, Jing L and Sun X: Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med. 16:2012018. View Article : Google Scholar : PubMed/NCBI

133 

Fakharnia F, Khodagholi F, Dargahi L and Ahmadiani A: Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion. J Mol Neurosci. 61:52–60. 2017. View Article : Google Scholar

134 

Ding J, Yang N, Yan Y, Wang Y, Wang X, Lu L and Dong K: Rapamycin inhibited photoreceptor necroptosis and protected the retina by activation of autophagy in experimental retinal detachment. Curr Eye Res. 44:739–745. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Yan C, Oh JS, Yoo SH, Lee JS, Yoon YG, Oh YJ, Jang MS, Lee SY, Yang J, Lee SH, et al: The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. Toxicol Appl Pharmacol. 266:9–18. 2013. View Article : Google Scholar

136 

Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X and Shen Z: Natural Product Kongensin A is a Non-Canonical HSP90 Inhibitor that Blocks RIP3-dependent Necroptosis. Cell Chem Biol. 23:257–266. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Zhang Z, Li HM, Zhou C, Li Q, Ma L, Zhang Z, Sun Y, Wang L, Zhang X, Zhu B, et al: Non-benzoquinone geldanamycin analogs trigger various forms of death in human breast cancer cells. J Exp Clin Cancer Res. 35:1492016. View Article : Google Scholar : PubMed/NCBI

138 

Chen WW, Yu H, Fan HB, Zhang CC, Zhang M, Zhang C, Cheng Y, Kong J, Liu CF, Geng D and Xu X: RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen-glucose deprivation combined with zVAD in primary cortical neurons. J Neurochem. 120:70–77. 2012. View Article : Google Scholar

139 

Qu C, Yuan ZW, Yu XT, Huang YF, Yang GH, Chen JN, Lai XP, Su ZR, Zeng HF, Xie Y and Zhang XJ: Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism. Pharmacol Res. 121:70–82. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Fauster A, Rebsamen M, Huber KV, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, et al: A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 6:e17672015. View Article : Google Scholar : PubMed/NCBI

141 

Harris PA, Marinis JM, Lich JD, Berger SB, Chirala A, Cox JA, Eidam PM, Finger JN, Gough PJ, Jeong JU, et al: Identification of a RIP1 Kinase Inhibitor Clinical Candidate (GSK3145095) for the treatment of pancreatic cancer. ACS Med Chem Lett. 10:857–862. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Ali M and Mocarski ES: Proteasome inhibition blocks necroptosis by attenuating death complex aggregation. Cell Death Dis. 9:3462018. View Article : Google Scholar : PubMed/NCBI

143 

Martens S, Jeong M, Tonnus W, Feldmann F, Hofmans S, Goossens V, Takahashi N, Bräsen JH, Lee EW, Van der Veken P, et al: Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death Dis. 8:e29042017. View Article : Google Scholar : PubMed/NCBI

144 

von Mässenhausen A, Tonnus W, Himmerkus N, Parmentier S, Saleh D, Rodriguez D, Ousingsawat J, Ang RL, Weinberg JM, Sanz AB, et al: Phenytoin inhibits necroptosis. Cell Death Dis. 9:3592018. View Article : Google Scholar : PubMed/NCBI

145 

Wang J, Li Y, Huang WH, Zeng XC, Li XH, Li J, Zhou J, Xiao J, Xiao B, Ouyang DS and Hu K: The protective effect of aucubin from eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis. Am J Chin Med. 45:557–573. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Meng XM, Li HD, Wu WF, Ming-Kuen Tang P, Ren GL, Gao L, Li XF, Yang Y, Xu T, Ma TT, et al: Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis. Lab Invest. 98:79–94. 2018. View Article : Google Scholar

147 

Nehs MA, Lin CI, Kozono DE, Whang EE, Cho NL, Zhu K, Moalem J, Moore FD Jr and Ruan DT: Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery. 150:1032–1039. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Oliver Metzig M, Fuchs D, Tagscherer KE, Gröne HJ, Schirmacher P and Roth W: Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene. 35:3399–3409. 2016. View Article : Google Scholar

149 

Choi MJ, Kang H, Lee YY, Choo OS, Jang JH, Park SH, Moon JS, Choi SJ and Choung YH: Cisplatin-Induced ototoxicity in rats is driven by RIP3-Dependent necroptosis. Cells. 8:4092019. View Article : Google Scholar :

150 

Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A, et al: Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 5:e11496732016. View Article : Google Scholar : PubMed/NCBI

151 

Basit F, Cristofanon S and Fulda S: Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20:1161–1173. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Deng Q, Yu X, Xiao L, Hu Z, Luo X, Tao Y, Yang L, Liu X, Chen H, Ding Z, et al: Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis. 4:e8042013. View Article : Google Scholar : PubMed/NCBI

153 

Lin CY, Chang TW, Hsieh WH, Hung MC, Lin IH, Lai SC and Tzeng YJ: Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov. 2:160652016. View Article : Google Scholar : PubMed/NCBI

154 

Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Grootjans S, Vanden Berghe T and Vandenabeele P: Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 24:1184–1195. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Upton JW, Kaiser WJ and Mocarski ES: Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 7:302–313. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Pan T, Wu S, He X, Luo H, Zhang Y, Fan M, Geng G, Ruiz VC, Zhang J, Mills L, et al: Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLoS One. 9:e939442014. View Article : Google Scholar : PubMed/NCBI

158 

Berger AK and Danthi P: Reovirus activates a caspase-independent cell death pathway. mBio. 4:e00178–00113. 2013. View Article : Google Scholar : PubMed/NCBI

159 

Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B and Lenardo MJ: A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 278:51613–51621. 2003. View Article : Google Scholar : PubMed/NCBI

160 

Shrestha A, Mehdizadeh Gohari I and McClane BA: RIP1, RIP3, and MLKL contribute to cell death caused by clostridium perfringens enterotoxin. mBio. 10:e02985–19. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Roca FJ and Ramakrishnan L: TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 153:521–534. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, Wachtel S, Bueno S and Prince A: Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog. 11:e10048202015. View Article : Google Scholar : PubMed/NCBI

163 

Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI, Pollard J, Feldstein AE and Nagy LE: Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl4-induced fibrosis but not steatosis or inflammation. Alcohol Clin Exp Res. 36:1139–1147. 2012. View Article : Google Scholar : PubMed/NCBI

164 

Lu C, Xu W, Zhang F, Shao J and Zheng S: Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm. 13:4043–4053. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J and Rodrigues CM: Activation of necroptosis in human and experimental cholestasis. Cell Death Dis. 7:e23902016. View Article : Google Scholar : PubMed/NCBI

166 

Choi HS, Kang JW and Lee SM: Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res. 166:292–303. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Harris PA, Berger SB, Jeong JU, Nagilla R, Bandyopadhyay D, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, et al: Discovery of a First-in-Class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 60:1247–1261. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai W, Cheng J, Leng X, Hu X and Ao Y: The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 47: 89, 2021.
APA
Dai, W., Cheng, J., Leng, X., Hu, X., & Ao, Y. (2021). The potential role of necroptosis in clinical diseases (Review). International Journal of Molecular Medicine, 47, 89. https://doi.org/10.3892/ijmm.2021.4922
MLA
Dai, W., Cheng, J., Leng, X., Hu, X., Ao, Y."The potential role of necroptosis in clinical diseases (Review)". International Journal of Molecular Medicine 47.5 (2021): 89.
Chicago
Dai, W., Cheng, J., Leng, X., Hu, X., Ao, Y."The potential role of necroptosis in clinical diseases (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 89. https://doi.org/10.3892/ijmm.2021.4922
Copy and paste a formatted citation
x
Spandidos Publications style
Dai W, Cheng J, Leng X, Hu X and Ao Y: The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 47: 89, 2021.
APA
Dai, W., Cheng, J., Leng, X., Hu, X., & Ao, Y. (2021). The potential role of necroptosis in clinical diseases (Review). International Journal of Molecular Medicine, 47, 89. https://doi.org/10.3892/ijmm.2021.4922
MLA
Dai, W., Cheng, J., Leng, X., Hu, X., Ao, Y."The potential role of necroptosis in clinical diseases (Review)". International Journal of Molecular Medicine 47.5 (2021): 89.
Chicago
Dai, W., Cheng, J., Leng, X., Hu, X., Ao, Y."The potential role of necroptosis in clinical diseases (Review)". International Journal of Molecular Medicine 47, no. 5 (2021): 89. https://doi.org/10.3892/ijmm.2021.4922
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team