Uncarboxylated osteocalcin reverses the high glucose‑induced inhibition of the osteogenic differentiation of MC3T3E1 cells via the GPRC6A/cAMP/PKA/AMPK signaling pathway

  • Authors:
    • Luyao Ma
    • Fangzi Gong
    • Jiaojiao Xu
    • Jianhong Yang
  • View Affiliations

  • Published online on: March 29, 2021     https://doi.org/10.3892/ijmm.2021.4924
  • Article Number: 91
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diabetic osteoporosis is a serious complication of diabetes affecting human bones. Uncarboxylated osteocalcin (GluOC), a small molecular protein specifically synthesized and secreted from osteoblasts, is of importance in regulating energy metabolism. In previous studies, the authors demonstrated that high glucose inhibited osteoblastic differentiation, but promoted adipocytic differentiation. GluOC promoted osteogenic and inhibited adipogenic differentiation under high glucose conditions. However, the corresponding receptors and signaling pathways through which GluOC exerts its effects on MC3T3E1 cells remain elusive. Thus, in the present study, Cell Counting kit‑8 assays and western blot analysis were performed to assess the proliferation of MC3T3E1 cells. Alizarin Red S or Oil Red O staining, as well as reverse transcription‑quantitative PCR analysis were performed to examine osteogenic and adipogenic differentiation. The cells were transfected with short interfering RNA or inhibitors to investigate the possible signaling pathways involved. The results revealed that G‑protein coupled receptor, class C, group 6, subtype A (GPRC6A) receptor expression was markedly increased following the addition of GluOC to the MC3T3E1 cells. GPRC6A silencing decreased osteogenic gene expression, while it increased adipogenic gene expression. Furthermore, GluOC promoted osteoblast differentiation via the subsequent activation of the cyclic AMP (cAMP)/protein kinase A(PKA)/AMP‑activated protein kinase (AMPK) signaling pathway in MC3T3E1 cells. On the whole, the results of the present study suggest that GluOC reverses the high glucose‑induced inhibition of osteogenic differentiation via the GPRC6A/cAMP/PKA/AMPK signaling pathway in MC3T3E1 cells, and thus may prove to be beneficial in the treatment of diabetic osteoporosis.
View Figures
View References

Related Articles

Journal Cover

May-2021
Volume 47 Issue 5

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Ma L, Gong F, Xu J and Yang J: Uncarboxylated osteocalcin reverses the high glucose‑induced inhibition of the osteogenic differentiation of MC3T3E1 cells via the GPRC6A/cAMP/PKA/AMPK signaling pathway. Int J Mol Med 47: 91, 2021
APA
Ma, L., Gong, F., Xu, J., & Yang, J. (2021). Uncarboxylated osteocalcin reverses the high glucose‑induced inhibition of the osteogenic differentiation of MC3T3E1 cells via the GPRC6A/cAMP/PKA/AMPK signaling pathway. International Journal of Molecular Medicine, 47, 91. https://doi.org/10.3892/ijmm.2021.4924
MLA
Ma, L., Gong, F., Xu, J., Yang, J."Uncarboxylated osteocalcin reverses the high glucose‑induced inhibition of the osteogenic differentiation of MC3T3E1 cells via the GPRC6A/cAMP/PKA/AMPK signaling pathway". International Journal of Molecular Medicine 47.5 (2021): 91.
Chicago
Ma, L., Gong, F., Xu, J., Yang, J."Uncarboxylated osteocalcin reverses the high glucose‑induced inhibition of the osteogenic differentiation of MC3T3E1 cells via the GPRC6A/cAMP/PKA/AMPK signaling pathway". International Journal of Molecular Medicine 47, no. 5 (2021): 91. https://doi.org/10.3892/ijmm.2021.4924