|
1
|
Levin LR and Buck J: Physiological roles
of acid-base sensors. Annu Rev Physiol. 77:347–362. 2015.
View Article : Google Scholar
|
|
2
|
Cheng YR, Jiang BY and Chen CC:
Acid-sensing ion channels: Dual function proteins for chemo-sensing
and mechano-sensing. J Biomed Sci. 25:462018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Deval E and Lingueglia E: Acid-Sensing Ion
Channels and nociception in the peripheral and central nervous
systems. Neuropharmacology. 94:49–57. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chu XP and Xiong ZG: Physiological and
pathological functions of acid-sensing ion channels in the central
nervous system. Curr Drug Targets. 13:263–271. 2012. View Article : Google Scholar :
|
|
5
|
Page AJ, Brierley SM, Martin CM, Price MP,
Symonds E, Butler R, Wemmie JA and Blackshaw LA: Different
contributions of ASIC channels 1a, 2, and 3 in gastrointestinal
mechanosensory function. Gut. 54:1408–1415. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dong X, Ko KH, Chow J, Tuo B, Barrett KE
and Dong H: Expression of acid-sensing ion channels in intestinal
epithelial cells and their role in the regulation of duodenal
mucosal bicarbonate secretion. Acta Physiol (Oxf). 201:97–107.
2011. View Article : Google Scholar
|
|
7
|
Jones RC III, Otsuka E, Wagstrom E, Jensen
CS, Price MP and Gebhart GF: Short-term sensitization of colon
mechanoreceptors is associated with long-term hypersensitivity to
colon distention in the mouse. Gastroenterology. 133:184–194. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen X, Sun X, Wang Z, Zhou X, Xu L, Li F,
Zhang X, Pan J, Qi L, Qian H and Mao Z: Involvement of acid-sensing
ion channel 1a in gastric carcinoma cell migration and invasion.
Acta Biochim Biophys Sin (Shanghai). 50:440–446. 2018. View Article : Google Scholar
|
|
9
|
Krishtal OA and Pidoplichko VI: A receptor
for protons in the nerve cell membrane. Neuroscience. 5:2325–2327.
1980. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Waldmann R, Champigny G, Bassilana F,
Heurteaux C and Lazdunski M: A proton-gated cation channel involved
in acid-sensing. Nature. 386:173–177. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Garty H and Palmer LG: Epithelial sodium
channels: Function, structure, and regulation. Physiol Rev.
77:359–396. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Waldmann R and Lazdunski M: H (+)-gated
cation channels: Neuronal acid sensors in the NaC/DEG family of ion
channels. Curr Opin Neurobiol. 8:418–424. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kellenberger S and Schild L: Epithelial
sodium channel/degenerin family of ion channels: A variety of
functions for a shared structure. Physiol Rev. 2:735–767. 2002.
View Article : Google Scholar
|
|
14
|
Benos DJ and Stanton BA: Functional
domains within the degenerin/epithelial sodium channel (Deg/ENaC)
super-family of ion channels. J Physiol. 520(Pt 3): 631–644. 1999.
View Article : Google Scholar
|
|
15
|
Kellenberger S and Schild L: International
union of basic and clinical pharmacology. XCI. structure, function,
and pharmacology of acid-sensing ion channels and the epithelial
Na+ channel. Pharmacol Rev. 67:1–35. 2015. View Article : Google Scholar
|
|
16
|
Sherwood TW, Frey EN and Askwith CC:
Structure and activity of the acid-sensing ion channels. Am J
Physiol Cell Physiol. 303:C699–C710. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Grunder S and Chen X: Structure, function,
and pharmacology of acid-sensing ion channels (ASICs): Focus on
ASIC1a. Int J Physiol Pathophysiol Pharmacol. 2:73–94.
2010.PubMed/NCBI
|
|
18
|
Jasti J, Furukawa H, Gonzales EB and
Gouaux E: Structure of acid-sensing ion channel 1 at 1.9 A
resolution and low pH. Nature. 449:316–323. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gonzales EB, Kawate T and Gouaux E: Pore
architecture and ion sites in acid-sensing ion channels and P2X
receptors. Nature. 460:599–604. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Krishtal O: The ASICs: Signaling
molecules? modulators? Trends Neurosci. 26:477–483. 2003.
View Article : Google Scholar
|
|
21
|
Wemmie JA, Taugher RJ and Kreple CJ:
Acid-sensing ion channels in pain and disease. Nat Rev Neurosci.
14:461–471. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Holzer P: Acid-sensing ion channels in
gastrointestinal function. Neuropharmacology. 94:72–79. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wemmie JA, Price MP and Welsh MJ:
Acid-sensing ion channels: Advances, questions and therapeutic
opportunities. Trends Neurosci. 29:578–586. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Holzer P: Acid-sensitive ion channels and
receptors. Handb Exp Pharmacol. 283–332. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sherwood TW, Lee KG, Gormley MG and
Askwith CC: Heteromeric acid-sensing ion channels (ASICs) composed
of ASIC2b and ASIC1a display novel channel properties and
contribute to acidosis-induced neuronal death. J Neurosci.
31:9723–9734. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Waldmann R, Bassilana F, de Weille J,
Champigny G, Heurteaux C and Lazdunski M: Molecular cloning of a
non-inactivating proton-gated Na+ channel specific for sensory
neurons. J Biol Chem. 272:20975–20978. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F,
Liu H, Jiang H and Xu TL: A nonproton ligand sensor in the
acid-sensing ion channel. Neuron. 68:61–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Noel J, Salinas M, Baron A, Diochot S,
Deval E and Lingueglia E: Current perspectives on acid-sensing ion
channels: New advances and therapeutic implications. Expert Rev
Clin Pharmacol. 3:331–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Diochot S, Salinas M, Baron A, Escoubas P
and Lazdunski M: Peptides inhibitors of acid-sensing ion channels.
Toxicon. 49:271–284. 2007. View Article : Google Scholar
|
|
30
|
Wemmie JA, Askwith CC, Lamani E, Cassell
MD, Freeman JH Jr and Welsh MJ: Acid-sensing ion channel 1 is
localized in brain regions with high synaptic density and
contributes to fear conditioning. J Neurosci. 23:5496–5502. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen CC and Zimmer A, Sun WH, Hall J,
Brownstein MJ and Zimmer A: A role for ASIC3 in the modulation of
high-intensity pain stimuli. Proc Natl Acad Sci USA. 99:8992–8997.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Baron A, Voilley N, Lazdunski M and
Lingueglia E: Acid sensing ion channels in dorsal spinal cord
neurons. J Neurosci. 28:1498–1508. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu LJ, Duan B, Mei YD, Gao J, Chen JG,
Zhuo M, Xu L, Wu M and Xu TL: Characterization of acid-sensing ion
channels in dorsal horn neurons of rat spinal cord. J Biol Chem.
279:43716–43724. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Su X, Li Q, Shrestha K, Cormet-Boyaka E,
Chen L, Smith PR, Sorscher EJ, Benos DJ, Matalon S and Ji HL:
Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis
transmembrane conductance regulator. J Biol Chem. 281:36960–36968.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jahr H, van Driel M, van Osch GJ, Weinans
H and van Leeuwen JP: Identification of acid-sensing ion channels
in bone. Biochem Biophys Res Commun. 337:349–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Richter TA, Dvoryanchikov GA, Roper SD and
Chaudhari N: Acid-sensing ion channel-2 is not necessary for sour
taste in mice. J Neurosci. 24:4088–4091. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Grifoni SC, Jernigan NL, Hamilton G and
Drummond HA: ASIC proteins regulate smooth muscle cell migration.
Microvasc Res. 75:202–210. 2008. View Article : Google Scholar
|
|
38
|
Berdiev BK, Xia J, McLean LA, Markert JM,
Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL, et
al: Acid-sensing ion channels in malignant gliomas. J Biol Chem.
278:15023–15034. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen CC, England S, Akopian AN and Wood
JN: A sensory neuron-specific, proton-gated ion channel. Proc Natl
Acad Sci USA. 95:10240–10245. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Page AJ, Brierley SM, Martin CM,
Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T,
Lewin GR, Welsh MJ and Blackshaw LA: The ion channel ASIC1
contributes to visceral but not cutaneous mechanoreceptor function.
Gastroenterology. 127:1739–1747. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu L and Simon SA: Acidic stimuli
activates two distinct pathways in taste receptor cells from rat
fungiform papillae. Brain Res. 923:58–70. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tan ZY, Lu Y, Whiteis CA, Benson CJ,
Chapleau MW and Abboud FM: Acid-sensing ion channels contribute to
transduction of extracellular acidosis in rat carotid body glomus
cells. Circ Res. 101:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ugawa S, Inagaki A, Yamamura H, Ueda T,
Ishida Y, Kajita K, Shimizu H and Shimada S: Acid-sensing ion
channel-1b in the stereocilia of mammalian cochlear hair cells.
Neuroreport. 17:1235–1239. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Garcia-Anoveros J, Derfler B,
Neville-Golden J, Hyman BT and Corey DP: BNaC1 and BNaC2 constitute
a new family of human neuronal sodium channels related to
degenerins and epithelial sodium channels. Proc Natl Acad Sci USA.
94:1459–1464. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lingueglia E, de Weille JR, Bassilana F,
Heurteaux C, Sakai H, Waldmann R and Lazdunski M: A modulatory
subunit of acid sensing ion channels in brain and dorsal root
ganglion cells. J Biol Chem. 272:29778–29783. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Price MP, Lewin GR, McIlwrath SL, Cheng C,
Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ,
Drummond HA, et al: The mammalian sodium channel BNC1 is required
for normal touch sensation. Nature. 407:1007–1011. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hughes PA, Brierley SM, Young RL and
Blackshaw LA: Localization and comparative analysis of acid-sensing
ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic
sensory neurons within thoracolumbar dorsal root ganglia. J Comp
Neurol. 500:863–875. 2007. View Article : Google Scholar
|
|
48
|
Ettaiche M, Guy N, Hofman P, Lazdunski M
and Waldmann R: Acid-sensing ion channel 2 is important for retinal
function and protects against light-induced retinal degeneration. J
Neurosci. 24:1005–1012. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lilley S, LeTissier P and Robbins J: The
discovery and characterization of a proton-gated sodium current in
rat retinal ganglion cells. J Neurosci. 24:1013–1022. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Brockway LM, Zhou ZH, Bubien JK, Jovov B,
Benos DJ and Keyser KT: Rabbit retinal neurons and glia express a
variety of ENaC/DEG subunits. Am J Physiol Cell Physiol.
283:C126–C134. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Peng BG, Ahmad S, Chen S, Chen P, Price MP
and Lin X: Acid-sensing ion channel 2 contributes a major component
to acid-evoked excitatory responses in spiral ganglion neurons and
plays a role in noise susceptibility of mice. J Neurosci.
24:10167–10175. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Huang C, Hu ZL, Wu WN, Yu DF, Xiong QJ,
Song JR, Shu Q, Fu H, Wang F and Chen JG: Existence and distinction
of acid-evoked currents in rat astrocytes. Glia. 58:1415–1424.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu XW, Hu ZL, Ni M, Fang P, Zhang PW, Shu
Q, Fan H, Zhou HY, Ni L, Zhu LQ, et al: Acid-sensing ion channels
promote the inflammation and migration of cultured rat microglia.
Glia. 63:483–496. 2015. View Article : Google Scholar
|
|
54
|
Ugawa S, Yamamoto T, Ueda T, Ishida Y,
Inagaki A, Nishigaki M and Shimada S: Amiloride-Insensitive
currents of the acid-sensing ion Channel-2a (ASIC2a)/ASIC2b
heteromeric sour-taste receptor channel. J Neurosci. 23:3616–3622.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Delaunay A, Gasull X, Salinas M, Noël J,
Friend V, Lingueglia E and Deval E: Human ASIC3 channel dynamically
adapts its activity to sense the extracellular pH in both acidic
and alkaline directions. Proc Natl Acad Sci USA. 109:13124–13129.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Voilley N, de Weille J, Mamet J and
Lazdunski M: Nonsteroid Anti-Inflammatory Drugs Inhibit Both the
Activity and the Inflammation-Induced Expression of Acid-Sensing
Ion Channels in Nociceptors. J Neurosci. 21:8026–8033. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Price MP, McIlwrath SL, Xie J, Cheng C,
Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR and Welsh MJ: The
DRASIC cation channel contributes to the detection of cutaneous
touch and acid stimuli in mice. Neuron. 32:1071–1083. 2001.
View Article : Google Scholar
|
|
58
|
Dusenkova S, Ru F, Surdenikova L,
Nassenstein C, Hatok J, Dusenka R, Banovcin P Jr, Kliment J, Tatar
M and Kollarik M: The expression profile of acid-sensing ion
channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3
in the esophageal vagal afferent nerve subtypes. Am J Physiol
Gastrointest Liver Physiol. 307:G922–G930. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Babinski K, Le KT and Seguela P: Molecular
cloning and regional distribution of a human proton receptor
subunit with biphasic functional properties. J Neurochem. 72:51–57.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ettaiche M, Deval E, Pagnotta S, Lazdunski
M and Lingueglia E: Acid-sensing ion channel 3 in retinal function
and survival. Invest Ophthalmol Vis Sci. 50:2417–2426. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ikeuchi M, Kolker SJ, Burnes LA, Walder RY
and Sluka KA: Role of ASIC3 in the primary and secondary
hyperalgesia produced by joint inflammation in mice. Pain.
137:662–669. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kolker SJ, Walder RY, Usachev Y, Hillman
J, Boyle DL, Firestein GS and Sluka KA: Acid-sensing ion channel 3
expressed in type B synoviocytes and chondrocytes modulates
hyaluronan expression and release. Ann Rheum Dis. 69:903–909. 2010.
View Article : Google Scholar
|
|
63
|
Meng QY, Wang W, Chen XN, Xu TL and Zhou
JN: Distribution of acid-sensing ion channel 3 in the rat
hypothalamus. Neuroscience. 159:1126–1134. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang SJ, Yang WS, Lin YW, Wang HC and
Chen CC: Increase of insulin sensitivity and reversal of
age-dependent glucose intolerance with inhibition of ASIC3. Biochem
Biophys Res Commun. 371:729–734. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sole-Magdalena A, Revuelta EG,
Menénez-Díaz I, Calavia MG, Cobo T, García-Suárez O, Pérez-Piñera
P, De Carlos F, Cobo J and Vega JA: Human odontoblasts express
transient receptor protein and acid-sensing ion channel
mechanosensor proteins. Microsc Res Tech. 74:457–463. 2011.
View Article : Google Scholar
|
|
66
|
Hildebrand MS, de Silva MG, Klockars T,
Rose E, Price M, Smith RJ, McGuirt WT, Christopoulos H, Petit C and
Dahl HH: Characterisation of DRASIC in the mouse inner ear. Hear
Res. 190:149–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Grunder S, Geissler HS, Bassler EL and
Ruppersberg JP: A new member of acid-sensing ion channels from
pituitary gland. Neuroreport. 11:1607–1611. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Friese MA, Craner MJ, Etzensperger R,
Vergo S, Wemmie JA, Welsh MJ, Vincent A and Fugger L: Acid-sensing
ion channel-1 contributes to axonal degeneration in autoimmune
inflammation of the central nervous system. Nat Med. 13:1483–1489.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
69
|
Omerbasic D, Schuhmacher LN, Bernal Sierra
YA, Smith ES and Lewin GR: ASICs and mammalian mechanoreceptor
function. Neuropharmacology. 94:80–86. 2015. View Article : Google Scholar
|
|
70
|
Deval E, Gasull X, Noël J, Salinas M,
Baron A, Diochot S and Lingueglia E: Acid-sensing ion channels
(ASICs): Pharmacology and implication in pain. Pharmacol Ther.
128:549–558. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vann KT and Xiong ZG: Acid-sensing ion
channel 1 contributes to normal olfactory function. Behav Brain
Res. 337:246–251. 2018. View Article : Google Scholar
|
|
72
|
Ettaiche M, Deval E, Cougnon M, Lazdunski
M and Voilley N: Silencing acid-sensing ion channel 1a alters
cone-mediated retinal function. J Neurosci. 26:5800–5809. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wemmie JA, Chen J, Askwith CC,
Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T,
Freeman JH Jr and Welsh MJ: The acid-activated ion channel ASIC
contributes to synaptic plasticity, learning, and memory. Neuron.
34:463–477. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yermolaieva O, Leonard AS, Schnizler MK,
Abboud FM and Welsh MJ: Extracellular acidosis increases neuronal
cell calcium by activating acid-sensing ion channel 1a. Proc Natl
Acad Sci USA. 101:6752–6757. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wemmie JA, Coryell MW, Askwith CC, Lamani
E, Leonard AS, Sigmund CD and Welsh MJ: Overexpression of
acid-sensing ion channel 1a in transgenic mice increases acquired
fear-related behavior. Proc Natl Acad Sci USA. 101:3621–3626. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F,
Arias RL, Rosenzweig-Lipson S, Dunlop J and Beyer CE: Acid sensing
ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in
preclinical pharmacological models. Psychopharmacology (Berl).
203:41–52. 2009. View Article : Google Scholar
|
|
77
|
Gibbons DD, Kutschke WJ, Weiss RM and
Benson CJ: Heart failure induces changes in acid-sensing ion
channels in sensory neurons innervating skeletal muscle. J Physiol.
593:4575–4587. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Storozhuk M, Cherninskyi A, Maximyuk O,
Isaev D and Krishtal O: Acid-sensing ion channels: Focus on
physiological and some pathological roles in the brain. Curr
Neuropharmacol. 19:1570–1589. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lee CY, Huang TJ, Wu MH, Li YY and Lee KD:
High expression of acid-sensing ion channel 2 (ASIC2) in bone cells
in osteoporotic vertebral fractures. Biomed Res Int.
2019:47142792019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan
LM, Tan YX, Ji SP, Liang YM and Gong F: The acid-sensing ion
channel, ASIC2, promotes invasion and metastasis of colorectal
cancer under acidosis by activating the calcineurin/NFAT1 axis. J
Exp Clin Cancer Res. 36:1302017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Holzer P: Acid sensing by visceral
afferent neurones. Acta Physiol (Oxf). 201:63–75. 2011. View Article : Google Scholar
|
|
82
|
Kang JY and Yap I: Acid and gastric ulcer
pain. J Clin Gastroenterol. 13:514–516. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dang K, Bielfeldt K, Lamb K and Gebhart
GF: Gastric ulcers evoke hyperexcitability and enhance P2X receptor
function in rat gastric sensory neurons. J Neurophysiol.
93:3112–3119. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sugiura T, Dang K, Lamb K, Bielefeldt K
and Gebhart GF: Acid-sensing properties in rat gastric sensory
neurons from normal and ulcerated stomach. J Neurosci.
25:2617–2627. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Krishtal OA and Pidoplichko VI: A receptor
for protons in the membrane of sensory neurons may participate in
nociception. Neuroscience. 6:2599–2601. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Schicho R, Florian W, Liebmann I, Holzer P
and Lippe IT: Increased expression of TRPV1 receptor in dorsal root
ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci.
19:1811–1818. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bielefeldt K and Davis BM: Differential
effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation
in mice. Am J Physiol Gastrointest Liver Physiol. 294:G130–G138.
2008. View Article : Google Scholar
|
|
88
|
Leffler A, Monter B and Koltzenburg M: The
role of the capsaicin receptor TRPV1 and acid-sensing ion channels
(ASICS) in proton sensitivity of subpopulations of primary
nociceptive neurons in rats and mice. Neuroscience. 139:699–709.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Page AJ, Martin CM and Blackshaw LA: Vagal
mechanoreceptors and chemoreceptors in mouse stomach and esophagus.
J Neurophysiol. 87:2095–2103. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Brierley SM, Jones RC III, Gebhart GF and
Blackshaw LA: Splanchnic and pelvic mechanosensory afferents signal
different qualities of colonic stimuli in mice. Gastroenterology.
127:166–178. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ruan N, Tribble J, Peterson AM, Jiang Q,
Wang JQ and Chu XP: Acid-sensing ion channels and mechanosensation.
Int J Mol Sci. 22:48102021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bohlen CJ, Chesler AT, Sharif-Naeini R,
Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL,
Basbaum AI and Julius D: A heteromeric Texas coral snake toxin
targets acid-sensing ion channels to produce pain. Nature.
479:410–414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kang S, Jang JH, Price MP, Gautam M,
Benson CJ, Gong H, Welsh MJ and Brennan TJ: Simultaneous disruption
of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous
mechanosensitivity. PLoS One. 7:e352252012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lamb K, Kang YM, Gebhart GF and Bielefeldt
K: Gastric inflammation triggers hypersensitivity to acid in awake
rats. Gastroenterology. 125:1410–1418. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wultsch T, Painsipp E, Shahbazian A,
Mitrovic M, Edelsbrunner M, Lazdunski M, Waldmann R and Holzer P:
Deletion of the acid-sensing ion channel ASIC3 prevents
gastritis-induced acid hyperresponsiveness of the stomach-brainstem
axis. Pain. 134:245–253. 2008. View Article : Google Scholar
|
|
96
|
Matricon J, Muller E, Accarie A, Meleine
M, Etienne M, Voilley N, Busserolles J, Eschalier A, Lazdunski M,
Bourdu S, et al: Peripheral contribution of NGF and ASIC1a to
colonic hypersensitivity in a rat model of irritable bowel
syndrome. Neurogastroenterol Motil. 25:e740–e754. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bourdu S, Dapoigny M, Chapuy E, Artigue F,
Vasson MP, Dechelotte P, Bommelaer G, Eschalier A and Ardid D:
Rectal instillation of butyrate provides a novel clinically
relevant model of noninflammatory colonic hypersensitivity in rats.
Gastroenterology. 128:1996–2008. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Matricon J, Gelot A, Etienne M, Lazdunski
M, Muller E and Ardid D: Spinal cord plasticity and acid-sensing
ion channels involvement in a rodent model of irritable bowel
syndrome. Eur J Pain. 15:335–343. 2011. View Article : Google Scholar
|
|
99
|
Miwa H, Kondo T, Oshima T, Fukui H, Tomita
T and Watari J: Esophageal sensation and esophageal
hypersensitivity-overview from bench to bedside. J
Neurogastroenterol Motil. 16:353–362. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Guarino MP, Cheng L, Ma J, Harnett K,
Biancani P, Altomare A, Panzera F, Behar J and Cicala M: Increased
TRPV1 gene expression in esophageal mucosa of patients with
non-erosive and erosive reflux disease. Neurogastroenterol Motil.
22:746–751 e219. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Omori M, Yokoyama M, Matsuoka Y, Kobayashi
H, Mizobuchi S, Itano Y, Morita K and Ichikawa H: Effects of
selective spinal nerve ligation on acetic acid-induced nociceptive
responses and ASIC3 immunoreactivity in the rat dorsal root
ganglion. Brain Res. 1219:26–31. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Staniland AA and McMahon SB: Mice lacking
acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show
increased pain behaviour in the formalin test. Eur J Pain.
13:554–563. 2009. View Article : Google Scholar
|
|
103
|
Yang M, Li ZS, Chen DF, Zou DW, Xu XR,
Fang DC, Xu GM, Stephens RL and Wang ZG: Quantitative assessment
and characterization of visceral hyperalgesia evoked by esophageal
balloon distention and acid perfusion in patients with functional
heartburn, nonerosive reflux disease, and erosive esophagitis. Clin
J Pain. 26:326–331. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Han X, Zhang Y, Lee A, Li Z, Gao J, Wu X,
Zhao J, Wang H, Chen D, Zou D and Owyang C: Upregulation of acid
sensing ion channels is associated with esophageal hypersensitivity
in GERD. FASEB J. 36:e220832022. View Article : Google Scholar
|
|
105
|
Webb BA, Chimenti M, Jacobson MP and
Barber DL: Dysregulated pH: A perfect storm for cancer progression.
Nat Rev Cancer. 11:671–677. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Jin C, Ye QH, Yuan FL, Gu YL, Li JP, Shi
YH, Shen XM, Bo-Liu and Lin ZH: Involvement of acid-sensing ion
channel 1alpha in hepatic carcinoma cell migration and invasion.
Tumour Biol. 36:4309–4317. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jin C, Yuan FL, Gu YL, Li X, Liu MF, Shen
XM, Liu B and Zhu MQ: Over-expression of ASIC1a promotes
proliferation via activation of the β-catenin/LEF-TCF axis and is
associated with disease outcome in liver cancer. Oncotarget.
8:25977–25988. 2017. View Article : Google Scholar
|
|
108
|
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang
F and Liu CF: ASICs mediate the modulatory effect by paeoniflorin
on α-synuclein autophagic degradation. Brain Res. 1396:77–87. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhou RP, Wu XS, Wang ZS, Xie YY, Ge JF and
Chen FH: Novel insights into acid-sensing ion channels:
Implications for degenerative diseases. Aging Dis. 7:491–501. 2015.
View Article : Google Scholar
|
|
110
|
Zhang Q, Wu S, Zhu J, Chai D and Gan H:
Down-regulation of ASIC1 suppressed gastric cancer via inhibiting
autophagy. Gene. 608:79–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lee UE and Friedman SL: Mechanisms of
hepatic fibrogenesis. Best Pract Res Clin Gastroenterol.
25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wu FR, Pan CX, Rong C, Xia Q, Yuan FL,
Tang J, Wang XY, Wang N, Ni WL and Chen FH: Inhibition of
acid-sensing ion channel 1a in hepatic stellate cells attenuates
PDGF-induced activation of HSCs through MAPK pathway. Mol Cell
Biochem. 395:199–209. 2014. View Article : Google Scholar
|
|
113
|
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L,
Zhang J, Liu Y, Zuo L, Meng X, et al: ASIC1a regulates
miR-350/SPRY2 by N6 -methyladenosine to promote liver
fibrosis. FASEB J. 34:14371–14388. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
de Bie P, van de Sluis B, Burstein E, van
de Berghe PV, Muller P, Berger R, Gitlin JD, Wijmenga C and Klomp
LW: Distinct Wilson's disease mutations in ATP7B are associated
with enhanced binding to COMMD1 and reduced stability of ATP7B.
Gastroenterology. 133:1316–1326. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kong L, Huang H, Luan S, Liu H, Ye M and
Wu F: Inhibition of ASIC1a-Mediated ERS improves the activation of
HSCs and copper transport under copper load. Front Pharmacol.
12:6532722021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yu LX and Schwabe RF: The gut microbiome
and liver cancer: Mechanisms and clinical translation. Nat Rev
Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Andersen AP, Moreira JM and Pedersen SF:
Interactions of ion transporters and channels with cancer cell
metabolism and the tumour microenvironment. Philos Trans R Soc Lond
B Biol Sci. 369:201300982014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Javle MM, Gibbs JF, Iwata KK, Pak Y,
Rutledge P, Yu J, Black JD, Tan D and Khoury T:
Epithelial-mesenchymal transition (EMT) and activated extracellular
signal-regulated kinase (p-Erk) in surgically resected pancreatic
cancer. Ann Surg Oncol. 14:3527–3533. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
von Burstin J, Eser S, Paul MC, Seidler B,
Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, et
al: E-cadherin regulates metastasis of pancreatic cancer in vivo
and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex.
Gastroenterology. 137:361–371. 371.e1–5. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Deng S, Zhu S, Wang B, Li X, Liu Y, Qin Q,
Gong Q, Niu Y, Xiang C, Chen J, et al: Chronic pancreatitis and
pancreatic cancer demonstrate active epithelial-mesenchymal
transition profile, regulated by miR-217-SIRT1 pathway. Cancer
Lett. 355:184–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Peppicelli S, Bianchini F, Torre E and
Calorini L: Contribution of acidic melanoma cells undergoing
epithelial-to-mesenchymal transition to aggressiveness of
non-acidic melanoma cells. Clin Exp Metastasis. 31:423–433. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Deng S, Li X, Niu Y, Zhu S, Jin Y, Deng S,
Chen J, Liu Y, He C, Yin T, et al: MiR-652 inhibits acidic
microenvironment-induced epithelial-mesenchymal transition of
pancreatic cancer cells by targeting ZEB1. Oncotarget.
6:39661–39675. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li
X, Chen JY, Jin Y, Hu ZL, Wang F, et al: ASIC1 and ASIC3 contribute
to acidity-induced EMT of pancreatic cancer through activating
Ca2+/RhoA pathway. Cell Death Dis. 8:e28062017.
View Article : Google Scholar
|
|
124
|
Prevarskaya N, Skryma R and Shuba Y:
Calcium in tumour metastasis: New roles for known actors. Nat Rev
Cancer. 11:609–618. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Jaffe AB and Hall A: Rho GTPases:
Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gulhati P, Bowen KA, Liu J, Stevens PD,
Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T and Evers
BM: mTORC1 and mTORC2 regulate EMT, motility, and metastasis of
colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res.
71:3246–3256. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fernandez-Tenorio M, Porras-González C,
Castellano A, Del Valle-Rodríguez A, López-Barneo J and Ureña J:
Metabotropic regulation of RhoA/Rho-associated kinase by L-type
Ca2+ channels: New mechanism for depolarization-evoked mammalian
arterial contraction. Circ Res. 108:1348–1357. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Fais S, De Milito A, You H and Qin W:
Targeting vacuolar H+-ATPases as a new strategy against cancer.
Cancer Res. 67:10627–10630. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chen JL, Lucas JE, Schroeder T, Mori S, Wu
J, Nevins J, Dewhirst M, West M and Chi JT: The genomic analysis of
lactic acidosis and acidosis response in human cancers. PLoS Genet.
4:e10002932008. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Moellering RE, Black KC, Krishnamurty C,
Baggett BK, Stafford P, Rain M, Gatenby RA and Gillies RJ: Acid
treatment of melanoma cells selects for invasive phenotypes. Clin
Exp Metastasis. 25:411–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J,
Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg
JM, Sloane BF, et al: Acidity generated by the tumor
microenvironment drives local invasion. Cancer Res. 73:1524–1535.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Fukumura D, Xu L, Chen Y, Gohongi T, Seed
B and Jain RK: Hypoxia and acidosis independently up-regulate
vascular endothelial growth factor transcription in brain tumors in
vivo. Cancer Res. 61:6020–6024. 2001.PubMed/NCBI
|
|
133
|
Peuker K, Muff S, Wang J, Künzel S, Bosse
E, Zeissig Y, Luzzi G, Basic M, Strigli A, Ulbricht A, et al:
Epithelial calcineurin controls microbiota-dependent intestinal
tumor development. Nat Med. 22:506–515. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chuvpilo S, Jankevics E, Tyrsin D,
Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan
B, Feoktistova E, König T, et al: Autoregulation of NFATc1/A
expression facilitates effector T cells to escape from rapid
apoptosis. Immunity. 16:881–895. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Weigmann B, Lehr HA, Yancopoulos G,
Valenzuela D, Murphy A, Stevens S, Schmidt J, Galle PR, Rose-John S
and Neurath MF: The transcription factor NFATc2 controls
IL-6-dependent T cell activation in experimental colitis. J Exp
Med. 205:2099–2110. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Gerlach K, Daniel C, Lehr HA, Nikolaev A,
Gerlach T, Atreya R, Rose-John S, Neurath MF and Weigmann B:
Transcription factor NFATc2 controls the emergence of colon cancer
associated with IL-6-dependent colitis. Cancer Res. 72:4340–4350.
2012. View Article : Google Scholar : PubMed/NCBI
|