|
1
|
Schimpl A and Wecker E: Replacement of T
cell function by a T cell product. Nat New Biol. 237:15–17. 1972.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hirano T: Revisiting the 1986 molecular
cloning of interleukin 6. Front Immunol. 5:4562014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hirano T, Taga T, Nakano N, Yasukawa K,
Kashiwamura S, Shimizu K, Nakajima K, Pyun KH and Kishimoto T:
Purification to homogeneity and characterization of human B-cell
differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA.
82:5490–5494. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sehgal PB, Grieninger G and Tosato G:
Regulation of the acute phase and immune responses: Interleukin-6.
Ann N Y Acad Sci. 557:1–583. 1989.
|
|
5
|
Sehgal PB, Zilberstein A, Ruggieri RM, May
LT, Ferguson-Smith A, Slate DL, Revel M and Ruddle FH: Human
chromosome 7 carries the beta 2 interferon gene. Proc Natl Acad Sci
USA. 83:5219–5222. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sutherland GR, Baker E, Callen DF, Hyland
VJ, Wong G, Clark S, Jones SS, Eglinton LK, Shannon MF, Lopez AF,
et al: Interleukin 4 is at 5q31 and interleukin 6 is at 7p15. Hum
Genet. 79:335–337. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Somers W, Stahl M and Seehra JS: 1.9 A
crystal structure of interleukin 6: Implications for a novel mode
of receptor dimerization and signaling. EMBO J. 16:989–997. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhou L, Zheng Y, Tian T, Liu K, Wang M,
Lin S, Deng Y, Dai C, Xu P, Hao Q, et al: Associations of
interleukin-6 gene polymorphisms with cancer risk: Evidence based
on 49,408 cancer cases and 61,790 controls. Gene. 670:136–147.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Simpson RJ, Hammacher A, Smith DK,
Matthews JM and Ward LD: Interleukin-6: Structure-function
relationships. Protein Sci. 6:929–955. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hirano T: Interleukin 6 and its receptor:
Ten years later. Int Rev Immunol. 16:249–284. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hunter CA and Jones SA: IL-6 as a keystone
cytokine in health and disease. Nat Immunol. 16:448–457. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sumikawa H, Fukuhara K, Suzuki E, Matsuo Y
and Nishikawa K: Tertiary structural models for human interleukin-6
and evaluation by a sequence-structure compatibility method and NMR
experimental information. FEBS Lett. 404:234–240. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Heinrich PC, Castell JV and Andus T:
Interleukin-6 and the acute phase response. Biochem J. 265:621–636.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bazan JF: Structural design and molecular
evolution of a cytokine receptor superfamily. Proc Natl Acad Sci
USA. 87:6934–6938. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sakakibara S and Tosato G: Viral
Interleukin-6: Role in Kaposi's sarcoma-associated herpesvirus:
Associated malignancies. J Interferon Cytokine Res. 31:791–801.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yamasaki K, Taga T, Hirata Y, Yawata H,
Kawanishi Y, Seed B, Taniguchi T, Hirano T and Kishimoto T: Cloning
and expression of the human interleukin-6 (BSF-2/IFN beta 2)
receptor. Science. 241:825–828. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hibi M, Murakami M, Saito M, Hirano T,
Taga T and Kishimoto T: Molecular cloning and expression of an IL-6
signal transducer, gp130. Cell. 63:1149–1157. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kluck PM, Wiegant J, Jansen RP, Bolk MW,
Raap AK, Willemze R and Landegent JE: The human interleukin-6
receptor alpha chain gene is localized on chromosome 1 band q21.
Hum Genet. 90:542–544. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rodriguez C, Grosgeorge J, Nguyen VC,
Gaudray P and Theillet C: Human gp130 transducer chain gene (IL6ST)
is localized to chromosome band 5q11 and possesses a pseudogene on
chromosome band 17p11. Cytogenet Cell Genet. 70:64–67. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Taga T, Hibi M, Hirata Y, Yamasaki K,
Yasukawa K, Matsuda T, Hirano T and Kishimoto T: Interleukin-6
triggers the association of its receptor with a possible signal
transducer, gp130. Cell. 58:573–581. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Boulanger MJ, Chow DC, Brevnova EE and
Garcia KC: Hexameric structure and assembly of the
interleukin-6/IL-6 alpha-receptor/gp130 complex. Science.
300:2101–2104. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lacroix M, Rousseau F, Guilhot F, Malinge
P, Magistrelli G, Herren S, Jones SA, Jones GW, Scheller J,
Lissilaa R, et al: Novel insights into interleukin 6 (IL-6) Cis-
and trans-signaling pathways by differentially manipulating the
assembly of the IL-6 signaling complex. J Biol Chem.
290:26943–26953. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Trovato MC, Andronico D, Sciacchitano S,
Ruggeri RM, Picerno I, Di Pietro A and Visalli G: Nanostructures:
Between natural environment and medical practice. Rev Environ
Health. 33:295–307. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Weidle UH, Klostermann S, Eggle D and
Krüger A: Interleukin 6/interleukin 6 receptor interaction and its
role as a therapeutic target for treatment of cachexia and cancer.
Cancer Genomics Proteomics. 7:287–302. 2010.PubMed/NCBI
|
|
25
|
Heinrich PC, Behrmann I, Haan S, Hermanns
HM, Müller-Newen G and Schaper F: Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J.
374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Scheller J, Chalaris A, Schmidt-Arras D
and Rose-John S: The pro- and anti-inflammatory properties of the
cytokine inter-leukin-6. Biochim Biophys Acta. 1813:878–888. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
An Y, Furber KL and Ji S: Pseudogenes
regulate parental gene expression via ceRNA network. J Cell Mol
Med. 21:185–192. 2017. View Article : Google Scholar
|
|
28
|
Kuscuoglu D, Janciauskiene S, Hamesch K,
Haybaeck J, Trautwein C and Strnad P: Liver-master and servant of
serum proteome. J Hepatol. 69:512–524. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tuck AC and Tollervey D: A
transcriptome-wide atlas of RNP composition reveals diverse classes
of mRNAs and lncRNAs. Cell. 154:996–1009. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
St Laurent G, Wahlestedt C and Kapranov P:
The landscape of long noncoding RNA classification. Trends Genet.
31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pink RC, Wicks K, Caley DP, Punch EK,
Jacobs L and Carter DR: Pseudogenes: Pseudo-functional or key
regulators in health and disease? RNA. 17:792–798. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
van Rij RP and Andino R: The silent
treatment: RNAi as a defense against virus infection in mammals.
Trends Biotechnol. 24:186–193. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lavra L, Ulivieri A, Dominici R, Trovato
MC, Bartolazzi A, Soddu S and Sciacchitano S: Analysis of the role
of p53 and galectin-3 in proliferation and apoptosis of thyroid
carcinoma cell lines by specific RNA interference experiments.
Biomed Pharmacother. 60:4912006. View Article : Google Scholar
|
|
35
|
Cecchinelli B, Lavra L, Rinaldo C,
Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F,
Trovato M, Piaggio G, et al: Repression of the antiapoptotic
molecule Galectin-3 by homeodomain-interacting protein kinase
2-activated p53 is required for p53-Induced apoptosis. Mol Cell
Biol. 26:4746–4757. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bautista RR, Gómez AO, Miranda AH, Dehesa
AZ, Villarreal-Garza C, Ávila-Moreno F and Arrieta O: Correction
to: Long non-coding RNAs: Implications in targeted diagnoses,
prognosis, and improved therapeutic strategies in human non- and
triple-negative breast cancer. Clin Epigenetics. 10:1062018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hosseinahli N, Aghapour M, Duijf PHG and
Baradaran B: Treating cancer with microRNA replacement therapy: A
literature review. J Cell Physiol. 233:5574–5588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Huang HC, Yu HR, Hsu TY, Chen IL, Huang
HC, Chang JC and Yang KD: MicroRNA-142-3p and let-7g negatively
regulates augmented IL-6 production in neonatal polymorphonuclear
leukocytes. Int J Biol Sci. 13:690–700. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liao YC, Wang YS, Guo YC, Lin WL, Chang MH
and Juo SH: Let-7g improves multiple endothelial functions through
targeting transforming growth factor-beta and SIRT-1 signaling. J
Am Coll Cardiol. 63:1685–1694. 2014. View Article : Google Scholar
|
|
40
|
Johnson CD, Esquela-Kerscher A, Stefani G,
Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J,
Shingara J, et al: The let-7 MicroRNA represses cell proliferation
pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gao X, Xu W, Lu T, Zhou J, Ge X and Hua D:
MicroRNA-142-3p promotes cellular invasion of colorectal cancer
cells by activation of RAC1. Technol Cancer Res Treat.
17:15330338187905082018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sun Y, Varambally S, Maher CA, Cao Q,
Chockley P, Toubai T, Malter C, Nieves E, Tawara I, Wang Y, et al:
Targeting of microRNA-142-3p in dendritic cells regulates
endotoxin-induced mortality. Blood. 117:6172–6183. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sung SY, Liao CH, Wu HP, Hsiao WC, Wu IH,
Jinpu Yu, Lin SH and Hsieh CL: Loss of let-7 microRNA upregulates
IL-6 in bone marrow-derived mesenchymal stem cells triggering a
reactive stromal response to prostate cancer. PLoS One.
8:e716372013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Selzner N, Selzner M, Odermatt B, Tian Y,
Van Rooijen N and Clavien PA: ICAM-1 triggers liver regeneration
through leukocyte recruitment and Kupffer cell-dependent release of
TNF-alpha/IL-6 in mice. Gastroenterology. 124:692–700. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yoshiya S, Shirabe K, Imai D, Toshima T,
Yamashita Y, Ikegami T, Okano S, Yoshizumi T, Kawanaka H and
Maehara Y: Blockade of the apelin-APJ system promotes mouse liver
regeneration by activating Kupffer cells after partial hepatectomy.
J Gastroenterol. 50:573–582. 2015. View Article : Google Scholar
|
|
46
|
Kishimoto T: Interleukin-6: From basic
science to medicine-40 years in immunology. Annu Rev Immunol.
23:1–21. 2005. View Article : Google Scholar
|
|
47
|
Papanicolaou DA and Vgontzas AN:
Interleukin-6: The endocrine cytokine. J Clin Endocrinol Metab.
85:1331–1333. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ruggeri RM, Sciacchitano S, Vitale A,
Cardelli P, Galletti M, Vitarelli E, Barresi G, Benvenga S,
Trimarchi F and Trovato M: Serum hepatocyte growth factor is
increased in hashimoto's thyroiditis whether or not associated with
nodular goiter as compared with healthy non goitrous individuals. J
Endocrinol Invest. 32:465–469. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Trovato M, Ruggeri RM, Sciacchitano S,
Vicchio TM, Picerno I, Pellicanò G, Valenti A and Visalli G: Serum
interleukin-6 levels are increased in HIV-infected patients that
develop autoimmune disease during long-term follow-up.
Immunobiology. 223:264–268. 2018. View Article : Google Scholar
|
|
50
|
Ruggeri RM, Villari D, Simone A, Scarfi R,
Attard M, Orlandi F, Barresi G, Trimarchi F, Trovato M and Benvenga
S: Co-expression of interleukin-6 (IL-6) and interleukin-6 receptor
(IL-6R) in thyroid nodules is associated with co-expression of CD30
ligand/CD30 receptor. J Endocrinol Invest. 25:959–966. 2002.
View Article : Google Scholar
|
|
51
|
Trovato M, Grosso M, Vitarelli E, Ruggeri
RM, Alesci S, Trimarchi F, Barresi G and Benvenga S: Distinctive
expression of STAT3 in papillary thyroid carcinomas and a subset of
follicular adenomas. Histol Histopathol. 18:393–399.
2003.PubMed/NCBI
|
|
52
|
Ruggeri RM, Barresi G, Sciacchitano S,
Trimarchi F, Benvenga S and Trovato M: Immunoexpression of the CD30
ligand/CD30 and IL-6/IL-6R signals in thyroid autoimmune diseases.
Histol Histopathol. 21:249–256. 2006.
|
|
53
|
Trovato M: A historical excursus of
diagnostic methods for Hashimoto thyroiditis and Graves' disease.
Gazz Med Ital Arch Sci Med. 179:479–485. 2020. View Article : Google Scholar
|
|
54
|
Elsabahy M and Wooley KL: Cytokines as
biomarkers of nanoparticle immunotoxicity. Chem Soc Rev.
42:5552–5576. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Visalli G, Baluce B, Bertuccio M, Picerno
I and Di Pietro A: Mitochondrial-Mediated apoptosis pathway in
alveolar epithelial cells exposed to the metals in
Combustion-Generated particulate matter. J Toxicol Environ Health
A. 78:697–709. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Visalli G, Facciolà A, Iannazzo D, Piperno
A, Pistone A and Di Pietro A: The role of the iron catalyst in the
toxicity of multi-walled carbon nanotubes (MWCNTs). J Trace Elem
Med Biol. 43:153–160. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Visalli G, Currò M, Iannazzo D, Pistone A,
Pruiti Ciarello M, Acri G, Testagrossa B, Bertuccio MP, Squeri R
and Di Pietro A: In vitro assessment of neurotoxicity and
neuroinflammation of homemade MWCNTs. Environ Toxicol Pharmacol.
56:121–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Visalli G, Facciolà A, Currò M, Laganà P,
La Fauci V, Iannazzo D, Pistone A and Di Pietro A: Mitochondrial
impairment induced by sub-chronic exposure to multi-walled carbon
nanotubes. Int J Environ Res Public Health. 16:7922019. View Article : Google Scholar :
|
|
59
|
Facciolà A, Visalli G, La Maestra S,
Ceccarelli M, D'Aleo F, Nunnari G, Pellicanò GF and Di Pietro A:
Carbon nanotubes and central nervous system: Environmental risks,
toxicological aspects and future perspectives. Environ Toxicol
Pharmacol. 65:23–30. 2019. View Article : Google Scholar
|
|
60
|
Palomäki J, Välimäki E, Sund J, Vippola M,
Clausen PA, Jensen KA, Savolainen K, Matikainen S and Alenius H:
Long, needle-like carbon nanotubes and asbestos activate the NLRP3
inflammasome through a similar mechanism. ACS Nano. 5:6861–6870.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Neagu M, Constantin C, Popescu ID, Zipeto
D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA
and Tsatsakis AM: Inflammation and metabolism in cancer
cell-mitochondria key player. Front Oncol. 9:3482019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Arnoldussen YJ, Skogstad A, Skaug V, Kasem
M, Haugen A, Benker N, Weinbruch S, Apte RN and Zienolddiny S:
Involvement of IL-1 genes in the cellular responses to carbon
nanotube exposure. Cytokine. 73:128–137. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Migliore L, Uboldi C, Di Bucchianico S and
Coppedè F: Nanomaterials and neurodegeneration. Environ Mol
Mutagen. 56:149–170. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bardi G, Nunes A, Gherardini L, Bates K,
Al-Jamal KT, Gaillard C, Prato M, Bianco A, Pizzorusso T and
Kostarelos K: Functionalized carbon nanotubes in the brain:
Cellular internalization and neuroinflammatory responses. PLoS One.
8:e809642013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bussy C, Al-Jamal KT, Boczkowski J, Lanone
S, Prato M, Bianco A and Kostarelos K: Microglia determine brain
region-specific neurotoxic responses to chemically functionalized
carbon nanotubes. ACS Nano. 9:7815–7830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rothaug M, Becker-Pauly C and Rose-John S:
The role of inter-leukin-6 signaling in nervous tissue. Biochim
Biophys Acta. 1863:1218–1227. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hu J, Feng X, Valdearcos M, Lutrin D,
Uchida Y, Koliwad SK and Maze M: Interleukin-6 is both necessary
and sufficient to produce perioperative neurocognitive disorder in
mice. Br J Anaesth. 120:537–545. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Fenga C, Gangemi S, Di Salvatore V,
Falzone L and Libra M: Immunological effects of occupational
exposure to lead (Review). Mol Med Rep. 15:3355–3360. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gangemi S, Gofita E, Costa C, Teodoro M,
Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF,
Spandidos DA and Fenga C: Occupational and environmental exposure
to pesticides and cytokine pathways in chronic diseases (Review).
Int J Mol Med. 38:1012–1020. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shahpiri Z, Bahramsoltani R, Hosein
Farzaei M, Farzaei F and Rahimi R: Phytochemicals as future drugs
for Parkinson's disease: A comprehensive review. Rev Neurosci.
27:651–668. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ardah MT, Bharathan G, Kitada T and Haque
ME: Ellagic acid prevents dopamine neuron degeneration from
oxidative stress and neuroinflammation in MPTP Model of Parkinson's
disease. Biomolecules. 10:15192020. View Article : Google Scholar
|
|
72
|
Gadient RA and Otten U: Expression of
interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in
rat brain during postnatal development. Brain Res. 637:10–14. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Marsland AL, Gianaros PJ, Abramowitch SM,
Manuck SB and Hariri AR: Interleukin-6 covaries inversely with
hippocampal grey matter volume in middle-aged adults. Biol
Psychiatry. 64:484–490. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
MacQueen GM, Campbell S, McEwen BS,
Macdonald K, Amano S, Joffe RT, Nahmias C and Young LT: Course of
illness, hippocampal function, and hippocampal volume in major
depression. Proc Natl Acad Sci USA. 100:1387–1392. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Baune BT, Konrad C, Grotegerd D, Suslow T,
Birosova E, Ohrmann P, Bauer J, Arolt V, Heindel W, Domschke K, et
al: Interleukin-6 gene (IL-6): A possible role in brain morphology
in the healthy adult brain. J Neuroinflammation. 9:1252012.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Campbell IL, Abraham CR, Masliah E, Kemper
P, Inglis JD, Oldstone MB and Mucke L: Neurologic disease induced
in transgenic mice by cerebral overexpression of interleukin 6.
Proc Natl Acad Sci USA. 90:10061–10065. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Campbell IL, Erta M, Lim SL, Frausto R,
May U, Rose-John S, Scheller J and Hidalgo J: Trans-signaling is a
dominant mechanism for the pathogenic actions of interleukin-6 in
the brain. J Neurosci. 34:2503–2513. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chucair-Elliott AJ, Conrady C, Zheng M,
Kroll CM, Lane TE and Carr DJ: Microglia-induced IL-6 protects
against neuronal loss following HSV-1 infection of neural
progenitor cells. Glia. 62:1418–1434. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chomarat P, Banchereau J, Davoust J and
Palucka AK: IL-6 switches the differentiation of monocytes from
dendritic cells to macrophages. Nat Immunol. 1:510–514. 2000.
View Article : Google Scholar
|
|
80
|
Urashima M, Chauhan D, Hatziyanni M, Ogata
A, Hollenbaugh D, Aruffo A and Anderson KC: CD40 ligand triggers
interleukin-6 mediated B cell differentiation. Leuk Res.
20:507–515. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang R, Masters AR, Fortner KA, Champagne
DP, Yanguas-Casás N, Silberger DJ, Weaver CT, Haynes L and Rincon
M: IL-6 promotes the differentiation of a subset of naive CD8+ T
cells into IL-21-producing B helper CD8+ T cells. J Exp Med.
213:2281–2291. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Diehl S and Rincón M: The two faces of
IL-6 on Th1/Th2 differentiation. Mol Immunol. 39:531–536. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gubernatorova EO, Gorshkova EA, Polinova
AI and Drutskaya MS: IL-6: Relevance for immunopathology of
SARS-CoV-2. Cytokine Growth Factor Rev. 53:13–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng
X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV
on the epithelial cells of oral mucosa. Int J Oral Sci. 12:82020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rose-John S, Winthrop K and Calabrese L:
The role of IL-6 in host defence against infections: Immunobiology
and clinical implications. Nat Rev Rheumatol. 13:399–409. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang
H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological
features of severe and moderate coronavirus disease 2019. J Clin
Invest. 130:2620–2629. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ruan Q, Yang K, Wang W, Jiang L and Song
J: Clinical predictors of mortality due to COVID-19 based on an
analysis of data of 150 patients from Wuhan, China. Intensive Care
Med. 46:846–848. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Abbasifard M and Khorramdelazad H: The
bio-mission of interleukin-6 in the pathogenesis of COVID-19: A
brief look at potential therapeutic tactics. Life Sci.
257:1180972020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Coomes EA and Haghbayan H: Interleukin-6
in Covid-19: A systematic review and meta-analysis. Rev Med Virol.
30:1–9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang J, Hao Y, Ou W, Ming F, Liang G,
Qian Y, Cai Q, Dong S, Hu S, Wang W and Wei S: Serum interleukin-6
is an indicator for severity in 901 patients with SARS-CoV-2
infection: A cohort study. J Transl Med. 18:4062020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Herold T, Jurinovic V, Arnreich C,
Hellmuth JC, von Bergwelt-Baildon M, Klein M and Weinberger T:
Level of IL-6 predicts respiratory failure in hospitalized
symptomatic COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.04.01.20047381.
Accessed April 27, 2020.
|
|
92
|
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z,
Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk
factors for mortality of adult inpatients with COVID-19 in Wuhan,
China: A retrospective cohort study. Lancet. 395:1054–1062. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Atal S and Fatima Z: IL-6 Inhibitors in
the treatment of serious COVID-19: A promising therapy? Pharmaceut
Med. 34:223–231. 2020.PubMed/NCBI
|
|
94
|
Xu X, Han M, Li T, Sun W, Wang D, Fu B,
Zhou Y, Zheng X, Yang Y, Li X, et al: Effective treatment of severe
COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA.
117:10970–10975. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fu B, Xu X and Wei H: Why tocilizumab
could be an effective treatment for severe COVID-19? J Transl Med.
18:1642020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Toniati P, Piva S, Cattalini M, Garrafa E,
Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf
EA, et al: Tocilizumab for the treatment of severe COVID-19
pneumonia with hyperinflammatory syndrome and acute respiratory
failure: A single center study of 100 patients in Brescia, Italy.
Autoimmun Rev. 19:1025682020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Issa N, Dumery M, Guisset O, Mourissoux G,
Bonnet F and Camou F: Feasibility of tocilizumab in ICU patients
with COVID-19. J Med Virol. 93:46–47. 2021. View Article : Google Scholar
|
|
98
|
Alattar R, Ibrahim TBH, Shaar SH, Abdalla
S, Shukri K, Daghfal JN, Khatib MY, Aboukamar M, Abukhattab M,
Alsoub HA, et al: Tocilizumab for the treatment of severe
coronavirus disease 2019. J Med Virol. 92:2042–2049. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Della-Torre E, Campochiaro C, Cavalli G,
De Luca G, Napolitano A, La Marca S, Boffini N, Da Prat V, Di
Terlizzi G, Lanzillotta M, et al: Interleukin-6 blockade with
sarilumab in severe COVID-19 pneumonia with systemic
hyperinflammation: An open-label cohort study. Ann Rheum Dis.
79:1277–1285. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Benucci M, Giannasi G, Cecchini P, Gobbi
FL, Damiani A, Grossi V, Infantino M and Manfredi M: COVID-19
pneumonia treated with sarilumab: A clinical series of eight
patients. J Med Virol. 92:2368–2370. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Palanques-Pastor T, López-Briz E and
Poveda Andrés JL: Involvement of interleukin 6 in SARS-CoV-2
infection: Siltuximab as a therapeutic option against COVID-19. Eur
J Hosp Pharm. 27:297–298. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gritti G, Raimondi F, Ripamonti D, Riva I,
Landi F, Alborghetti L, Frigeni M, Damiani M, Micò C, Fagiuoli S,
et al: Use of siltuximab in patients with COVID-19 pneumonia
requiring ventilatory support. medRxiv. https://doi.org/10.1101/2020.04.01.20048561.
|
|
103
|
Vaidya G, Czer LSC, Kobashigawa J,
Kittleson M, Patel J, Chang D, Kransdorf E, Shikhare A, Tran H, Vo
A, et al: Successful treatment of severe COVID-19 pneumonia with
clazakizumab in a heart transplant recipient: A case report.
Transplant Proc. 52:2711–2714. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Stelzer G, Rosen R, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The GeneCards suite: From gene data mining to disease genome
sequence analysis. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33.
2016. View
Article : Google Scholar
|
|
105
|
Hunt SE, McLaren W, Gil L, Thormann A,
Schuilenburg H, Sheppard D, Parton A, Armean IM, Trevanion SJ,
Flicek P and Cunningham F: Ensembl variation resources. Database
(Oxford). 2018:bay1192018. View Article : Google Scholar
|