|
1.
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global Cancer Statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
|
2.
|
Braillon A: Hepatocellular carcinoma.
Lancet. 380:4692012. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Heindryckx F, Bogaerts E, Coulon SH,
Devlies H, Geerts AM, Libbrecht L, Stassen JM, et al: Inhibition of
the placental growth factor decreases burden of cholangiocarcinoma
and hepatocellular carcinoma in a transgenic mouse model. Eur J
Gastroenterol Hepatol. 24:1020–1032. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
de Lope CR, Tremosini S, Forner A, Reig M
and Bruix J: Management of HCC. J Hepatol. 56:S75–S87. 2012.
|
|
5.
|
Paez-Ribes M, Allen E, Hudock J, Takeda T,
Okuyama H, Vinals F, Inoue M, et al: Antiangiogenic therapy elicits
malignant progression of tumors to increased local invasion and
distant metastasis. Cancer Cell. 15:220–231. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Zen C, Zen Y, Mitry RR, Corbeil D,
Karbanova J, O’Grady J, Karani J, et al: Mixed phenotype
hepatocellular carcinoma after transarterial chemoembolization and
liver transplantation. Liver Transplant. 17:943–954. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Heindryckx F, Kuchnio A, Casteleyn C,
Coulon S, Olievier K, Colle I, Geerts A, et al: Effect of prolyl
hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in
mice. J Hepatol. 57:61–68. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Tong CM, Ma S and Guan XY: Biology of
hepatic cancer stem cells. J Gastroenterol Hepatol. 26:1229–1237.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Forbes S, Vig P, Poulsom R, Thomas H and
Alison M: Hepatic stem cells. J Pathol. 197:510–518. 2002.
View Article : Google Scholar
|
|
11.
|
Yovchev MI, Grozdanov PN, Zhou H, Racherla
H, Guha C and Dabeva MD: Identification of adult hepatic progenitor
cells capable of repopulating injured rat liver. Hepatology.
47:636–647. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Espanol-Suner R, Carpentier R, Van Hul N,
Legry V, Achouri Y, Cordi S, Jacquemin P, et al: Liver progenitor
cells yield functional hepatocytes in response to chronic liver
injury in mice. Gastroenterology. 143:1564–1575. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Shin S, Walton G, Aoki R, Brondell K,
Schug J, Fox A, Smirnova O, et al: Foxl1-Cre-marked adult hepatic
progenitors have clonogenic and bilineage differentiation
potential. Genes Dev. 25:1185–1192. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Roskams T: Liver stem cells and their
implication in hepatocellular and cholangiocarcinoma. Oncogene.
25:3818–3822. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Ma S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng
IL, Zheng BJ, et al: Identification and characterization of
tumorigenic liver cancer stem/progenitor cells. Gastroenterology.
132:2542–2556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Uenishi T, Kubo S, Yamamoto T, Shuto T,
Ogawa M, Tanaka H, Tanaka S, et al: Cytokeratin 19 expression in
hepatocellular carcinoma predicts early postoperative recurrence.
Cancer Sci. 94:851–857. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Lee JS, Heo J, Libbrecht L, Chu IS,
Kaposi-Novak P, Calvisi DF, Mikaelyan A, et al: A novel prognostic
subtype of human hepatocellular carcinoma derived from hepatic
progenitor cells. Nat Med. 12:410–416. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Theise ND, Saxena R, Portmann BC, Thung
SN, Yee H, Chiriboga L, Kumar A, et al: The canals of Hering and
hepatic stem cells in humans. Hepatology. 30:1425–1433. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Dolle L, Best J, Mei J, Al Battah F,
Reynaert H, van Grunsven LA and Geerts A: The quest for liver
progenitor cells: a practical point of view. J Hepatol. 52:117–129.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Kuwahara R, Kofman AV, Landis CS, Swenson
ES, Barendswaard E and Theise ND: The hepatic stem cell niche:
identification by label-retaining cell assay. Hepatology.
47:1994–2002. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Zhang W, Chen XP, Zhang WG, Zhang F, Xiang
SA, Dong HH and Zhang L: Hepatic non-parenchymal cells and
extracellular matrix participate in oval cell-mediated liver
regeneration. World J Gastroenterol. 15:552–560. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Van Hul N, Lanthier N, Suner RE, Quinones
JA, van Rooijen N and Leclercq I: Kupffer cells influence
parenchymal invasion and phenotypic orientation, but not the
proliferation, of liver progenitor cells in a murine model of liver
injury. Am J Pathol. 179:1839–1850. 2011.PubMed/NCBI
|
|
23.
|
Pintilie DG, Shupe TD, Oh SH, Salganik SV,
Darwiche H and Petersen BE: Hepatic stellate cells’ involvement in
progenitor-mediated liver regeneration. Lab Invest. 90:1199–1208.
2010.
|
|
24.
|
Mishra L, Banker T, Murray J, Byers S,
Thenappan A, He AR, Shetty K, et al: Liver stem cells and
hepatocellular carcinoma. Hepatology. 49:318–329. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Villanueva A, Newell P, Chiang DY,
Friedman SL and Llovet JM: Genomics and signaling pathways in
hepatocellular carcinoma. Semin Liver Dis. 27:55–76. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Chiba T, Kamiya A, Yokosuka O and Iwama A:
Cancer stem cells in hepatocellular carcinoma: recent progress and
perspective. Cancer Lett. 286:145–153. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Dorrell C, Erker L, Schug J, Kopp JL,
Canaday PS, Fox AJ, Smirnova O, et al: Prospective isolation of a
bipotential clonogenic liver progenitor cell in adult mice. Genes
Dev. 25:1193–1203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Dolle L, Best J, Empsen C, Mei J, Van
Rossen E, Roelandt P, Snykers S, et al: Successful isolation of
liver progenitor cells by aldehyde dehydrogenase activity in naive
mice. Hepatology. 55:540–552. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Huch M, Dorrell C, Boj SF, van Es JH, Li
VSW, van de Wetering M, Sato T, et al: In vitro expansion of single
Lgr5(+) liver stem cells induced by Wnt-driven regeneration.
Nature. 494:247–250. 2013.
|
|
30.
|
Coulouarn C, Cavard C, Rubbia-Brandt L,
Audebourg A, Dumont F, Jacques S, Just PA, et al: Combined
hepatocellular-cholangiocarcinomas exhibit progenitor features and
activation of Wnt and TGF signaling pathways. Carcinogenesis.
33:1791–1796. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Shimada M, Sugimoto K, Iwahashi S,
Utsunomiya T, Morine Y, Imura S and Ikemoto T: CD133 expression is
a potential prognostic indicator in intrahepatic
cholangiocarcinoma. J Gastroenterol. 45:896–902. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Yin SY, Li JJ, Hu C, Chen XH, Yao M, Yan
MX, Jiang GP, et al: CD133 positive hepatocellular carcinoma cells
possess high capacity for tumorigenicity. Int J Cancer.
120:1444–1450. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Yin X, Zhang BH, Qiu SJ, Ren ZG, Zhou J,
Chen XH, Zhou Y, et al: Combined hepatocellular carcinoma and
cholangiocarcinoma: clinical features, treatment modalities, and
prognosis. Ann Surg Oncol. 19:2869–2876. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Gottschling S, Schnabel PA, Herth FJF and
Herpel E: Are we missing the target? Cancer stem cells and drug
resistance in non-small cell lung cancer. Cancer Genomics
Proteomics. 9:275–286. 2012.PubMed/NCBI
|
|
35.
|
Boulter L, Govaere O, Bird TG, Radulescu
S, Ramachandran P, Pellicoro A, Ridgway RA, et al:
Macrophage-derived Wnt opposes Notch signaling to specify hepatic
progenitor cell fate in chronic liver disease. Nat Med. 18:572–579.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Spee B, Carpino G, Schotanus BA,
Katoonizadeh A, Vander Borght S, Gaudio E and Roskams T:
Characterisation of the liver progenitor cell niche in liver
diseases: potential involvement of Wnt and Notch signalling. Gut.
59:247–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Wendt MK, Tian MZ and Schiemann WP:
Deconstructing the mechanisms and consequences of TGF-beta-induced
EMT during cancer progression. Cell Tissue Res. 347:85–101. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Seok JY, Na DC, Woo HG, Roncalli M, Kwon
SM, Yoo JE, Ahn EY, et al: A fibrous stromal component in
hepatocellular carcinoma reveals a cholangiocarcinoma-like gene
expression trait and epithelial-mesenchymal transition. Hepatology.
55:1776–1786. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Polakis P: Wnt signaling and cancer. Genes
Dev. 14:1837–1851. 2000.
|
|
41.
|
Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu
LX, Zhang SH, et al: Wnt/beta-catenin signaling contributes to
activation of normal and tumorigenic liver progenitor cells. Cancer
Res. 68:4287–4295. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Yamashita T, Budhu A, Forgues M and Wang
XW: Activation of hepatic stem cell marker EpCAM by
Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res.
67:10831–10839. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Apte U, Thompson MD, Cui SS, Liu B, Cieply
B and Monga SPS: Wnt/beta-catenin signaling mediates oval cell
response in rodents. Hepatology. 47:288–295. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Yamashita T, Ji J, Budhu A, Forgues M,
Yang W, Wang HY, Jia H, et al: EpCAM-positive hepatocellular
carcinoma cells are tumor-initiating cells with stem/progenitor
cell features. Gastroenterology. 136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Abdullah LN and Chow EK: Mechanisms of
chemoresistance in cancer stem cells. Clin Transl Med. 2:32013.
View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Noda T, Nagano H, Takemasa I, Yoshioka S,
Murakami M, Wada H, Kobayashi S, et al: Activation of
Wnt/beta-catenin signalling pathway induces chemoresistance to
interferon-alpha/5-fluorouracil combination therapy for
hepatocellular carcinoma. Br J Cancer. 100:1647–1658. 2009.
View Article : Google Scholar
|
|
47.
|
DeMorrow S, Francis H, Gaudio E, Venter J,
Franchitto A, Kopriva S, Onori P, et al: The endocannabinoid
anandamide inhibits cholangiocarcinoma growth via activation of the
noncanonical Wnt signaling pathway. Am J Physiol Gastrointest Liver
Physiol. 295:G1150–G1158. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Toyama T, Lee HC, Koga H, Wands JR and Kim
M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell
proliferation and migration. Mol Cancer Res. 8:254–265. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Yuzugullu H, Benhaj K, Ozturk N, Senturk
S, Celik E, Toylu A, Tasdemir N, et al: Canonical Wnt signaling is
antagonized by noncanonical Wnt5a in hepatocellular carcinoma
cells. Mol Cancer. 8:902009. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Mishra L, Jogunoori W, Johnson L, Tang Y,
Katuri V, Shetty K and Mishra B: TGF-beta-signaling is required for
ductal progenitor cell survival and epithelial cell differentiation
in normal liver. Gastroenterology. 128:A353. 2005.
|
|
51.
|
Conidi A, Cazzola S, Beets K, Coddens K,
Collart C, Cornelis F, Cox L, et al: Few Smad proteins and many
Smad-interacting proteins yield multiple functions and action modes
in TGFβ/ BMP signaling in vivo. Cytokine Growth Factor Rev.
22:287–300. 2011.PubMed/NCBI
|
|
52.
|
van Grunsven LA, Verstappen G, Huylebroeck
D and Verschueren K: Smads and chromatin modulation. Cytokine
Growth Factor Rev. 16:495–512. 2005.PubMed/NCBI
|
|
53.
|
Mu Y, Gudey SK and Landström M: Non-Smad
signaling pathways. Cell Tissue Res. 347:11–20. 2011. View Article : Google Scholar
|
|
54.
|
Drabsch Y and ten Dijke P: TGF-beta
signalling and its role in cancer progression and metastasis.
Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Fausto N: Liver regeneration and repair:
hepatocytes, progenitor cells, and stem cells. Hepatology.
39:1477–1487. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Ikegami T: Transforming growth factor-beta
signaling and liver cancer stem cell. Hepatol Res. 39:847–849.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Caja L, Bertran E, Campbell J, Fausto N
and Fabregat I: The transforming growth factor-beta (TGF-β)
mediates acquisition of a mesenchymal stem cell-like phenotype in
human liver cells. J Cell Physiol. 226:1214–1223. 2011.
|
|
58.
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Zulehner G, Mikula M, Schneller D, van
Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, et al: Nuclear
beta-catenin induces an early liver progenitor phenotype in
hepatocellular carcinoma and promotes tumor recurrence. Am J
Pathol. 176:472–481. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Thenappan A, Li Y, Kitisin K, Rashid A,
Shetty K, Johnson L and Mishra L: Role of transforming growth
factor beta signaling and expansion of progenitor cells in
regenerating liver. Hepatology. 51:1373–1382. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Fortini ME: Notch signaling: the core
pathway and its posttranslational regulation. Dev Cell. 16:633–647.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Zong YW, Panikkar A, Xu J, Antoniou A,
Raynaud P, Lemaigre F and Stanger BZ: Notch signaling controls
liver development by regulating biliary differentiation.
Development. 136:1727–1739. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Yin L, Velazquez OC and Liu ZJ: Notch
signaling: emerging molecular targets for cancer therapy. Biochem
Pharmacol. 80:690–701. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Qi RZ, An HZ, Yu YZ, Zhang MH, Liu SX, Xu
HM, Guo ZH, et al: Notch1 signaling inhibits growth of human
hepatocellular carcinoma through induction of cell cycle arrest and
apoptosis. Cancer Res. 63:8323–8329. 2003.PubMed/NCBI
|
|
65.
|
Lim SO, Park YM, Kim HS, Quan X, Yoo JE,
Park YN, Choi GH, et al: Notch1 differentially regulates
oncogenesis by wildtype p53 overexpression and p53 mutation in
grade III hepatocellular carcinoma. Hepatology. 53:1352–1362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Viatour P, Ehmer U, Saddic LA, Dorrell C,
Andersen JB, Lin CW, Zmoos AF, et al: Notch signaling inhibits
hepatocellular carcinoma following inactivation of the RB pathway.
J Exp Med. 208:1963–1976. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Villanueva A, Alsinet C, Yanger K, Hoshida
Y, Zong YW, Toffanin S, Rodriguez-Carunchio L, et al: Notch
signaling is activated in human hepatocellular carcinoma and
induces tumor formation in mice. Gastroenterology. 143:1660–1669.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Zender S, Nickeleit I, Wuestefeld T,
Sorensen I, Dauch D, Bozko P, El-Khatib M, et al: A critical role
for notch signaling in the formation of cholangiocellular
carcinomas. Cancer Cell. 23:784–795. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Harris A: Resistance to anti-angiogenic
therapy induced by hypoxia and notch signalling. EJC (Suppl).
8:183–184. 2010. View Article : Google Scholar
|
|
70.
|
Li JL, Sainson RCA, Oon CE, Turley H, Leek
R, Sheldon H, Bridges E, et al: DLL4-Notch signaling mediates tumor
resistance to anti-VEGF therapy in vivo. Cancer Res. 71:6073–6083.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Appelhoff RJ, Tian YM, Raval RR, Turley H,
Harris AL, Pugh CW, Ratcliffe PJ, et al: Differential function of
the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of
hypoxia-inducible factor. J Biol Chem. 279:38458–38465. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Van Steenkiste C, Ribera J, Geerts A,
Pauta M, Tugues S, Casteleyn C, Libbrecht L, et al: Inhibition of
placental growth factor activity reduces the severity of fibrosis,
inflammation, and portal hypertension in cirrhotic mice.
Hepatology. 53:1629–1640. 2011.PubMed/NCBI
|
|
73.
|
Heindryckx F, Coulon S, Terrie E,
Casteleyn C, Stassen JM, Geerts A, Libbrecht L, Allemeersch J,
Carmeliet P, Colle I and Van Vlierberghe H: The placental growth
factor as a target against hepatocellular carcinoma in an
orthotopic mouse model. J Hepatol. 58:319–328. 2012. View Article : Google Scholar
|
|
74.
|
Alison MR, Lin WR, Lim SML and Nicholson
LJ: Cancer stem cells: in the line of fire. Cancer Treat Rev.
38:589–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Mathieu J, Zhang Z, Zhou WY, Wang AJ,
Heddleston JM, Pinna CMA, Hubaud A, et al: HIF induces human
embryonic stem cell markers in cancer cells. Cancer Res.
71:4640–4652. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Liang YJ, Zheng TS, Song RP, Wang JB, Yin
DL, Wang LL, Liu HT, et al: Hypoxia-mediated sorafenib resistance
can be overcome by EF24 through Von Hippel-Lindau tumor
suppressor-dependent HIF-1α inhibition in hepatocellular
carcinomaa. Hepatology. 57:1847–1857. 2013.PubMed/NCBI
|
|
77.
|
Lehwald N, Tao GZ, Jang KY, Sorkin M,
Knoefel WT and Sylvester KG: Wnt-β-catenin signaling protects
against hepatic ischemia and reperfusion injury in mice.
Gastroenterology. 141:707–718. 2011.
|
|
78.
|
Zhang Q, Bai XL, Chen W, Ma T, Hu QD,
Liang C, Xie SZ, et al: Wnt/beta-catenin signaling enhances
hypoxia-induced epithelial-mesenchymal transition in hepatocellular
carcinoma via crosstalk with hif-1 alpha signaling. Carcinogenesis.
34:962–973. 2013. View Article : Google Scholar
|
|
79.
|
Chen YX, Wong PP, Sjeklocha L, Steer CJ
and Sahin MB: Mature hepatocytes exhibit unexpected plasticity by
direct dedifferentiation into liver progenitor cells in culture.
Hepatology. 55:563–574. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Matsuoka J, Yashiro M, Doi Y, Fuyuhiro Y,
Kato Y, Shinto O, Noda S, et al: Hypoxia stimulates the EMT of
gastric cancer cells through autocrine TGFbeta signaling. PLoS One.
8:e623102013. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Copple BL: Hypoxia stimulates hepatocyte
epithelial to mesenchymal transition by hypoxia-inducible factor
and transforming growth factor-beta-dependent mechanisms. Liver
Int. 30:669–682. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Matsuno Y, Coelho AL, Jarai G, Westvvick J
and Hogaboam CM: Notch signaling mediates TGF-beta 1-induced
epithelial-mesenchymal transition through the induction of Snail.
Int J Biochem Cell Biol. 44:776–789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Sahlgren C, Gustafsson MV, Jin S,
Poellinger L and Lendahl U: Notch signaling mediates
hypoxia-induced tumor cell migration and invasion. Proc Natl Acad
Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Lim SO, Kim HS, Quan X, Ahn SM, Kim H,
Hsieh D, Seong JK, et al: Notch1 binds and induces degradation of
Snail in hepatocellular carcinoma. BMC Biol. 9:832011. View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Goodman ZD, Ishak KG, Langloss JM,
Sesterhenn IA and Rabin L: Combined
hepatocellular-cholangiocarcinoma - a histologic and
immunohistochemical study. Cancer. 55:124–135. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GCT,
Poon RTP and Fan ST: An Akt/hypoxia-inducible
factor-1alpha/platelet-derived growth factor-BB autocrine loop
mediates hypoxia-induced chemoresistance in liver cancer cells and
tumorigenic hepatic progenitor cells. Clin Cancer Res.
15:3462–3471. 2009. View Article : Google Scholar
|
|
87.
|
Lee JI, Lee JW, Kim JM, Kim JK, Chung HJ
and Kim YS: Prognosis of hepatocellular carcinoma expressing
cytokeratin 19: comparison with other liver cancers. World J
Gastroenterol. 18:4751–4757. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
Komuta M, Govaere O, Vandecaveye V, Akiba
J, Van Steenbergen W, Verslype C, Laleman W, et al: Histological
diversity in cholangiocellular carcinoma reflects the different
cholangiocyte phenotypes. Hepatology. 55:1876–1888. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Tickoo SK, Zee SY, Obiekwe S, Xiao H, Koea
J, Robiou C, Blumgart LH, et al: Combined
hepatocellular-cholangiocarcinoma - a histopathologic,
immunohistochemical, and in situ hybridization study. Am J Surg
Pathol. 26:989–997. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
90.
|
Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu
P, Chen KK, Lopez JP, et al: Octamer 4 (Oct4) mediates
chemotherapeutic drug resistance in liver cancer cells through a
potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology.
52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91.
|
Chu PGG, Ishizawa S, Wu E and Weiss LM:
Hepatocyte antigen as a marker of hepatocellular carcinoma - an
immunohistochemical comparison to carcinoembryonic antigen, CD10,
and alpha-fetoprotein. Am J Surg Pathol. 26:978–988. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
92.
|
Omori N, Evarts RP, Omori M, Hu ZY,
Marsden ER and Thorgeirsson SS: Expression of leukemia inhibitory
factor and its receptor during liver regeneration in the adult rat.
Lab Invest. 75:15–24. 1996.PubMed/NCBI
|
|
93.
|
Carpentier R, Suner RE, van Hul N, Kopp
JL, Beaudry JB, Cordi S, Antoniou A, et al: Embryonic ductal plate
cells give rise to cholangiocytes, periportal hepatocytes, and
adult liver progenitor cells. Gastroenterology. 141:1432–1438.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
Ma S, Lee TK, Zheng BJ, Chan K and Guan
XY: CD133(+) HCC cancer stem cells confer chemoresistance by
preferential expression of the Akt/PKB survival pathway. Oncogene.
27:1749–1758. 2008.
|
|
95.
|
Fan LN, He FR, Liu HX, Zhu J, Liu YX, Yin
ZY, Wang L, et al: CD133: a potential indicator for differentiation
and prognosis of human cholangiocarcinoma. BMC Cancer. 11:3202011.
View Article : Google Scholar : PubMed/NCBI
|
|
96.
|
Hou Y, Zou QF, Ge RL, Shen F and Wang YZ:
The critical role of CD133(+)CD44(+/high) tumor cells in
hematogenous metastasis of liver cancers. Cell Res. 22:259–272.
2012.
|
|
97.
|
Knight B, Tirnitz-Parker JEE and Olynyk
JK: C-kit inhibition by imatinib mesylate attenuates progenitor
cell expansion and inhibits liver tumor formation in mice.
Gastroenterology. 135:969–979. 2008. View Article : Google Scholar : PubMed/NCBI
|