|
1
|
Hodson R: Inflammatory bowel disease.
Nature. 540:S972016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cai Z, Wang S and Li J: Treatment of
inflammatory bowel disease: A comprehensive review. Front Med.
8:7654742021. View Article : Google Scholar
|
|
3
|
Na SY and Moon W: Perspectives on current
and novel treatments for inflammatory bowel disease. Gut Liver.
13:604–616. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ocansey DKW, Xu X, Zhang L and Mao F:
Mesenchymal stem cell-derived exosome: The likely game-changer in
stem cell research. BIOCELL. 46:1169–1172. 2022. View Article : Google Scholar
|
|
5
|
Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang
J, Zheng F and Wu B: Ferroptosis involves in intestinal epithelial
cell death in ulcerative colitis. Cell Death Dis. 11:862020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xu S, He Y, Lin L, Chen P, Chen M and
Zhang S: The emerging role of ferroptosis in intestinal disease.
Cell Death Dis. 12:2892021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Otasevic V, Vucetic M, Grigorov I,
Martinovic V and Stancic A: Ferroptosis in different pathological
contexts seen through the eyes of mitochondria. Oxid Med Cell
Longev. 2021:55373302021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Battaglia AM, Chirillo R, Aversa I, Sacco
A, Costanzo F and Biamonte F: Ferroptosis and cancer: Mitochondria
meet the 'iron maiden' cell death. Cells. 9:15052020. View Article : Google Scholar
|
|
10
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xu C, Liu Z and Xiao J: Ferroptosis: A
double-edged sword in gastrointestinal disease. Int J Mol Sci.
22:124032021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao W, Zhang T and Wu H: Emerging
pathological engagement of ferroptosis in gut diseases. Oxid Med
Cell Longev. 2021:42462552021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dixon SJ and Stockwell BR: The hallmarks
of ferroptosis. Annu Rev Cancer Biol. 3:35–54. 2019. View Article : Google Scholar
|
|
14
|
Sui X, Zhang R, Liu S, Duan T, Zhai L,
Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives
ferroptosis through GPX4 inactivation and ROS production in
colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Huang J, Zhang J, Ma J, Ma J, Liu J, Wang
F and Tang X: Inhibiting ferroptosis: A novel approach for
ulcerative colitis therapeutics. Oxid Med Cell Longev.
2022:96786252022.PubMed/NCBI
|
|
16
|
Ma D, Jiang P, Jiang Y, Li H and Zhang D:
Effects of lipid peroxidation-mediated ferroptosis on severe acute
pancreatitis-induced intestinal barrier injury and bacterial
translocation. Oxid Med Cell Longev. 2021:66445762021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xu J, Liu S, Cui Z, Wang X, Ning T, Wang
T, Zhang N, Xie S, Min L, Zhang S, et al: Ferrostatin-1 alleviated
TNBS induced colitis via the inhibition of ferroptosis. Biochem
Biophys Res Commun. 573:48–54. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang S, Liu W, Wang J and Bai X:
Curculigoside inhibits ferroptosis in ulcerative colitis through
the induction of GPX4. Life Sci. 259:1183562020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang F, Zhang S, Li X, Huang Y, He S and
Luo L: STAT3-mediated ferroptosis is involved in ulcerative
colitis. Free Radic Biol Med. 188:375–385. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cao JY and Dixon SJ: Mechanisms of
ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar :
|
|
22
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu W, Liang K, Zhu H, Zhao C, Hu H and Yin
S: Ferroptosis and its role in chronic diseases. Cells.
11:20402022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Conrad M and Pratt DA: The chemical basis
of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dixon SJ, Winter GE, Musavi LS, Lee ED,
Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human
haploid cell genetics reveals roles for lipid metabolism genes in
nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar :
|
|
28
|
Bano I, Horky P, Abbas SQ, Majid M, Bilal
AHM, Ali F, Behl T, Hassan SSU and Bungau S: Ferroptosis: A new
road towards cancer management. Molecules. 27:21292022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ursini F, Maiorino M and Gregolin C: The
selenoenzyme phospholipid hydroperoxide glutathione peroxidase.
Biochim Biophys Acta. 839:62–70. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman
M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and
Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell
death in diverse disease models. J Am Chem Soc. 136:4551–4556.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen X, Yu C, Kang R and Tang D: Iron
metabolism in ferroptosis. Front Cell Dev Biol. 8:5902262020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh
HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by
degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363.e3. 2019. View Article : Google Scholar :
|
|
34
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J
and Jiang X: Ferroptosis is an autophagic cell death process. Cell
Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen X, Kang R, Kroemer G and Tang D:
Organelle-specific regulation of ferroptosis. Cell Death Differ.
28:2843–2856. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lee H, Zandkarimi F, Zhang Y, Meena JK,
Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al:
Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat
Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou H, Zhou YL, Mao JA, Tang LF, Xu J,
Wang ZX, He Y and Li M: NCOA4-mediated ferritinophagy is involved
in ionizing radiation-induced ferroptosis of intestinal epithelial
cells. Redox Biol. 55:1024132022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kobayashi Y, Ohfuji S, Kondo K, Fukushima
W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y and Hirota
Y; Japanese Case-Control Study Group for Ulcerative Colitis:
Association of dietary fatty acid intake with the development of
ulcerative colitis: A multicenter case-control study in Japan.
Inflamm Bowel Dis. 27:617–628. 2021. View Article : Google Scholar
|
|
40
|
John S, Luben R, Shrestha SS, Welch A,
Khaw KT and Hart AR: Dietary n-3 polyunsaturated fatty acids and
the aetiology of ulcerative colitis: A UK prospective cohort study.
Eur J Gastroenterol Hepatol. 22:602–606. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee JY, Nam M, Son HY, Hyun K, Jang SY,
Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, et al: Polyunsaturated
fatty acid biosynthesis pathway determines ferroptosis sensitivity
in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free. Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar
|
|
43
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2021. View Article : Google Scholar :
|
|
44
|
Conrad M and Sato H: The oxidative
stress-inducible cystine/glutamate antiporter, system x (c) (-):
Cystine supplier and beyond. Amino Acids. 42:231–246. 2012.
View Article : Google Scholar
|
|
45
|
Ahmed I, Manno FAM, Manno SHC, Liu Y,
Zhang Y and Lau C: Detection of lithium in breast milk and in situ
elemental analysis of the mammary gland. Biomed Opt Express.
9:4184–4195. 2018. View Article : Google Scholar :
|
|
46
|
Ingold I, Berndt C, Schmitt S, Doll S,
Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T,
et al: Selenium utilization by GPX4 is required to prevent
hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li S, He Y, Chen K, Sun J, Zhang L, He Y,
Yu H and Li Q: RSL3 Drives ferroptosis through NF-κB pathway
activation and GPX4 depletion in glioblastoma. Oxid Med Cell
Longev. 2021:29150192021. View Article : Google Scholar
|
|
48
|
Zhang DL, Ghosh MC and Rouault TA: The
physiological functions of iron regulatory proteins in iron
homeostasis-an update. Front Pharmacol. 5:1242014. View Article : Google Scholar
|
|
49
|
Yang L, Cao LM, Zhang XJ and Chu B:
Targeting ferroptosis as a vulnerability in pulmonary diseases.
Cell Death Dis. 13:6492022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Brown CW, Amante JJ, Chhoy P, Elaimy AL,
Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives
ferroptosis resistance by stimulating iron export. Dev Cell.
51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kobayashi Y, Ohfuji S, Kondo K, Fukushima
W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y and Hirota
Y; Japanese Case-Control Study Group for Ulcerative Colitis:
Association between dietary iron and zinc intake and development of
ulcerative colitis: A case-control study in Japan. J Gastroenterol
Hepatol. 34:1703–1710. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sivaprakasam S, Ristic B, Mudaliar N,
Hamood AN, Colmer-Hamood J, Wachtel MS, Nevels AG, Kottapalli KR
and Ganapathy V: Hereditary hemochromatosis promotes colitis and
colon cancer and causes bacterial dysbiosis in mice. Biochem J.
477:3867–3883. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wenz C, Faust D, Linz B, Turmann C,
Nikolova T, Bertin J, Gough P, Wipf P, Schröder AS, Krautwald S and
Dietrich C: t-BuOOH induces ferroptosis in human and murine cell
lines. Arch Toxicol. 92:759–775. 2018. View Article : Google Scholar
|
|
54
|
Wenz C, Faust D, Linz B, Turmann C,
Nikolova T and Dietrich C: Cell-cell contacts protect against
t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch
Toxicol. 93:1265–1279. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian
ZX and Jiang X: Artemisinin compounds sensitize cancer cells to
ferroptosis by regulating iron homeostasis. Cell Death Differ.
27:242–254. 2020. View Article : Google Scholar :
|
|
57
|
Gaschler MM, Andia AA, Liu H, Csuka JM,
Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E,
et al: FINO2 initiates ferroptosis through GPX4
inactivation and iron oxidation. Nat Chem Biol. 14:507–515. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen Y, Zhang P, Chen W and Chen G:
Ferroptosis mediated DSS-induced ulcerative colitis associated with
Nrf2/HO-1 signaling pathway. Immunol Lett. 225:9–15. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hu Y, Sun S and Li H: Identification and
functional exploration of Ferroptosis and Immune Related Long
Non-Coding RNA in Inflammatory bowel disease. Res Sq. 2022.
|
|
60
|
Patankar JV and Becker C: Cell death in
the gut epithelium and implications for chronic inflammation. Nat
Rev Gastroenterol Hepatol. 17:543–556. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Luo L, Zhang S, Guo N, Li H and He S:
ACSF2-mediated ferroptosis is involved in ulcerative colitis. Life
Sci. 313:1212722023. View Article : Google Scholar
|
|
62
|
Cui DJ, Chen C, Yuan WQ, Yang YH and Han
L: Integrative analysis of ferroptosis-related genes in ulcerative
colitis. J Int Med Res. 49:30006052110429752021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ma H, Shu Q, Li D, Wang T, Li L, Song X,
Lou K and Xu H: Accumulation of intracellular ferrous iron in
inflammatory-activated macrophages. Biol Trace Elem Res.
201:2303–2310. 2023. View Article : Google Scholar
|
|
64
|
Maloy KJ and Powrie F: Intestinal
homeostasis and its breakdown in inflammatory bowel disease.
Nature. 474:298–306. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Panda SK, Peng V, Sudan R, Ulezko Antonova
A, Di Luccia B, Ohara TE, Fachi JL, Grajales-Reyes GE, Jaeger N,
Trsan T, et al: Repression of the aryl-hydrocarbon receptor
prevents oxidative stress and ferroptosis of intestinal
intraepithelial lymphocytes. Immunity. 56:797–812.e4. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang L, Han R, Zang K, Yuan P and Qin H:
Deficiency in glutathione synthesis and reduction contributes to
the pathogenesis of colitis-related liver injury. Zhong Nan Da Xue
Xue Bao Yi Xue Ban. 47:271–279. 2022.In English, Chinese.
PubMed/NCBI
|
|
67
|
Lin JH, Walter P and Yen TSB: Endoplasmic
reticulum stress in disease pathogenesis. Annu Rev Pathol.
3:399–425. 2008. View Article : Google Scholar
|
|
68
|
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian
D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4
activation contributes to ferroptosis-mediated tissue injury in
intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dang D, Zhang C, Meng Z, Lv X, Li Z, Wei J
and Wu H: Integrative analysis links ferroptosis to necrotizing
enterocolitis and reveals the role of ACSL4 in immune disorders.
iScience. 25:1054062022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang X, Li W, Ma Y, Zhao X, He L, Sun P
and Wang H: High-fat diet aggravates colitis-associated
carcinogenesis by evading ferroptosis in the ER stress-mediated
pathway. Free Radic Biol Med. 177:156–166. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen J, Li X, Ge C, Min J and Wang F: The
multifaceted role of ferroptosis in liver disease. Cell Death
Differ. 29:467–480. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang X, Du L, Qiao Y, Zhang X, Zheng W,
Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, et al: Ferroptosis is governed
by differential regulation of transcription in liver cancer. Redox
Biol. 24:1012112019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q,
Zhou X and Mao L: Ferroptosis in colorectal cancer: Potential
mechanisms and effective therapeutic targets. Biomed Pharmacother.
153:1135242022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ouyang S, Li H, Lou L, Huang Q, Zhang Z,
Mo J, Li M, Lu J, Zhu K, Chu Y, et al: Inhibition of
STAT3-ferroptosis negative regulatory axis suppresses tumor growth
and alleviates chemoresistance in gastric cancer. Redox Biol.
52:1023172022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and
Wang J: Molecular mechanisms of ferroptosis and its role in cancer
therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang R, Su Q, Yin H, Wu D, Lv C and Yan Z:
Inhibition of SRSF9 enhances the sensitivity of colorectal cancer
to erastin-induced ferroptosis by reducing glutathione peroxidase 4
expression. Int J Biochem Cell Biol. 134:1059482021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang L, Liu W, Liu F, Wang Q, Song M, Yu
Q, Tang K, Teng T, Wu D, Wang X, et al: Corrigendum to 'IMCA
induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR
pathway in colorectal cancer'. Oxid Med Cell Longev.
2020:69014722020. View Article : Google Scholar
|
|
78
|
Xia Y, Liu S, Li C, Ai Z, Shen W, Ren W
and Yang X: Discovery of a novel ferroptosis
inducer-talaroconvolutin A-killing colorectal cancer cells in vitro
and in vivo. Cell Death Dis. 11:9882020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gao W, Huang Z, Duan J, Nice EC, Lin J and
Huang C: Elesclomol induces copper-dependent ferroptosis in
colorectal cancer cells via degradation of ATP7A. Mol Oncol.
15:3527–3544. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Luo W, Dai W, Li Q, Mo S, Han L, Xiao X,
Gu R, Xiang W, Ye L, Wang R, et al: Ferroptosis-associated
molecular classification characterized by distinct tumor
microenvironment profiles in colorectal cancer. Int J Biol Sci.
18:1773–1794. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zilka O, Shah R, Li B, Friedmann Angeli
JP, Griesser M, Conrad M and Pratt DA: On the mechanism of
cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of
lipid peroxidation in ferroptotic cell death. ACS Cent Sci.
3:232–243. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kajarabille N and Latunde-Dada GO:
Programmed cell-death by ferroptosis: Antioxidants as mitigators.
Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen Y, Yan W, Chen Y, Zhu J, Wang J, Jin
H, Wu H, Zhang G, Zhan S, Xi Q, et al: SLC6A14 facilitates
epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative
colitis. Cell Mol Life Sci. 79:5632022. View Article : Google Scholar
|
|
84
|
Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W,
Wang H, Ge Y, Min J, Wang F and Ju Z: GPX4 and vitamin E
cooperatively protect hematopoietic stem and progenitor cells from
lipid peroxidation and ferroptosis. Cell Death Dis. 12:7062021.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Maiorino M, Conrad M and Ursini F: GPx4,
lipid peroxidation, and cell death: Discoveries, rediscoveries, and
open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar
|
|
86
|
Carlson BA, Tobe R, Yefremova E, Tsuji PA,
Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL and Conrad M:
Glutathione peroxidase 4 and vitamin E cooperatively prevent
hepatocellular degeneration. Redox Biol. 9:22–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mirbagheri SA, Nezami BG, Assa S and
Hajimahmoodi M: Rectal administration of d-alpha tocopherol for
active ulcerative colitis: A preliminary report. World J
Gastroenterol. 14:5990–5995. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rachmawati H, Pradana AT, Safitri D and
Adnyana IK: Multiple functions of D-α-tocopherol polyethylene
glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer:
In vivo kinetic profile and anti-ulcerative colitis analysis in
animal model. Pharmaceutics. 9:242017. View Article : Google Scholar
|
|
89
|
Liu KY, Nakatsu CH, Jones-Hall Y, Kozik A
and Jiang Q: Vitamin E alpha- and gamma-tocopherol mitigate
colitis, protect intestinal barrier function and modulate the gut
microbiota in mice. Free Radic Biol Med. 163:180–189. 2021.
View Article : Google Scholar
|
|
90
|
Wang Y, Shen W, Shi X, Fu F, Fan Y, Shen
W, Cao Y, Zhang Q and Qi R: Alpha-tocopheryl succinate-conjugated
G5 PAMAM dendrimer enables effective inhibition of ulcerative
colitis. Adv Healthc Mater. 6:2017. View Article : Google Scholar
|
|
91
|
Zou Y, Li H, Graham ET, Deik AA, Eaton JK,
Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL:
Cytochrome P450 oxidoreductase contributes to phospholipid
peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX,
Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes
recovery of traumatic spinal cord injury by inhibiting ferroptosis.
Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar :
|
|
93
|
Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G,
Hou L, Xu J, Guo J and Guo F: Deferoxamine alleviates
osteoarthritis by inhibiting chondrocyte ferroptosis and activating
the Nrf2 pathway. Front Pharmacol. 13:7913762022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J
and Yang M: Melatonin suppresses ferroptosis induced by high
glucose via activation of the Nrf2/HO-1 signaling pathway in type 2
diabetic osteoporosis. Oxid Med Cell Longev. 2020:90676102020.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Bai T, Li M, Liu Y, Qiao Z and Wang Z:
Inhibition of ferroptosis alleviates atherosclerosis through
attenuating lipid peroxidation and endothelial dysfunction in mouse
aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Rayatpour A, Foolad F, Heibatollahi M,
Khajeh K and Javan M: Ferroptosis inhibition by deferiprone,
attenuates myelin damage and promotes neuroprotection in
demyelinated optic nerve. Sci Rep. 12:196302022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu X, Zhang J and Xie W: The role of
ferroptosis in acute lung injury. Mol Cell Biochem. 477:1453–1461.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Millar AD, Rampton DS and Blake DR:
Effects of iron and iron chelation in vitro on mucosal oxidant
activity in ulcerative colitis. Aliment Pharmacol Ther.
14:1163–1168. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Minaiyan M, Mostaghel E and Mahzouni P:
Preventive therapy of experimental colitis with selected iron
chelators and anti-oxidants. Int J Prev Med. 3(Suppl 1): S162–S169.
2012.PubMed/NCBI
|
|
100
|
Wu Y, Ran L, Yang Y, Gao X, Peng M, Liu S,
Sun L, Wan J, Wang Y, Yang K, et al: Deferasirox alleviates
DSS-induced ulcerative colitis in mice by inhibiting ferroptosis
and improving intestinal microbiota. Life Sci. 314:1213122023.
View Article : Google Scholar
|
|
101
|
Ghaith MM, El-Boshy M, Almasmoum H,
Abdelghany AH, Azzeh FS, Almaimani RA, Idris S, Ahmad J, Mahbub AA,
BaSalamah MA, et al: Deferasirox and vitamin D3
co-therapy mitigates iron-induced renal injury by enhanced
modulation of cellular anti-inflammatory, anti-oxidative stress,
and iron regulatory pathways in rat. J Trace Elem Med Biol.
74:1270852022. View Article : Google Scholar
|
|
102
|
Chen X, Comish PB, Tang D and Kang R:
Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol.
9:6371622021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li YY, Wang XJ, Su YL, Wang Q, Huang SW,
Pan ZF, Chen YP, Liang JJ, Zhang ML, Xie XQ, et al: Baicalein
ameliorates ulcerative colitis by improving intestinal epithelial
barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol Sin.
43:1495–1507. 2022. View Article : Google Scholar
|
|
104
|
Thermozier S, Hou W, Zhang X, Shields D,
Fisher R, Bayir H, Kagan V, Yu J, Liu B, Bahar I, et al:
Anti-ferroptosis drug enhances total-body irradiation mitigation by
drugs that block apoptosis and necroptosis. Radiat Res.
193:435–450. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gounaris E, Heiferman MJ, Heiferman JR,
Shrivastav M, Vitello D, Blatner NR, Knab LM, Phillips JD, Cheon
EC, Grippo PJ, et al: Zileuton, 5-lipoxygenase inhibitor, acts as a
chemopreventive agent in intestinal polyposis, by modulating polyp
and systemic inflammation. PLoS One. 10:e01214022015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Dächert J, Ehrenfeld V, Habermann K,
Dolgikh N and Fulda S: Targeting ferroptosis in rhabdomyosarcoma
cells. Int J Cancer. 146:510–520. 2020. View Article : Google Scholar
|
|
107
|
Shimada K, Skouta R, Kaplan A, Yang WS,
Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and
Stockwell BR: Global survey of cell death mechanisms reveals
metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang D, Peng Y, Xie Y, Zhou B, Sun X, Kang
R and Tang D: Antiferroptotic activity of non-oxidative dopamine.
Biochem Biophys Res Commun. 480:602–607. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu L, Wu Y, Wang B, Jiang Y, Lin L, Li X
and Yang S: DA-DRD5 signaling controls colitis by regulating
colonic M1/M2 macrophage polarization. Cell Death Dis. 12:5002021.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kawano M, Saika K, Takagi R, Matsui M and
Matsushita S: Tannic acid acts as an agonist of the dopamine D2L
receptor, regulates immune responses, and ameliorates
experimentally induced colitis in mice. Brain Behav Immun Health.
5:1000712020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M,
Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved
in the execution of ferroptosis. Proc Natl Acad Sci USA.
116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Panés J, García-Olmo D, Van Assche G,
Colombel JF, Reinisch W, Baumgart DC, Dignass A, Nachury M,
Ferrante M, Kazemi-Shirazi L, et al: Expanded allogeneic
adipose-derived mesenchymal stem cells (Cx601) for complex perianal
fistulas in Crohn's disease: A phase 3 randomised, double-blind
controlled trial. Lancet. 388:1281–1290. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ocansey DKW, Pei B, Yan Y, Qian H, Zhang
X, Xu W and Mao F: Improved therapeutics of modified mesenchymal
stem cells: An update. J Transl Med. 18:422020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ocansey DKW, Qiu W, Wang J, Yan Y, Qian H,
Zhang X, Xu W and Mao F: The achievements and challenges of
mesenchymal stem cell-based therapy in inflammatory bowel disease
and its associated colorectal cancer. Stem Cells Int.
2020:78198242020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ocansey DKW, Zhang Z, Xu X, Liu L, Amoah
S, Chen X, Wang B, Zhang X and Mao F: Mesenchymal stem cell-derived
exosome mitigates colitis via the modulation of the gut
metagenomics-metabolomics-farnesoid X receptor axis. Biomater Sci.
10:4822–4836. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang G, Joel MDM, Yuan J, Wang J, Cai X,
Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W and Mao F: Human
umbilical cord mesenchymal stem cells alleviate inflammatory bowel
disease by inhibiting ERK phosphorylation in neutrophils.
Inflammopharmacology. 28:603–616. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian
H, Zhang X, Xu W and Mao F: Exosome-mediated effects and
applications in inflammatory bowel disease. Biol Rev Camb Philos
Soc. 95:1287–1307. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhu Y, Qin H, Sun C, Shao B, Li G, Qin Y,
Kong D, Ren S, Wang H, Wang Z, et al: Endometrial regenerative
cell-derived exosomes attenuate experimental colitis through
downregulation of intestine ferroptosis. Stem Cells Int.
2022:30141232022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lin F, Chen W, Zhou J, Zhu J, Yao Q, Feng
B, Feng X, Shi X, Pan Q, Yu J, et al: Mesenchymal stem cells
protect against ferroptosis via exosome-mediated stabilization of
SLC7A11 in acute liver injury. Cell Death Dis. 13:2712022.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu T, Jiang L, Tavana O and Gu W: The
deubiquitylase OTUB1 mediates ferroptosis via stabilization of
SLC7A11. Cancer Res. 79:1913–1924. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Shao C, Chen Y, Yang T, Zhao H and Li D:
Mesenchymal stem cell derived exosomes suppress neuronal cell
ferroptosis via lncGm36569/miR-5627-5p/FSP1 axis in acute spinal
cord injury. Stem Cell Rev Rep. 18:1127–1142. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sun Z, Wu J, Bi Q and Wang W: Exosomal
lncRNA TUG1 derived from human urine-derived stem cells attenuates
renal ischemia/reperfusion injury by interacting with SRSF1 to
regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther.
13:2972022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J
and Ge Z: Human umbilical cord blood-derived MSCs exosome attenuate
myocardial injury by inhibiting ferroptosis in acute myocardial
infarction mice. Cell Biol Toxicol. 37:51–64. 2021. View Article : Google Scholar
|
|
124
|
Tan Y, Huang Y, Mei R, Mao F, Yang D, Liu
J, Xu W, Qian H and Yan Y: HucMSC-derived exosomes delivered BECN1
induces ferroptosis of hepatic stellate cells via regulating the
xCT/GPX4 axis. Cell Death Dis. 13:3192022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Atkuri KR, Mantovani JJ and Herzenberg LA
and Herzenberg LA: N-acetylcysteine-a safe antidote for
cysteine/glutathione deficiency. Curr Opin Pharmacol. 7:355–359.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Schmitt B, Vicenzi M, Garrel C and Denis
FM: Effects of N-acetylcysteine, oral glutathione (GSH) and a novel
sublingual form of GSH on oxidative stress markers: A comparative
crossover study. Redox Biol. 6:198–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ardite E, Sans M, Panés J, Romero FJ,
Piqué JM and Fernández-Checa JC: Replenishment of glutathione
levels improves mucosal function in experimental acute colitis. Lab
Invest. 80:735–744. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dong S, Lu Y, Peng G, Li J, Li W, Li M,
Wang H, Liu L and Zhao Q: Furin inhibits epithelial cell injury and
alleviates experimental colitis by activating the Nrf2-Gpx4
signaling pathway. Dig Liver Dis. 53:1276–1285. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhu D, Wu H, Jiang K, Xu Y, Miao Z, Wang H
and Ma Y: Zero-valence selenium-enriched prussian blue nanozymes
reconstruct intestinal barrier against inflammatory bowel disease
via inhibiting ferroptosis and T cells differentiation. Adv Healthc
Mater. 12:e22031602023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Perry C, Kapur N and Barrett TA: DPP-4 as
a novel biomarker for inflammatory bowel disease: Is it ready for
clinical use? Inflamm Bowel Dis. 26:1720–1721. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J,
Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor
p53 limits ferroptosis by blocking DPP4 activity. Cell Rep.
20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Arab HH, Eid AH, Mahmoud AM and Senousy
MA: Linagliptin mitigates experimental inflammatory bowel disease
in rats by targeting inflammatory and redox signaling. Life Sci.
273:1192952021. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
El-Ghannam MS, Saad MA, Nassar NN,
El-Yamany MF and El-Bahy AAZ: Linagliptin ameliorates acetic
acid-induced colitis via modulating AMPK/SIRT1/PGC-1α and
JAK2/STAT3 signaling pathway in rats. Toxicol Appl Pharmacol.
438:1159062022. View Article : Google Scholar
|
|
134
|
Hu Y, Mao Z, Xu L, Yin L, Tao X, Tang Z,
Qi Y, Sun P and Peng J: Protective effect of dioscin against
intestinal ischemia/reperfusion injury via adjusting
miR-351-5p-mediated oxidative stress. Pharmacol Res. 137:56–63.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ozkan OV, Yuzbasioglu MF, Ciralik H,
Kurutas EB, Yonden Z, Aydin M, Bulbuloglu E, Semerci E, Goksu M,
Atli Y, et al: Resveratrol, a natural antioxidant, attenuates
intestinal ischemia/reperfusion injury in rats. Tohoku J Exp Med.
218:251–258. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Stefanutti G, Pierro A, Parkinson EJ,
Smith VV and Eaton S: Moderate hypothermia as a rescue therapy
against intestinal ischemia and reperfusion injury in the rat. Crit
Care Med. 36:1564–1572. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Meister AL, Doheny KK and Travagli RA:
Necrotizing enterocolitis: It's not all in the gut. Exp Biol Med
(Maywood). 245:85–95. 2020. View Article : Google Scholar
|
|
138
|
Yin Y, Wu X, Peng B, Zou H, Li S, Wang J
and Cao J: Curcumin improves necrotising microscopic colitis and
cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4
signalling pathway in newborn rats. Innate Immun. 26:609–617. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Xu Y, Li X, Cheng Y, Yang M and Wang R:
Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary
ischemia-reperfusion. FASEB J. 34:16262–16275. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun
C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting
ferroptosis-induced brain injury and neuroinflammation. Brain Behav
Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zhang L, Fan J, He J, Chen W, Jin W, Zhu
Y, Sun H, Li Y, Shi Y, Jing Y, et al: Regulation of ROS-NF-κB axis
by tuna backbone derived peptide ameliorates inflammation in
necrotizing enterocolitis. J Cell Physiol. 234:14330–14338. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Tang B, Zhu J, Fang S, Wang Y, Vinothkumar
R, Li M, Weng Q, Zheng L, Yang Y, Qiu R, et al: Pharmacological
inhibition of MELK restricts ferroptosis and the inflammatory
response in colitis and colitis-propelled carcinogenesis. Free
Radic Biol Med. 172:312–329. 2021. View Article : Google Scholar : PubMed/NCBI
|