Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2022 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Total flavonoids of Rhizoma Drynariae enhances CD31hiEmcnhi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis

  • Authors:
    • Zhen Shen
    • Wei Dong
    • Zehua Chen
    • Guoqian Chen
    • Yan Zhang
    • Zige Li
    • Haixiong Lin
    • Huamei Chen
    • Minling Huang
    • Ying Guo
    • Ziwei Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan 650599, P.R. China, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China, Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, P.R. China
    Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 112
    |
    Published online on: July 1, 2022
       https://doi.org/10.3892/ijmm.2022.5167
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Total flavonoids of Rhizoma Drynariae (TFRD), extracted from the kidney‑tonifying Traditional Chinese medicine Rhizoma Drynariae, can be effective in treating osteoporosis, bone fractures and defects. However, the pharmacological effects of TFRD on the specific vessel subtype CD31hiEmcnhi during distraction osteogenesis (DO) remains unclear. The present study aimed to investigate the effects of TFRD on CD31hiEmcnhi vessels in a rat model of DO. In the present study, tibial DO models were established using 60 rats with a distraction rate of 0.2 mm per day for 20 days. Co‑immunofluorescence staining of CD31 and endomucin (Emcn) was conducted to determine CD31hiEmcnhi vessels. Radiographic, angiographic and histological analyses were performed to assess bone and vessel formation. Tube formation, alkaline phosphatase (ALP) and Von Kossa staining assays were performed to test angiogenesis of endothelial precursor cells (EPCs) and osteogenesis of bone marrow‑derived mesenchymal stem cells (BMSCs). Additionally, expression levels of platelet‑derived growth factor (PDGF)‑BB, VEGF, runt‑related transcription factor 2 (RUNX2) and Osterix (OSX) were determined by western blotting and reverse transcription‑quantitative PCR. The in vivo assays demonstrated that TFRD markedly promoted CD31hiEmcnhi vessel formation during DO, whereas PDGF‑BB neutralizing antibody suppressed vessel formation. Furthermore, the ALP, Von Kossa staining and tube formation assays indicated that TFRD notably elevated the angiogenic capacity of EPCs and osteogenic capacity of BMSCs under stress conditions, which was significantly suppressed by blocking PDGF‑BB. The protein and mRNA levels of PDGF‑BB, VEGF, RUNX2 and OSX were upregulated by TFRD, but downregulated by blocking PDGF‑BB. Thus, TFRD could facilitate CD31hiEmcnhi vessel formation and subsequently enhance angiogenic‑osteogenic coupling to regenerate bone defects during DO via the PDGF‑BB/VEGF/RUNX2/OSX signaling axis, which indicated that CD31hiEmcnhi vessels could be a potential novel therapeutic target for DO, and TFRD may represent a promising drug for promoting bone regeneration in DO by increasing CD31hiEmcnhi vessels.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Nauth A, McKee MD, Einhorn TA, Watson JT, Li R and Schemitsch EH: Managing bone defects. J Orthop Trauma. 25:462–466. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Mauffrey C, Barlow BT and Smith W: Management of segmental bone defects. J Am Acad Orthop Surg. 23:143–153. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Li W, Zhu S and Hu J: Bone regeneration is promoted by orally administered bovine lactoferrin in a rabbit tibial distraction osteogenesis model. Clin Orthop Relat Res. 473:2383–2393. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X and Li G: MiR-503 promotes bone formation in distraction osteogenesis through suppressing smurf1 expression. Sci Rep. 7:4092017. View Article : Google Scholar : PubMed/NCBI

5 

Sun YX, Zhang JF, Xu J, Xu LL, Wu TY, Wang B, Pan XH and Li G: MiRNA-144-3p inhibits bone formation in distraction osteogenesis through targeting Connexin 43. Oncotarget. 8:89913–89922. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Jia Y, Qiu S, Xu J, Kang Q and Chai Y: Exosomes secreted by young mesenchymal stem cells promote new bone formation during distraction osteogenesis in older rats. Calcif Tissue Int. 106:509–517. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Jia YC, Zhu Y, Qiu S, Xu J and Chai Y: Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther. 10:122019. View Article : Google Scholar : PubMed/NCBI

8 

Montes-Medina L, Hernández-Fernández A, Gutiérrez-Rivera A, Ripalda-Cemboráin P, Bitarte N, Pérez-López V, Granero-Moltó F, Prosper F and Izeta A: Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury. 49:1979–1986. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Paley D: Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 250:81–104. 1990. View Article : Google Scholar : PubMed/NCBI

10 

Dhaliwal R, Kunchur K and Farhadieh R: Review of the cellular and biological principles of distraction osteogenesis: An in vivo bioreactor tissue engineering model. J Plast Reconstr Aesthet Surg. 69:e19–e26. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Tomlinson RE and Silva MJ: Skeletal blood flow in bone repair and maintenance. Bone Res. 1:311–322. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Gerber HP and Ferrara N: Angiogenesis and bone growth. Trends Cardiovasc Med. 10:223–228. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Saran U, Piperni SG and Chatterjee S: Role of angiogenesis in bone repair. Arch Biochem Biophys. 561:109–117. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Brandi ML and Collin-Osdoby P: Vascular biology and the skeleton. J Bone Miner Res. 21:183–192. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A and Maggio ND: It takes two to tango: Coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol. 5:682017. View Article : Google Scholar : PubMed/NCBI

16 

Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, Carano RA, Filvaroff EH, Bednarski MD, Giaccia AJ and Longaker MT: Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 20:1114–1124. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Peng Y, Wu S, Li Y and Crane JL: Type H blood vessels in bone modeling and remodeling. Theranostics. 10:426–436. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Huang J, Yin H, Rao SS, Xie PL, Cao X, Rao T, Liu SY, Wang ZX, Cao J, Hu Y, et al: Harmine enhances type H vessel formation and prevents bone loss in ovariectomized mice. Theranostics. 8:2435–2446. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Xu R, Yallowitz A, Qin A, Wu Z, Shin DY, Kim JM, Debnath S, Ji G, Bostrom MP, Yang X, et al: Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 24:823–833. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Wang J, Gao Y, Cheng P, Li D, Jiang H, Ji C, Zhang S, Shen C, Li J, Song Y, et al: CD31hiEmcnhi Vessels support new trabecular bone formation at the frontier growth area in the bone defect repair process. Sci Rep. 7:49902017. View Article : Google Scholar : PubMed/NCBI

23 

Fan YG and Zhan HS: Orthopaedics of traditional chinese medicine. People's Medical Publishing House, Beijing. 29–31. 2005.

24 

Yao W, Zhang H, Jiang X, Mehmood K, Iqbal M, Li A, Zhang J, Wang Y, Waqas M, Shen Y and Li J: Effect of total flavonoids of on tibial dyschondroplasia by regulating BMP-2 and Runx2 expression in chickens. Front Pharmacol. 9:12512018. View Article : Google Scholar : PubMed/NCBI

25 

Chen LL, Lei LH, Ding PH, Tang Q and Wu YM: Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Arch Oral Biol. 56:1655–1662. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Song S, Gao Z, Lei X, Niu Y, Zhang Y, Li C, Lu Y, Wang Z and Shang P: Total flavonoids of drynariae rhizoma prevent bone loss induced by hindlimb unloading in rats. Molecules. 22:10332017. View Article : Google Scholar : PubMed/NCBI

27 

Shen Z, Jiang ZW, Li D, Zhang Y, Li ZG, Chen HM, et al: Comparison of two types of tonifying kidney in the mechanism of angiogenesis and osteogenesis coupling based on distraction osteogenesis. Chin J Tradit Chin Med Pharm. 34:2150–2155. 2019.

28 

Shen Z, Lin H, Chen G, Zhang Y, Li Z, Li D, Xie L, Li Y, Huang F and Jiang Z: Comparison between the induced membrane technique and distraction osteogenesis in treating segmental bone defects: An experimental study in a rat model. PLoS One. 14:e02268392019. View Article : Google Scholar : PubMed/NCBI

29 

Song SH, Zhai YK, Li CQ, Yu Q, Lu Y, Zhang Y, Hua WP, Wang ZZ and Shang P: Effects of total flavonoids from Drynariae Rhizoma prevent bone loss in vivo and in vitro. Bone Rep. 5:262–273. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, et al: Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 190–191. 97–110. 2019.PubMed/NCBI

31 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Zhang M, Ahn W, Kim S, Hong HS, Quan C and Son Y: Endothelial precursor cells stimulate pericyte-like coverage of bone marrow-derived mesenchymal stem cells through platelet-derived growth factor-BB induction, which is enhanced by substance P. Microcirculation. 24:e123942017. View Article : Google Scholar : PubMed/NCBI

33 

Naruse K, Yamada T, Sai XR, Hamaguchi M and Sokabe M: Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene. 17:455–463. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Ilizarov GA: The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 238:249–281. 1989. View Article : Google Scholar : PubMed/NCBI

35 

Stegen S, van Gastel N and Carmeliet G: Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone. 70:19–27. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Wang L, Zhou F, Zhang P, Wang H, Qu Z, Jia P, Yao Z, Shen G, Li G, Zhao G, et al: Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis. 8:e27602017. View Article : Google Scholar : PubMed/NCBI

37 

Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al: PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 20:1270–1278. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Liu L, Zong C, Li B, Shen D, Tang Z, Chen J, Zheng Q, Tong X, Gao C and Wang J: The interaction between β1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. J Tissue Eng Regen Med. 8:85–96. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Lee DY, Cho TJ, Kim JA, Lee HR, Yoo WJ, Chung CY and Choi IH: Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone. 42:932–941. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Wang H, Yin Y, Li W, Zhao X, Yu Y, Zhu J, Qin Z, Wang Q, Wang K, Lu W, et al: Over-expression of PDGFR-β promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One. 7:e305032012. View Article : Google Scholar : PubMed/NCBI

41 

Caplan AI and Correa D: PDGF in bone formation and regeneration: New insights into a novel mechanism involving MSCs. J Orthop Res. 29:1795–1803. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Heldin CH, Lennartsson J and Westermark B: Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med. 283:16–44. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Lee SJ, Namkoong S and Kim YM, Kim CK, Lee H, Ha KS, Chung HT, Kwon YG and Kim YM: Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK-and PI3K/Akt/ eNOS-dependent signal pathways. Am J Physiol Heart Circ Physiol. 291:H2836–H2846. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, Chen C, Li X, Zhang C and Huang Y: Dimethyloxaloxaloylglycine promotes the angiogenic activity of mesenchymal stem cells derived from iPSCs via activation of the PI3K/Akt pathway for bone regeneration. Int J Biol Sci. 12:639–652. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Kuang MJ, Zhang WH, He WW, Sun L, Ma JX, Wang D and Ma XL: Naringin regulates bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head via the Akt/Bad signal cascades. Chem Biol Interact. 304:97–105. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Zhang P, Dai KR, Yan SG, Yan WQ, Zhang C, Chen DQ, Xu B and Xu ZW: Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol. 607:1–5. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shen Z, Dong W, Chen Z, Chen G, Zhang Y, Li Z, Lin H, Chen H, Huang M, Guo Y, Guo Y, et al: Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med 50: 112, 2022.
APA
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z. ... Jiang, Z. (2022). Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. International Journal of Molecular Medicine, 50, 112. https://doi.org/10.3892/ijmm.2022.5167
MLA
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., Lin, H., Chen, H., Huang, M., Guo, Y., Jiang, Z."Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis". International Journal of Molecular Medicine 50.3 (2022): 112.
Chicago
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., Lin, H., Chen, H., Huang, M., Guo, Y., Jiang, Z."Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis". International Journal of Molecular Medicine 50, no. 3 (2022): 112. https://doi.org/10.3892/ijmm.2022.5167
Copy and paste a formatted citation
x
Spandidos Publications style
Shen Z, Dong W, Chen Z, Chen G, Zhang Y, Li Z, Lin H, Chen H, Huang M, Guo Y, Guo Y, et al: Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med 50: 112, 2022.
APA
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z. ... Jiang, Z. (2022). Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis. International Journal of Molecular Medicine, 50, 112. https://doi.org/10.3892/ijmm.2022.5167
MLA
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., Lin, H., Chen, H., Huang, M., Guo, Y., Jiang, Z."Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis". International Journal of Molecular Medicine 50.3 (2022): 112.
Chicago
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., Lin, H., Chen, H., Huang, M., Guo, Y., Jiang, Z."Total flavonoids of Rhizoma Drynariae enhances CD31<sup>hi</sup>Emcn<sup>hi</sup> vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF‑BB/VEGF/RUNX2/OSX signaling axis". International Journal of Molecular Medicine 50, no. 3 (2022): 112. https://doi.org/10.3892/ijmm.2022.5167
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team