|
1
|
Carmeliet P: Mechanisms of angiogenesis
and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Koepple C, Zhou Z, Huber L, Schulte M,
Schmidt K, Gloe T, Kneser U, Schmidt VJ and de Wit C: Expression of
Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap
junctional communication in vitro. Int J Mol Sci. 22:74002021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Haefliger JA, Meda P and Alonso F:
Endothelial connexins in developmental and pathological
angiogenesis. Cold Spring Harb Perspect Med. 12:a0411582022.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Qiu Y, Zheng J, Chen S and Sun Y: Connexin
mutations and hereditary diseases. Int J Mol Sci. 23:42552022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Peracchia C and Leverone Peracchia LM:
Calmodulin-Connexin partnership in Gap junction channel
regulation-calmodulin-cork gating model. Int J Mol Sci.
22:130552021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Okamoto T, Park EJ, Kawamoto E, Usuda H,
Wada K, Taguchi A and Shimaoka M: Endothelial connexin-integrin
crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis
Dis. 1867:1661682021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Laird DW and Lampe PD: Cellular mechanisms
of connexin-based inherited diseases. Trends Cell Biol. 32:58–69.
2022. View Article : Google Scholar
|
|
8
|
King DR, Sedovy MW, Leng X, Xue J,
Lamouille S, Koval M, Isakson BE and Johnstone SR: Mechanisms of
connexin regulating peptides. Int J Mol Sci. 22:101862021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Htet M, Nally JE, Martin PE and Dempsie Y:
New insights into pulmonary hypertension: A role for
connexin-mediated signal- ling. Int J Mol Sci. 23:3792021.
View Article : Google Scholar
|
|
10
|
Roy S, Jiang JX, Li AF and Kim D: Connexin
channel and its role in diabetic retinopathy. Prog Retin Eye Res.
61:35–59. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma
V, Delmar M and Holstein-Rathlou NH: Gap junctions. Compr Physiol.
2:1981–2035. 2012. View Article : Google Scholar
|
|
12
|
Zhou JZ and Jiang JX: Gap junction and
hemichannel-independent actions of connexins on cell and tissue
functions-an update. FEBS Lett. 588:1186–1192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tarzemany R, Jiang G, Jiang JX, Larjava H
and Häkkinen L: Connexin 43 hemichannels regulate the expression of
wound healing-associated genes in human gingival fibroblasts. Sci
Rep. 7:141572017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jacobsen NL, Pontifex TK, Li H, Solan JL,
Lampe PD, Sorgen PL and Burt JM: Regulation of Cx37 channel and
growth-suppressive properties by phosphorylation. J Cell Sci.
130:3308–3321. 2017.PubMed/NCBI
|
|
15
|
Cocozzelli AG and White TW: Connexin 43
mutations lead to increased hemichannel functionality in skin
disease. Int J Mol Sci. 20:61862019. View Article : Google Scholar
|
|
16
|
Mannell H, Kameritsch P, Beck H, Pfeifer
A, Pohl U and Pogoda K: Cx43 promotes endothelial cell migration
and angiogenesis via the tyrosine phosphatase SHP-2. Int J Mol Sci.
23:2942021. View Article : Google Scholar
|
|
17
|
Falleni A, Moscato S, Sabbatini ARM,
Bernardeschi M, Bianchi F, Cecchettini A and Mattii L: Subcellular
localization of connexin 26 in cardiomyocytes and in
cardiomyocyte-derived extracellular vesicles. Molecules.
26:67262021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang DG, Zhang FX, Chen ML, Zhu HJ, Yang B
and Cao KJ: Cx43 in mesenchymal stem cells promotes angiogenesis of
the infarcted heart independent of gap junctions. Mol Med Rep.
9:1095–1102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Moorby C and Patel M: Dual functions for
connexins: Cx43 regulates growth independently of gap junction
formation. Exp Cell Res. 271:238–248. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sathiyanadan K, Alonso F, Domingos-Pereira
S, Santoro T, Hamard L, Cesson V, Meda P, Nardelli-Haefliger D and
Haefliger JA: Targeting Endothelial Connexin37 reduces angiogenesis
and decreases tumor growth. Int J Mol Sci. 23:29302022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Thuringer D, Jego G, Berthenet K, Hammann
A, Solary E and Garrido C: Gap junction-mediated transfer of
miR-145-5p from microvascular endothelial cells to colon cancer
cells inhibits angiogenesis. Oncotarget. 7:28160–28168. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Choudhary M, Naczki C, Chen W, Barlow KD,
Case LD and Metheny-Barlow LJ: Tumor-induced loss of mural Connexin
43 gap junction activity promotes endothelial proliferation. BMC
Cancer. 15:4272015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Aasen T, Leithe E, Graham SV, Kameritsch
P, Mayán MD, Mesnil M, Pogoda K and Tabernero A: Connexins in
cancer: Bridging the gap to the clinic. Oncogene. 38:4429–4451.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Distler O, Neidhart M, Gay RE and Gay S:
The molecular control of angiogenesis. Int Rev Immunol. 21:33–49.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Polverini PJ: The pathophysiology of
angiogenesis. Crit Rev Oral Biol Med. 6:230–247. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Goel S, Duda DG, Xu L, Munn LL, Boucher Y,
Fukumura D and Jain RK: Normalization of the vasculature for
treatment of cancer and other diseases. Physiol Rev. 91:1071–1121.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zefferino R, Piccoli C, Gioia SD,
Capitanio N and Conese M: Gap junction intercellular communication
in the carcinogenesis Hallmarks: Is this a phenomenon or
epiphenomenon? Cells. 8:8962019. View Article : Google Scholar :
|
|
28
|
Wang HH, Su CH, Wu YJ, Li JY, Tseng YM,
Lin YC, Hsieh CL, Tsai CH and Yeh HI: Reduction of connexin43 in
human endothelial progenitor cells impairs the angiogenic
potential. Angiogenesis. 16:553–560. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kandasamy K, Escue R, Manna J, Adebiyi A
and Parthasarathi K: Changes in endothelial connexin 43 expression
inversely correlate with microvessel permeability and VE-cadherin
expression in endotoxin-challenged lungs. Am J Physiol Lung Cell
Mol Physiol. 309:L584–L592. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
O'Donnell JJ III, Birukova AA, Beyer EC
and Birukov KG: Gap junction protein connexin43 exacerbates lung
vascular permeability. PLoS One. 9:e1009312014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Salmina AB, Morgun AV, Kuvacheva NV,
Lopatina OL, Komleva YK, Malinovskaya NA and Pozhilenkova EA:
Establishment of neurogenic microenvironment in the neurovascular
unit: The connexin 43 story. Rev Neurosci. 25:97–111. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schmidt VJ, Hilgert JG, Covi JM, Weis C,
Wietbrock JO, de Wit C, Horch RE and Kneser U: High flow conditions
increase connexin43 expression in a rat arteriovenous and
angioinductive loop model. PLoS One. 8:e787822013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gerbaud P and Pidoux G: Review: An
overview of molecular events occurring in human trophoblast fusion.
Placenta. 36(Suppl 1): S35–S42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
He X and Chen Q: Reduced expressions of
connexin 43 and VEGF in the first-trimester tissues from women with
recurrent pregnancy loss. Reprod Biol Endocrinol. 14:462016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang XF and Cui X: Connexin 43: Key roles
in the skin. Biomed Rep. 6:605–611. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alonso F, Domingos-Pereira S, Le Gal L,
Derré L, Meda P, Jichlinski P, Nardelli-Haefliger D and Haefliger
JA: Targeting endothelial connexin40 inhibits tumor growth by
reducing angiogenesis and improving vessel perfusion. Oncotarget.
7:14015–14028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Haefliger JA, Allagnat F, Hamard L, Le Gal
L, Meda P, Nardelli-Haefliger D, Génot E and Alonso F: Targeting
Cx40 (Connexin40) expression or function reduces angiogenesis in
the developing mouse retina. Arterioscler Thromb Vasc Biol.
37:2136–2146. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fang JS, Angelov SN, Simon AM and Burt JM:
Cx37 deletion enhances vascular growth and facilitates ischemic
limb recovery. Am J Physiol Heart Circ Physiol. 301:H1872–H1881.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li H, Spagnol G, Pontifex TK, Burt JM and
Sorgen PL: Chemical shift assignments of the connexin37 carboxyl
terminal domain. Biomol NMR Assign. 11:137–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pogoda K, Füller M, Pohl U and Kameritsch
P: NO, via its target Cx37, modulates calcium signal propagation
selectively at myoendothelial gap junctions. Cell Commun Signal.
12:332014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fang JS, Angelov SN, Simon AM and Burt JM:
Cx40 is required for, and cx37 limits, postischemic hindlimb
perfusion, survival and recovery. J Vasc Res. 49:2–12. 2012.
View Article : Google Scholar
|
|
42
|
Le Gal L, Pellegrin M, Santoro T, Mazzolai
L, Kurtz A, Meda P, Wagner C and Haefliger JA: Connexin37-Dependent
mechanisms selectively contribute to modulate Angiotensin
II-Mediated Hypertension. J Am Heart Assoc. 8:e0108232019.
View Article : Google Scholar
|
|
43
|
Taylor SZ, Jacobsen NL, Pontifex TK,
Langlais P and Burt JM: Serine 319 phosphorylation is necessary and
sufficient to induce a Cx37 conformation that leads to arrested
cell cycling. J Cell Sci. 133:jcs2407212020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn
AJ, Nicholson LF and Green CR: The use of connexin-based
therapeutic approaches to target inflammatory diseases. Methods Mol
Biol. 1037:519–546. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yu W, Jin H, Sun W, Nan D, Deng J, Jia J,
Yu Z and Huang Y: Connexin43 promotes angiogenesis through
activating the HIF-1α/VEGF signaling pathway under chronic cerebral
hypo- perfusion. J Cereb Blood Flow Metab. 41:2656–2675. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lorraine C, Wright CS and Martin PE:
Connexin43 plays diverse roles in co-ordinating cell migration and
wound closure events. Biochem Soc Trans. 43:482–488. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hoffmann A, Gloe T, Pohl U and Zahler S:
Nitric oxide enhances de novo formation of endothelial gap
junctions. Cardiovasc Res. 60:421–430. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li H, He J, Yu H, Green CR and Chang J:
Bioglass promotes wound healing by affecting gap junction connexin
43 mediated endothelial cell behavior. Biomaterials. 84:64–75.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang K, Chai B, Ji H, Chen L, Ma Y, Zhu
L, Xu J, Wu Y, Lan Y, Li H, et al: Bioglass promotes wound healing
by inhibiting endothelial cell pyroptosis through regulation of the
connexin 43/reactive oxygen species (ROS) signaling pathway. Lab
Invest. 102:90–101. 2022. View Article : Google Scholar
|
|
50
|
Faniku C, O'Shaughnessy E, Lorraine C,
Johnstone SR, Graham A, Greenhough S and Martin PEM: The connexin
mimetic peptide Gap27 and Cx43-Knockdown reveal differential roles
for Connexin43 in wound closure events in skin model systems. Int J
Mol Sci. 19:6042018. View Article : Google Scholar :
|
|
51
|
Martin PE, Easton JA, Hodgins MB and
Wright CS: Connexins: Sensors of epidermal integrity that are
therapeutic targets. FEBS Lett. 588:1304–1314. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tarzemany R, Jiang G, Larjava H and
Häkkinen L: Expression and function of connexin 43 in human
gingival wound healing and fibroblasts. PLoS One. 10:e01155242015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Montgomery J, Ghatnekar GS, Grek CL, Moyer
KE and Gourdie RG: Connexin 43-Based therapeutics for dermal wound
healing. Int J Mol Sci. 19:17782018. View Article : Google Scholar :
|
|
54
|
Arshad M, Conzelmann C, Riaz MA, Noll T
and Gündüz D: Inhibition of Cx43 attenuates ERK1/2 activation,
enhances the expression of Cav-1 and suppresses cell proliferation.
Int J Mol Med. 42:2811–2818. 2018.PubMed/NCBI
|
|
55
|
Wu PC, Hsu WL, Chen CL, Lam CF, Huang YB,
Huang CC, Lin MH and Lin MW: Morphine induces fibroblast activation
through Up-regulation of Connexin 43 expression: Implication of
fibrosis in wound healing. Int J Med Sci. 15:875–882. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Asencio-Barría C, Defamie N, Sáez JC,
Mesnil M and Godoy AS: Direct intercellular communications and
cancer: A snapshot of the biological roles of connexins in prostate
cancer. Cancers (Basel). 11:13702019. View Article : Google Scholar
|
|
57
|
Gleisner MA, Navarrete M, Hofmann F,
Salazar-Onfray F and Tittarelli A: Mind the Gaps in tumor immunity:
Impact of connexin-mediated intercellular connections. Front
Immunol. 8:10672017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Graham SV, Jiang JX and Mesnil M:
Connexins and pannexins: Important players in tumorigenesis,
metastasis and potential therapeutics. Int J Mol Sci. 19:16452018.
View Article : Google Scholar :
|
|
59
|
Acuña RA, Varas-Godoy M, Herrera-Sepulveda
D and Retamal MA: Connexin46 expression enhances cancer stem cell
and Epithelial-to-Mesenchymal transition characteristics of human
breast cancer MCF-7 cells. Int J Mol Sci. 22:126042021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Karpinich NO and Caron KM: Gap junction
coupling is required for tumor cell migration through lymphatic
endothelium. Arterioscler Thromb Vasc Biol. 35:1147–1155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fang JS, Coon BG, Gillis N, Chen Z, Qiu J,
Chittenden TW, Burt JM, Schwartz MA and Hirschi KK: Shear-induced
Notch-Cx37-p27 axis arrests endothelial cell cycle to enable
arterial specification. Nat Commun. 8:21492017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang WK, Chen MC, Leong HF, Kuo YL, Kuo CY
and Lee CH: Connexin 43 suppresses tumor angiogenesis by
down-regulation of vascular endothelial growth factor via
hypoxic-induced factor-1α. Int J Mol Sci. 16:439–451. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Schulz R, Görge PM, Görbe A, Ferdinandy P,
Lampe PD and Leybaert L: Connexin 43 is an emerging therapeutic
target in ischemia/reperfusion injury, cardioprotection and
neuroprotection. Pharmacol Ther. 153:90–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Michela P, Velia V, Aldo P and Ada P: Role
of connexin 43 in cardiovascular diseases. Eur J Pharmacol.
768:71–76. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hegner P, Lebek S, Tafelmeier M, Camboni
D, Schopka S, Schmid C, Maier LS, Arzt M and Wagner S:
Sleep-disordered breathing is independently associated with reduced
atrial connexin 43 expression. Heart Rhythm. 18:2187–2194. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ugwu N, Atzmony L, Ellis KT, Panse G, Jain
D, Ko CJ, Nassiri N and Choate KA: Cutaneous and hepatic vascular
lesions due to a recurrent somatic GJA4 mutation reveal a pathway
for vascular malformation. HGG Adv. 2:1000282021.
|
|
67
|
Huang GY, Xie LJ, Linask KL, Zhang C, Zhao
XQ, Yang Y, Zhou GM, Wu YJ, Marquez-Rosado L, McElhinney DB, et al:
Evaluating the role of connexin43 in congenital heart disease:
Screening for mutations in patients with outflow tract anomalies
and the analysis of knock-in mouse models. J Cardiovasc Dis Res.
2:206–212. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Salameh A, Haunschild J, Bräuchle P, Peim
O, Seidel T, Reitmann M, Kostelka M, Bakhtiary F, Dhein S and
Dähnert I: On the role of the gap junction protein Cx43 (GJA1) in
human cardiac malformations with Fallot-pathology. a study on
paediatric cardiac specimen. PLoS One. 9:e953442014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Milberg P, Klocke R, Frommeyer G, Quang
TH, Dieks K, Stypmann J, Osada N, Kuhlmann M, Fehr M, Milting H, et
al: G-CSF therapy reduces myocardial repolarization reserve in the
presence of increased arteriogenesis, angiogenesis and connexin 43
expression in an experimental model of pacing-induced heart
failure. Basic Res Cardiol. 106:995–1008. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li L, Liu H, Xu C, Deng M, Song M, Yu X,
Xu S and Zhao X: VEGF promotes endothelial progenitor cell
differentiation and vascular repair through connexin 43. Stem Cell
Res Ther. 8:2372017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yu H, Kalogeris T and Korthuis RJ:
Reactive species-induced microvascular dysfunction in
ischemia/reperfusion. Free Radic Biol Med. 135:182–197. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bellafiore M, Sivverini G, Palumbo D,
Macaluso F, Bianco A, Palma A and Farina F: Increased cx43 and
angiogenesis in exercised mouse hearts. Int J Sports Med.
28:749–755. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Grippo AJ, Moffitt JA, Henry MK, Firkins
R, Senkler J, McNeal N, Wardwell J, Scotti MA, Dotson A and Schultz
R: Altered Connexin 43 and Connexin 45 protein expression in the
heart as a function of social and environmental stress in the
prairie vole. Stress. 18:107–114. 2015. View Article : Google Scholar :
|
|
74
|
Vilà-González M, Kelaini S, Magee C,
Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D,
Tsifaki M, O'Neill K, et al: Enhanced function of induced
pluripotent stem cell-derived endothelial cells through ESM1
signaling. Stem Cells. 37:226–239. 2019. View Article : Google Scholar
|
|
75
|
Su F, Zhao L, Zhang S, Wang J, Chen N,
Gong Q, Tang J, Wang H, Yao J, Wang Q, et al: Cardioprotection by
PI3K-mediated signaling is required for anti-arrhythmia and
myocardial repair in response to ischemic preconditioning in
infarcted pig hearts. Lab Invest. 95:860–871. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Taheri SA, Yeh J, Batt RE, Fang Y, Ashraf
H, Heffner R, Nemes B and Naughton J: Uterine myometrium as a cell
patch as an alternative graft for transplantation to infarcted
cardiac myocardium: A preliminary study. Int J Artif Organs.
31:62–67. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wei X, Chang ACH, Chang H, Xu S, Xue Y,
Zhang Y, Lei M, Chang ACY and Zhang Q: Hypoglycemia-exacerbated
mitochondrial connexin 43 accumulation aggravates cardiac
dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med.
9:8001852022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Marsh SR, Williams ZJ, Pridham KJ and
Gourdie RG: Peptidic connexin43 therapeutics in cardiac reparative
medicine. J Cardiovasc Dev. 8:522021.
|
|
79
|
Shao Q, Esseltine JL, Huang T,
Novielli-Kuntz N, Ching JE, Sampson J and Laird DW: Connexin43 is
dispensable for early stage human mesenchymal stem cell adipogenic
differentiation but is protective against cell senescence.
Biomolecules. 9:4742019. View Article : Google Scholar :
|
|
80
|
Liu C, Fan Y, Zhou L, Zhu HY, Song YC, Hu
L, Wang Y and Li QP: Pretreatment of mesenchymal stem cells with
angiotensin II enhances paracrine effects, angiogenesis, gap
junction formation and therapeutic efficacy for myocardial
infarction. Int J Cardiol. 188:22–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou Y, Zhang YX, Yang KL, Liu YL, Wu FH,
Gao YR and Liu W: Connexin 43 mediated the angiogenesis of buyang
huanwu decoction via vascular endothelial growth factor and
angiopoietin-1 after ischemic stroke. Chin J Physiol. 65:72–79.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Das H, George JC, Joseph M, Das M,
Abdulhameed N, Blitz A, Khan M, Sakthivel R, Mao HQ, Hoit BD, et
al: Stem cell therapy with overexpressed VEGF and PDGF genes
improves cardiac function in a rat infarct model. PLoS One.
4:e73252009. View Article : Google Scholar : PubMed/NCBI
|