1.
|
Imai S, Armstrong CM, Kaeberlein M and
Guarente L: Transcriptional silencing and longevity protein Sir2 is
an NAD-dependent histone deacetylase. Nature. 403:795–800. 2000.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Schuetz A, Min J, Antoshenko T, et al:
Structural basis of inhibition of the human
NAD+-dependent deacetylase SIRT5 by suramin. Stucture.
15:377–389. 2007. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Brachmann CB, Sherman JM, Devine SE,
Cameron EE, Pillus L and Boeke JD: The SIR2 gene family, conserved
from bacteria to humans, functions in silencing, cell cycle
progression, and chromosome stability. Genes Dev. 9:2888–2902.
1995. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Voelter-Mahlknecht S and Mahlknecht U:
Cloning, chromosomal characterization and mapping of the
NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med.
17:59–67. 2006.PubMed/NCBI
|
5.
|
Vaziri H, Dessain SK, Ng Eaton E, et al:
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell.
107:149–159. 2001. View Article : Google Scholar : PubMed/NCBI
|
6.
|
North BJ, Marshall BL, Borra MT, Denu JM
and Verdin E: The human Sir2 ortholog, SIRT2, is an
NAD+-dependent tubulin deacetylase. Mol Cell.
11:437–444. 2003. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Starai VJ, Celic I, Cole RN, Boeke JD and
Escalante-Semerena JC: Sir2-dependent activation of acetyl-CoA
synthetase by deacetylation of active lysine. Science.
298:2390–2392. 2002. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Sauve AA and Schramm VL: SIR2: the
biochemical mechanism of NAD(+)-dependent protein deacetylation and
ADP-ribosyl enzyme intermediates. Curr Med Chem. 11:807–826.
2004.
|
9.
|
Liszt G, Ford E, Kurtev M and Guarente L:
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J
Biol Chem. 280:21313–21320. 2005. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Mahlknecht U and Hoelzer D: Histone
acetylation modifiers in the pathogenesis of malignant disease. Mol
Med. 6:623–644. 2000.PubMed/NCBI
|
11.
|
Mahlknecht U, Ottmann OG and Hoelzer D:
When the band begins to play: histone acetylation caught in the
crossfire of gene control. Mol Carcinog. 27:268–271. 2000.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Vaquero A, Scher M, Lee D,
Erdjument-Bromage H, Tempst P and Reinberg D: Human SirT1 interacts
with histone H1 and promotes formation of facultative
heterochromatin. Mol Cell. 16:93–105. 2004. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Blander G, Olejnik J, Krzymanska-Olejnik
E, et al: SIRT1 shows no substrate specificity in vitro. J Biol
Chem. 280:9780–9785. 2005. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Blander G and Guarente L: The Sir2 family
of protein deacetylases. Annu Rev Biochem. 73:417–435. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Straight AF, Shou W, Dowd GJ, et al: Net1,
a Sir2-associated nucleolar protein required for rDNA silencing and
nucleolar integrity. Cell. 97:245–256. 1999. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Fritze CE, Verschueren K, Strich R and
Easton Esposito R: Direct evidence for SIR2 modulation of chromatin
structure in yeast rDNA. EMBO J. 16:6495–6509. 1997. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Haigis MC, Mostoslavsky R, Haigis KM, et
al: SIRT4 inhibits glutamate dehydrogenase and opposes the effects
of calorie restriction in pancreatic beta cells. Cell. 126:941–954.
2006. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Hede K: Histone deacetylase inhibitors sit
at crossroads of diet, aging, cancer. J Natl Cancer Inst.
98:377–379. 2006. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Mahlknecht U, Ho AD, Letzel S and
Voelter-Mahlknecht S: Assignment of the NAD-dependent deacetylase
sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ
hybridization. Cytogenet Genome Res. 112:208–212. 2006. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Frye RA: Phylogenetic classification of
prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res
Commun. 273:793–798. 2000. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Birnboim HC and Doly J: A rapid alkaline
extraction procedure for screening recombinant plasmid DNA. Nucleic
Acids Res. 7:1513–1523. 1979. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Mahlknecht U, Hoelzer D and Bucala R:
Sequencing of genomic DNA. Biotechniques. 27:406–408. 1999.
|
23.
|
Altschul SF, Madden TL, Schaffer AA, et
al: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25:3389–3402. 1997.
View Article : Google Scholar : PubMed/NCBI
|
24.
|
Mahlknecht U and Voelter-Mahlknecht S:
Genomic organization and localization of the NAD-dependent histone
deacetylase gene sirtuin 3 (Sirt3) in the mouse. Int J Oncol.
38:813–822. 2011. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Wilbur WJ and Lipman DJ: Rapid similarity
searches of nucleic acid and protein data banks. Proc Natl Acad Sci
USA. 80:726–730. 1983. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Needleman SB and Wunsch CD: A general
method applicable to the search for similarities in the amino acid
sequence of two proteins. J Mol Biol. 48:443–453. 1970. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Fitzgerald M and Shenk T: The sequence
5′-AAUAAA-3′forms parts of the recognition site for polyadenylation
of late SV40 mRNAs. Cell. 24:251–260. 1981.
|
28.
|
Su AI, Wiltshire T, Batalov S, et al: A
gene atlas of the mouse and human protein-encoding transcriptomes.
Proc Natl Acad Sci USA. 101:6062–6067. 2004. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Su AI, Cooke MP, Ching KA, et al:
Large-scale analysis of the human and mouse transcriptomes. Proc
Natl Acad Sci USA. 99:4465–4470. 2002. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Walker JR, Su AI, Self DW, et al:
Applications of a rat multiple tissue gene expression data set.
Genome Res. 14:742–749. 2004. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Huang JY, Hirschey MD, Shimazu T, Ho L and
Verdin E: Mitochondrial sirtuins. Biochim Biophys Acta.
1804:1645–1651. 2010. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Fulco M, Schiltz RL, Iezzi S, et al: Sir2
regulates skeletal muscle differentiation as a potential sensor of
the redox state. Mol Cell. 12:51–62. 2003. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Brunet A, Sweeney LB, Sturgill JF, et al:
Stress-dependent regulation of FOXO transcription factors by the
SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Luo J, Nikolaev AY, Imai S, et al:
Negative control of p53 by Sir2alpha promotes cell survival under
stress. Cell. 107:137–148. 2001. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Yeung F, Hoberg JE, Ramsey CS, et al:
Modulation of NF-kappaB-dependent transcription and cell survival
by the SIRT1 deacetylase. EMBO J. 23:2369–2380. 2004. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Motta MC, Divecha N, Lemieux M, et al:
Mammalian SIRT1 represses forkhead transcription factors. Cell.
116:551–563. 2004. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Michishita E, McCord RA, Berber E, et al:
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric
chromatin. Nature. 452:492–496. 2008. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Ford E, Voit R, Liszt G, Magin C, Grummt I
and Guarente L: Mammalian Sir2 homolog SIRT7 is an activator of RNA
polymerase I transcription. Genes Dev. 20:1075–1080. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39.
|
Michishita E, Park JY, Burneskis JM,
Barrett JC and Horikawa I: Evolutionarily conserved and
nonconserved cellular localizations and functions of human SIRT
proteins. Mol Biol Cel. l6:4623–4635. 2005. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Haigis MC and Sinclair DA: Mammalian
sirtuins: biological insights and disease relevance. Annu Rev
Pathol. 5:253–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Nakamura Y, Ogura M, Tanaka D and Inagaki
N: Localization of mouse mitochondrial SIRT proteins: shift of
SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res
Commun. 366:174–179. 2008. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Nakagawa T, Lomb DJ, Haigis MC and
Guarente L: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and
regulates the urea cycle. Cell. 137:560–570. 2009. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Schlicker C, Gertz M, Papatheodorou P,
Kachholz B, Becker CF and Steegborn C: Substrates and regulation
mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J
Mol Biol. 382:790–801. 2008. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Gertz M and Steegborn C: Function and
regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia.
Biochim Biophys Acta. 1804:1658–1665. 2010. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Nakahata Y, Kaluzova M, Grimaldi B, et al:
The NAD+-dependent deacetylase SIRT1 modulates
CLOCK-mediated chromatin remodeling and circadian control. Cell.
134:329–340. 2008.PubMed/NCBI
|
46.
|
Nakamura Y, Ogura M, Ogura K, Tanaka D and
Inagaki N: SIRT5 deacetylates and activates urate oxidase in liver
mitochondria of mice. FEBS Lett. 586:4076–4081. 2012. View Article : Google Scholar : PubMed/NCBI
|
47.
|
North BJ, Schwer B, Ahuja N, Marshall B
and Verdin E: Preparation of enzymatically active recombinant class
III protein deacetylases. Methods. 36:338–345. 2005. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Lieber CS, Leo MA, Wang X and Decarli LM:
Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5
deacetylation function. Biochem Biophys Res Commun. 373:246–252.
2008. View Article : Google Scholar : PubMed/NCBI
|
49.
|
Shepard BD and Tuma PL: Alcohol-induced
protein hyperacetylation: mechanisms and consequences. World J
Gastroenterol. 15:1219–1230. 2009. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Singer MF, Thayer RE, Grimaldi G, Lerman
MI and Fanning TG: Homology between the KpnI primate and BamH1
(M1F-1) rodent families of long interspersed repeated sequences.
Nucleic Acids Res. 11:5739–5745. 1983. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Mitelman F, Mertens F and Johansson B: A
breakpoint map of recurrent chromosomal rearrangements in human
neoplasia. Nat Genet. 15:417–474. 1997. View Article : Google Scholar : PubMed/NCBI
|
52.
|
Michan S and Sinclair D: Sirtuins in
mammals: insights into their biological function. Biochem J.
404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|