Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2022 Volume 50 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2022 Volume 50 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment

  • Authors:
    • Yung-Chieh Chang
    • Min-Chieh Shieh
    • Yen-Hsuan Chang
    • Wei-Lun Huang
    • Wu-Chou Su
    • Fong-Yu Cheng
    • Chun Hei Antonio Cheung
  • View Affiliations / Copyright

    Affiliations: Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C., Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 600566, Taiwan, R.O.C., Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C., Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C., Department of Chemistry, College of Sciences, Chinese Culture University, Taipei 111396, Taiwan, R.O.C.
    Copyright: © Chang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 102
    |
    Published online on: June 14, 2022
       https://doi.org/10.3892/ijmm.2022.5158
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer cells can acquire resistance to targeted therapeutic agents when the designated targets or their downstream signaling molecules develop protein conformational or activity changes. There is an increasing interest in developing poly‑pharmacologic anticancer agents to target multiple oncoproteins or signaling pathways in cancer cells. The microRNA 125a‑5p (miR‑125a‑5p) is a tumor suppressor, and its expression has frequently been downregulated in tumors. By contrast, the anti‑apoptotic molecule BIRC5/SURVIVIN is highly expressed in tumors but not in the differentiated normal tissues. In the present study, the development of a BIRC5 gene promoter‑driven, miR‑125a‑5p expressing, poly‑L‑lysine‑conjugated magnetite iron poly‑pharmacologic nanodrug (pL‑MNP‑pSur‑125a) was reported. The cancer cells self‑activating property and the anticancer effects of this nanodrug were examined in both the multidrug efflux protein ABCB1/MDR1‑expressing/‑non‑expressing cancer cells in vitro and in vivo. It was demonstrated that pL‑MNP‑pSur‑125a decreased the expression of ERBB2/HER2, HDAC5, BIRC5, and SP1, which are hot therapeutic targets for cancer in vitro. Notably, pL‑MNP‑pSur‑125a also downregulated the expression of TDO2 in the human KB cervical carcinoma cells. PL‑MNP‑pSur‑125a decreased the viability of various BIRC5‑expressing cancer cells, regardless of the tissue origin or the expression of ABCB1, but not of the human BIRC5‑non‑expressing HMEC‑1 endothelial cells. In vivo, pL‑MNP‑pSur‑125a exhibited potent antitumor growth effects, but without inducing liver toxicity, in various zebrafish human‑ABCB1‑expressing and ABCB1‑non‑expressing tumor xenograft models. In conclusion, pL‑MNP‑pSur‑125a is an easy‑to‑prepare and a promising poly‑pharmacological anticancer nanodrug that has the potential to manage numerous malignancies, particularly for patients with BIRC5/ABCB1‑related drug resistance after prolonged chemotherapeutic treatments.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Groenendijk FH and Bernards R: Drug resistance to targeted therapies: Déjà vu all over again. Mol Oncol. 8:1067–1083. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Xie L and Bourne PE: Developing multi-target therapeutics to fine-tune the evolutionary dynamics of the cancer ecosystem. Front Pharmacol. 6:2092015. View Article : Google Scholar : PubMed/NCBI

3 

Antolin AA, Workman P, Mestres J and Al-Lazikani B: Polypharmacology in precision oncology: Current applications and future prospects. Curr Pharm Design. 22:6935–6945. 2016. View Article : Google Scholar

4 

Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y and Mori M: MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res. 17:2725–2733. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, Lee JN, Wu DC, Wang SC and Tsai EM: miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 6:4942014. View Article : Google Scholar

6 

Vo DT, Karanam NK, Ding L, Saha D, Yordy JS, Giri U, Heymach JV and Story MD: miR-125a-5p functions as tumor suppressor microRNA and is a marker of locoregional recurrence and poor prognosis in head and neck cancer. Neoplasia. 21:849–862. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Liang Z, Pan Q, Zhang Z, Huang C, Yan Z, Zhang Y and Li J: MicroRNA-125a-5p controls the proliferation, apoptosis, migration and PTEN/MEK1/2/ERK1/2 signaling pathway in MCF-7 breast cancer cells. Mol Med Rep. 20:4507–4514. 2019.

8 

Yan L, Yu MC, Gao GL, Liang HW, Zhou XY, Zhu ZT, Zhang CY, Wang YB and Chen X: MiR-125a-5p functions as a tumour suppressor in breast cancer by downregulating BAP1. J Cell Biochem. 119:8773–8783. 2018. View Article : Google Scholar

9 

Tang L, Zhou L, Wu S, Shi X, Jiang G, Niu S and Ding D: miR-125a-5p inhibits colorectal cancer cell epithelial-mesenchymal transition, invasion and migration by targeting TAZ. Onco Targets Ther. 12:3481–3489. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Tong Z, Liu N, Lin L, Guo X, Yang D and Zhang Q: miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother. 75:129–136. 2015. View Article : Google Scholar

11 

Zhong L, Sun S, Shi J, Cao F, Han X and Chen Z: MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumor Biol. 39:10104283176975792017. View Article : Google Scholar

12 

Hsieh TH, Hsu CY, Tsai CF, Long CY, Wu CH, Wu DC, Lee JN, Chang WC and Tsai EM: HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p and induce apoptosis in breast cancer cells. Mol Ther. 23:656–666. 2015. View Article : Google Scholar :

13 

Xu Y, Zheng Y, Duan Y, Ma L and Nan P: MicroRNA-125a-5p targets LIM kinase 1 to inhibit cisplatin resistance of cervical cancer cells. Oncol Lett. 21:3922021. View Article : Google Scholar :

14 

Cao Q, Wang N, Ren L, Tian J, Yang S and Cheng H: miR-125a-5p post-transcriptionally suppresses GALNT7 to inhibit proliferation and invasion in cervical cancer cells via the EGFR/PI3K/AKT pathway. Cancer Cell Int. 20:1172020. View Article : Google Scholar :

15 

Huang WT, Tsai YH, Chen SH, Kuo CW, Kuo YL, Lee KT, Chen WC, Wu PC, Chuang CY, Cheng SM, et al: HDAC2 and HDAC5 up-regulations modulate survivin and miR-125a-5p expressions and promote hormone therapy resistance in estrogen receptor positive breast cancer cells. Front Pharmacol. 8:9022017. View Article : Google Scholar

16 

Zhang Y, Li A, Shi J, Fang Y, Gu C, Cai J, Lin C, Zhao L and Liu S: Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting β-catenin nuclear translocation. Cell Death Dis. 9:7492018. View Article : Google Scholar

17 

Cheung CH, Chen HH, Kuo CC, Chang CY, Coumar MS, Hsieh HP and Chang JY: Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Mol Cancer. 8:432009. View Article : Google Scholar : PubMed/NCBI

18 

Mahalaxmi I and Santhy KS: Role and hallmarks of Sp1 in promoting ovarian cancer. J Oncol Sci. 4:102–105. 2018. View Article : Google Scholar

19 

Jiang Y, de Bruin A, Caldas H, Fangusaro J, Hayes J, Conway EM, Robinson ML and Altura RA: Essential role for survivin in early brain development. J Neurosci. 25:6962–6970. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Ambrosini G, Adida C and Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 3:917–921. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Vischioni B, van der Valk P, Span SW, Kruyt FAE, Rodriguez JA and Giaccone G: Nuclear localization of survivin is a positive prognostic factor for survival in advanced non-small-cell lung cancer. Ann Oncol. 15:1654–1660. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Zhang L, Yan R, Zhang Q, Wang H, Kang X, Li J, Yang S, Zhang J, Liu Z and Yang X: Survivin, a key component of the Wnt/β-catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. Int J Mol Med. 32:867–875. 2013. View Article : Google Scholar

23 

Bao R, Connolly DC, Murphy M, Green J, Weinstein JK, Pisarcik DA and Hamilton TC: Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst. 94:522–528. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Yang L, Cao Z, Li F, Post DE, Van Meir EG, Zhong H and Wood WC: Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther. 11:1215–1223. 2004. View Article : Google Scholar

25 

Siddharth S, Das S, Nayak A and Kundu CN: Survivin as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis. 33:661–675. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR, Mak DH, Konopleva M, Cortes J, Kantarjian HM, et al: Survivin is highly expressed in CD34+38-leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood. 120:173–180. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Y, Yan H, Li R, Guo Y and Zheng R: High expression of survivin predicts poor prognosis in cervical squamous cell carcinoma treated with paclitaxel and carboplatin. Medicine (Baltimore). 98:e156072019. View Article : Google Scholar

28 

Onodi F, Maherzi-Mechalikh C, Mougel A, Hamouda NB, Taboas C, Gueugnon F, Tran T, Nozach H, Marcon E, Gey A, et al: High therapeutic efficacy of a new survivin LSP-cancer vaccine containing CD4+ and CD8+ T-cell epitopes. Front Oncol. 8:5172018. View Article : Google Scholar :

29 

Voges Y, Michaelis M, Rothweiler F, Schaller T, Schneider C, Politt K, Mernberger M, Nist A, Stiewe T, Wass MN, et al: Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance. Cell Death Dis. 7:e24102016. View Article : Google Scholar :

30 

Nakahara T, Kita A, Yamanaka K, Mori M, Amino N, Takeuchi M, Tominaga F, Hatakeyama S, Kinoyama I, Matsuhisa A, et al: YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 67:8014–8021. 2007. View Article : Google Scholar

31 

Hansen JB, Fisker N, Westergaard M, Kjaerulff LS, Hansen HF, Thrue CA, Rosenbohm C, Wissenbach M, Orum H and Koch T: SPC3042: A proapoptotic survivin inhibitor. Mol Cancer Ther. 7:2736–2745. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Tolcher AW, Mita A, Lewis LD, Garrett CR, Till E, Daud AI, Patnaik A, Papadopoulos K, Takimoto C, Bartels P, et al: Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol. 26:5198–5203. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Cheung CHA, Sun X, Kanwar JR, Bai JZ, Cheng L and Krissansen GW: A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy. Cancer Cell Int. 10:362010. View Article : Google Scholar

34 

Tsai SL, Chang YC, Sarvagalla S, Wang S, Coumar MS and Cheung CHA: Cloning, expression, and purification of the recombinant pro-apoptotic dominant-negative survivin T34A-C84A protein in Escherichia coli. Protein Expr Purif. 160:73–83. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Quispe PA, Lavecchia MJ and León IE: On the discovery of a potential survivin inhibitor combining computational tools and cytotoxicity studies. Heliyon. 5:e022382019. View Article : Google Scholar :

36 

Arigita C, Zuidam NJ, Crommelin DJ and Hennink WE: Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm Res. 16:1534–1541. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Lin KY, Cheng SM, Tsai SL, Tsai JY, Lin CH and Cheung CHA: Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: A proof-of-concept study. Onco Targets Ther. 9:2601–2613. 2016.PubMed/NCBI

38 

Cheung CH, Lin WH, Hsu JTA, Hour TC, Yeh TK, Ko S, Lien TW, Coumar MS, Liu JF, Lai WY, et al: BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170)-mediated multidrug-resistant cancer cells. PLoS One. 6:e234852011. View Article : Google Scholar : PubMed/NCBI

39 

Chang YC, Kondapuram SK, Yang TH, Syed SB, Cheng SM, Lin TY, Lin YC, Coumar MS, Chang JY, Leung E and Cheung CHA: The SMAC mimetic LCL161 is a direct ABCB1/MDR1-ATPase activity modulator and BIRC5/Survivin expression down-regulator in cancer cells. Toxicol Appl Pharmacol. 401:1150802020. View Article : Google Scholar

40 

Lee PC, Lee HJ, Kakadiya R, Sanjiv K, Su TL and Lee TC: Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity. Oncogene. 32:1144–1154. 2013. View Article : Google Scholar

41 

Yu HJ, Tsai TC, Hsieh TS and Chiu TY: Characterization of a newly established human bladder carcinoma cell line, NTUB1. J Formos Med Assoc. 91:608–613. 1992.PubMed/NCBI

42 

Leung E, Kannan N, Krissansen GW, Findlay MP and Baguley BC: MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther. 9:717–724. 2010. View Article : Google Scholar

43 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

44 

Jiang G, Ren B, Xu L, Song S, Zhu C and Ye F: Survivin may enhance DNA double-strand break repair capability by up-regulating Ku70 in human KB cells. Anticancer Res. 29:223–228. 2009.PubMed/NCBI

45 

Cheng Q, Ling X, Haller A, Nakahara T, Yamanaka K, Kita A, Koutoku H, Takeuchi M, Brattain MG and Li F: Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter. Int J Biochem Mol Biol. 3:179–197. 2012.PubMed/NCBI

46 

Al-Sharif I, Remmal A and Aboussekhra A: Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 13:6002013. View Article : Google Scholar : PubMed/NCBI

47 

Meng F, Cheng R, Deng C and Zhong Z: Intracellular drug release nanosystems. Materials Today. 15:436–442. 2012. View Article : Google Scholar

48 

de Iudicibus RC, Tomek P, Palmer BD, Tijono SM, Flanagan JU and Ching LM: Parallel discovery of selective and dual inhibitors of tryptophan dioxygenases IDO1 and TDO2 with a newly-modified enzymatic assay. Bioorg Med Chem. 39:1161602021. View Article : Google Scholar

49 

Sari S, Tomek P, Leung E and Reynisson J: Discovery and characterisation of dual inhibitors of tryptophan 2,3-Dioxygenase (TDO2) and indoleamine 2,3-dioxygenase 1 (IDO1) using virtual screening. Molecules. 24:43462019. View Article : Google Scholar :

50 

Gong Y, Li Y, Abdolmaleky HM, Li L and Zhou JR: Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of aurora a expression and function. PLoS One. 7:e336562012. View Article : Google Scholar : PubMed/NCBI

51 

Tai CJ, Chin-Sheng H, Kuo LJ, Wei PL, Lu HH, Chen HA, Liu TZ, Liu JJ, Liu DZ, Ho YS, et al: Survivin-mediated cancer cell migration through GRP78 and epithelial-mesenchymal transition (EMT) marker expression in mahlavu cells. Ann Surg Oncol. 19:336–343. 2012. View Article : Google Scholar

52 

Al-Thani HF, Shurbaji S and Yalcin HC: Zebrafish as a model for anticancer nanomedicine studies. Pharmaceuticals (Basel). 14. pp. 6252021, View Article : Google Scholar

53 

Letrado P, de Miguel I, Lamberto I, Díez-Martínez R and Oyarzabal J: Zebrafish: Speeding up the cancer drug discovery process. Cancer Res. 78:6048–6058. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Hason M and Bartůněk P: Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel). 10. pp. 9352019, View Article : Google Scholar

55 

He JH, Guo SY, Zhu F, Zhu JJ, Chen YX, Huang CJ, Gao JM, Dong QX, Xuan YX and Li CQ: A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity. J Pharmacol Toxicol Methods. 67:25–32. 2013. View Article : Google Scholar

56 

Vliegenthart ADB, Tucker CS, Pozo JD and Dear JW: Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol. 78:1217–1227. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ and Fruehauf JP: Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res. 4:389–398. 1998.PubMed/NCBI

58 

Duan Z, Brakora KA and Seiden MV: Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 3:833–838. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Krisnamurti DGB, Louisa M, Anggraeni E and Wanandi SI: Drug efflux transporters are overexpressed in short-term tamoxifen-induced MCF7 breast cancer cells. Adv Pharmacol Sci. 2016:67024242016.PubMed/NCBI

60 

Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Park E, Gang EJ, Hsieh YT, Schaefer P, Chae S, Klemm L, Huantes S, Loh M, Conway EM, Kang ES, et al: Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia. Blood. 118:2191–2199. 2011. View Article : Google Scholar :

62 

Xue Y, Lian W, Zhi J, Yang W, Li Q, Guo X, Gao J, Qu H, Lin W, Li Z, et al: HDAC5-mediated deacetylation and nuclear localisation of SOX9 is critical for tamoxifen resistance in breast cancer. Br J Cancer. 121:1039–1049. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS and Bae I: HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep. 4:72012014. View Article : Google Scholar :

64 

Liu Q, Zhai J, Kong X, Wang X, Wang Z, Fang Y and Wang J: Comprehensive analysis of the expressionand prognosis for TDO2 in breast cancer. Mol Ther Oncolytics. 17:153–168. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Miyazaki T, Chung S, Sakai H, Ohata H, Obata Y, Shiokawa D, Mizoguchi Y, Kubo T, Ichikawa H, Taniguchi H, et al: Stemness and immune evasion conferred by the TDO2-AHR pathway are associated with liver metastasis of colon cancer. Cancer Sci. 113:170–181. 2022. View Article : Google Scholar

66 

Wanek J, Gaisberger M, Beyreis M, Mayr C, Helm K, Primavesi F, Jäger T, Fazio PD, Jakab M, Wagner A, et al: Pharmacological inhibition of class IIA HDACs by LMK-235 in pancreatic neuroendocrine tumor cells. Int J Mol Sci. 19:31282018. View Article : Google Scholar :

67 

Dhatchinamoorthy K, Colbert JD and Rock KL: Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 12:6365682021. View Article : Google Scholar : PubMed/NCBI

68 

Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R and Wagner E: The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5:1425–1433. 1998. View Article : Google Scholar

69 

Ogris M, Steinlein P, Carotta S, Brunner S and Wagner E: DNA/polyethylenimine transfection particles: Influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci. 3:E212001. View Article : Google Scholar : PubMed/NCBI

70 

Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K and Tekade RK: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 98:1252–1276. 2019. View Article : Google Scholar

71 

Kulkarni SA and Feng SS: Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 30:2512–2522. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Talekar M, Trivedi M, Shah P, Ouyang Q, Oka A, Gandham S and Amiji MM: Combination wt-p53 and MicroRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles. Mol Ther. 24:759–769. 2016. View Article : Google Scholar :

73 

Li Z, Zhang L, Tang C and Yin C: Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy. Pharm Res. 34:2829–2841. 2017. View Article : Google Scholar

74 

El-Boubbou K, Ali R, Al-Zahrani H, Trivilegio T, Alanazi AH, Khan AL, Boudjelal M and AlKushi A: Preparation of iron oxide mesoporous magnetic microparticles as novel multidrug carriers for synergistic anticancer therapy and deep tumor penetration. Sci Rep. 9:94812019. View Article : Google Scholar : PubMed/NCBI

75 

Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC and Mahmoudi M: Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev. 46:4218–4244. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Blanc-Brude OP, Teissier E, Castier Y, Lesèche G, Bijnens AP, Daemen M, Staels B, Mallat Z and Tedgui A: IAP survivin regulates atherosclerotic macrophage survival. Arterioscler Thromb Vasc Biol. 27:901–907. 2007. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chang Y, Shieh M, Chang Y, Huang W, Su W, Cheng F and Cheung CA: Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment. Int J Mol Med 50: 102, 2022.
APA
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., & Cheung, C.A. (2022). Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment. International Journal of Molecular Medicine, 50, 102. https://doi.org/10.3892/ijmm.2022.5158
MLA
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., Cheung, C. A."Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment". International Journal of Molecular Medicine 50.2 (2022): 102.
Chicago
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., Cheung, C. A."Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment". International Journal of Molecular Medicine 50, no. 2 (2022): 102. https://doi.org/10.3892/ijmm.2022.5158
Copy and paste a formatted citation
x
Spandidos Publications style
Chang Y, Shieh M, Chang Y, Huang W, Su W, Cheng F and Cheung CA: Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment. Int J Mol Med 50: 102, 2022.
APA
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., & Cheung, C.A. (2022). Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment. International Journal of Molecular Medicine, 50, 102. https://doi.org/10.3892/ijmm.2022.5158
MLA
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., Cheung, C. A."Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment". International Journal of Molecular Medicine 50.2 (2022): 102.
Chicago
Chang, Y., Shieh, M., Chang, Y., Huang, W., Su, W., Cheng, F., Cheung, C. A."Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment". International Journal of Molecular Medicine 50, no. 2 (2022): 102. https://doi.org/10.3892/ijmm.2022.5158
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team