Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October 2014 Volume 45 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October 2014 Volume 45 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)

  • Authors:
    • Katsunori Yoshida
    • Miki Murata
    • Takashi Yamaguchi
    • Koichi Matsuzaki
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
    Copyright: © Yoshida et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 1363-1371
    |
    Published online on: July 22, 2014
       https://doi.org/10.3892/ijo.2014.2552
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β is considered to be the major factor regulating liver carcinogenesis and accelerating liver fibrosis. Smad2 and Smad3 act as the intracellular mediators of TGF-β signal transduction pathway. We have generated numerous antibodies against individual phosphorylation sites in Smad2/3, and identified 3 types of phosphorylated forms (phospho-isoforms): COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). These Smad phospho-isoforms are categorized into 3 groups: cytostatic pSmad3C signaling, mitogenic pSmad3L signaling and invasive/fibrogenic pSmad2L/C signaling. In this review, we describe differential regulation of TGF-β/Smad signaling after acute or chronic liver injuries. In addition, we consider how chronic inflammation associated with hepatitis virus infection promotes hepatic fibrosis and carcinogenesis (fibro-carcinogenesis), focusing on alteration of Smad phospho-isoform signaling. Finally, we show reversibility of Smad phospho-isoform signaling after therapy against hepatitis virus infection.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Dooley S and Ten Dijke P: TGF-beta in progression of liver disease. Cell Tissue Res. 347:245–256. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Pinzani M and Macias-Barragan J: Update on the pathophysiology of liver fibrosis. Expert Rev Gastroenterol Hepatol. 4:459–472. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Date M, Matsuzaki K, Matsushita M, et al: Differential expression of transforming growth factor-beta and its receptors in hepatocytes and nonparenchymal cells of rat liver after CCl4 administration. J Hepatol. 28:572–581. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Date M, Matsuzaki K, Matsushita M, Tahashi Y, Furukawa F and Inoue K: Modulation of transforming growth factor beta function in hepatocytes and hepatic stellate cells in rat liver injury. Gut. 46:719–724. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Kisseleva T and Brenner DA: Mechanisms of fibrogenesis. Exp Biol Med (Maywood). 233:109–122. 2008. View Article : Google Scholar

6 

Moses HL and Serra R: Regulation of differentiation by TGF-beta. Curr Opin Genet Dev. 6:581–586. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Roberts AB and Sporn MB: The transforming growth factor-βs. Peptide Growth Factors and Their Receptors I Berlin: Springer; pp. 419–472. 1990

8 

Bellam N and Pasche B: Tgf-beta signaling alterations and colon cancer. Cancer Treat Res. 155:85–103. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Matsuzaki K: Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 32:1578–1588. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Matsuzaki K: Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res. 347:225–243. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Derynck R and Miyazono K: The TGF-β Signaling. Cold Spring Harbor Laboratory Press; NY: 2008

12 

Shi Y and Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Kretzschmar M, Doody J, Timokhina I and Massague J: A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 13:804–816. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Matsuura I, Denissova NG, Wang G, He D, Long J and Liu F: Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature. 430:226–231. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Matsuzaki K, Kitano C, Murata M, et al: Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Cancer Res. 69:5321–5330. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Kamaraju AK and Roberts AB: Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem. 280:1024–1036. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Wicks SJ, Lui S, Abdel-Wahab N, Mason RM and Chantry A: Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol. 20:8103–8111. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Furukawa F, Matsuzaki K, Mori S, et al: p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology. 38:879–889. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Mori S, Matsuzaki K, Yoshida K, Furukawa F, et al: TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene. 23:7416–7429. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Ho J, Cocolakis E, Dumas VM, Posner BI, Laporte SA and Lebrun JJ: The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction. EMBO J. 24:3247–3258. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Millet C, Yamashita M, Heller M, Yu LR, Veenstra TD and Zhang YE: A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204. J Biol Chem. 284:19808–19816. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Alarcon C, Zaromytidou AI, Xi Q, et al: Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Matsuzaki K: Smad phospho-isoforms direct context-dependent TGF-beta signaling. Cytokine Growth Factor Rev. 24:385–399. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Yamagata H, Matsuzaki K, Mori S, et al: Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis. Cancer Res. 65:157–165. 2005.PubMed/NCBI

25 

Sekimoto G, Matsuzaki K, Yoshida K, et al: Reversible Smad-dependent signaling between tumor suppression and oncogenesis. Cancer Res. 67:5090–5096. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Yoshida K, Matsuzaki K, Mori S, et al: Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol. 166:1029–1039. 2005. View Article : Google Scholar

27 

Matsuzaki K, Murata M, Yoshida K, et al: Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology. 46:48–57. 2007. View Article : Google Scholar

28 

Murata M, Matsuzaki K, Yoshida K, et al: Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology. 49:1203–1217. 2009. View Article : Google Scholar

29 

Nagata H, Hatano E, Tada M, et al: Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor-suppression in rat hepatocellular carcinoma. Hepatology. 49:1944–1953. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Kawamata S, Matsuzaki K, Murata M, et al: Oncogenic Smad3 signaling induced by chronic inflammation is an early event in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis. 17:683–695. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Yamaguchi T, Matsuzaki K, Inokuchi R, et al: Phosphorylated Smad2 and Smad3 signaling: Shifting between tumor suppression and fibro-carcinogenesis in chronic hepatitis C. Hepatol Res. 43:1327–1342. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Deng YR, Yoshida K, Jin Q, et al: Reversible phospho-Smad3 signaling between tumor-suppression and fibro-carcinogenesis in chronic hepatitis B infection. Clin Exp Immunol. 176:102–111. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Miyazono K: Positive and negative regulation of TGF-beta signaling. J Cell Sci. 113:1101–1109. 2000.PubMed/NCBI

36 

Nakao A, Afrakhte M, Moren A, et al: Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389:631–635. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Hayashi H, Abdollah S, Qiu Y, et al: The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 89:1165–1173. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Massague J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar

39 

Lin X, Duan X, Liang YY, et al: PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 125:915–928. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Hill CS: Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 19:36–46. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Piek EJW, Heyer J, Escalante-Alcalde D, et al: Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem. 276:19945–19953. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Zhang YFX, We R and Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 383:168–172. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Liu XSY, Constantinescu SN, Karam E, Weinberg RA and Lodish HF: Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA. 94:10669–10674. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Velden JL AJ, Guala AS, Badura EC and Janssen-Heininger YM: c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol. 44:571–581. 2011.

45 

Hirashima YKH, Suzuki M, Tanaka Y, Kanayama N and Terao T: Transforming growth factor-beta1 produced by ovarian cancer cell line HRA stimulates attachment and invasion through an up-regulation of plasminogen activator inhibitor type-1 in human peritoneal mesothelial cells. J Biol Chem. 278:26793–26802. 2003. View Article : Google Scholar

46 

Hu PF, Chen H, Zhong W, Lin Y, Zhang X, Chen YX and Xie WF: Adenovirus-mediated transfer of siRNA against PAI-1 mRNA ameliorates hepatic fibrosis in rats. J Hepatol. 51:102–113. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Liu F: Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev. 17:9–17. 2006. View Article : Google Scholar

48 

Wang G, Matsuura I, He D and Liu F: Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem. 284:9663–9673. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Hayashida T, Decaestecker M and Schnaper HW: Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J. 17:1576–1578. 2003.PubMed/NCBI

50 

Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Landstrom M: The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 42:585–589. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Sorrentino A, Thakur N, Grimsby S, et al: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 10:1199–1207. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Yamashita M, Fatyol K, Jin C, Wang X, Liu Z and Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 31:918–924. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Seki E, Brenner DA and Karin M: A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 143:307–320. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Kodama Y, Kisseleva T, Iwaisako K, et al: c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology. 137:1467–1477.e5. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Hui L, Zatloukal K, Scheuch H, Stepniak E and Wagner EF: Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest. 118:3943–3953. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Michalopoulos GK and DeFrances MC: Liver regeneration. Science. 276:60–66. 1997. View Article : Google Scholar

58 

Dooley JS, Lok ASF, Burroughs AK and Heathcote EJ: Sherlock’s Disease of the Liver and Biliary System. 12th edition. Wiley-Blackwell; 2011

59 

Tahashi Y, Matsuzaki K, Date M, et al: Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology. 35:49–61. 2002. View Article : Google Scholar

60 

Yoshida K and Matsuzaki K: Differential regulation of TGF-beta/Smad signaling in hepatic stellate cells between acute and chronic liver injuries. Front Physiol. 3:532012. View Article : Google Scholar : PubMed/NCBI

61 

Friedman SL: Mechanisms of hepatic fibrogenesis. Gastroenterology. 134:1655–1669. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Friedman SL: Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol. 1:98–105. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Friedman SL: Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 7:425–436. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Rockey DC, Housset CN and Friedman SL: Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest. 92:1795–1804. 1993. View Article : Google Scholar : PubMed/NCBI

65 

Brenner DA, Waterboer T, Choi SK, et al: New aspects of hepatic fibrosis. J Hepatol. 32:32–38. 2000. View Article : Google Scholar

66 

Marra F: Chemokines in liver inflammation and fibrosis. Front Biosci. 7:d1899–d1914. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Reimann T, Hempel U, Krautwald S, Axmann A, Scheibe R, Seidel D and Wenzel KW: Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett. 403:57–60. 1997. View Article : Google Scholar : PubMed/NCBI

68 

Pinzani M, Gesualdo L, Sabbah GM and Abboud HE: Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest. 84:1786–1793. 1989. View Article : Google Scholar : PubMed/NCBI

69 

Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C and Housset C: Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 27:472–480. 1998. View Article : Google Scholar : PubMed/NCBI

70 

Marra F, Arrighi MC, Fazi M, et al: Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor’s actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology. 30:951–958. 1999.

71 

Nouchi T, Tanaka Y, Tsukada T, Sato C and Marumo F: Appearance of alpha-smooth-muscle-actin-positive cells in hepatic fibrosis. Liver. 11:100–105. 1991. View Article : Google Scholar : PubMed/NCBI

72 

Schmitt-Graff A, Kruger S, Bochard F, Gabbiani G and Denk H: Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol. 138:1233–1242. 1991.PubMed/NCBI

73 

Pinzani M, Milani S, Herbst H, et al: Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol. 148:785–800. 1996.PubMed/NCBI

74 

Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K and Gressner AM: Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 31:1094–1106. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM and Dooley S: Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. THE TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem. 275:29308–29317. 2000. View Article : Google Scholar

76 

Dooley S, Hamzavi J, Breitkopf K, et al: Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 125:178–191. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Weng HL, Liu Y, Chen JL, et al: The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin- 13 as driving forces in fibrogenesis. Hepatology. 50:230–243. 2009. View Article : Google Scholar : PubMed/NCBI

78 

El-Serag HB and Rudolph KL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Parkin DM, Pisani P and Ferlay J: Global cancer statistics. Cancer J Clin. 49:33–64. 1999. View Article : Google Scholar

80 

Bosch FX, Ribes J and Borras J: Epidemiology of primary liver cancer. Semin Liver Dis. 19:271–285. 1999. View Article : Google Scholar

81 

Shiraha H, Yamamoto K and Namba M: Human hepatocyte carcinogenesis (Review). Int J Oncol. 42:1133–1138. 2013.PubMed/NCBI

82 

Jiang Z, Jhunjhunwala S, Liu J, et al: The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 22:593–601. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Brechot C, Pourcel C, Louise A, Rain B and Tiollais P: Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature. 286:533–535. 1980. View Article : Google Scholar : PubMed/NCBI

84 

Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ and Kew MC: Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsies and post-mortem tissue specimens. N Engl J Med. 305:1067–1073. 1981. View Article : Google Scholar

85 

Bonilla Guerrero R and Roberts LR: The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol. 42:760–777. 2005.PubMed/NCBI

86 

Feitelson MA and Lee J: Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett. 252:157–170. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Terradillos O, Billet O, Renard CA, Levy R, Molina T, Briand P and Buendia MA: The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. 14:395–404. 1997. View Article : Google Scholar : PubMed/NCBI

88 

Feitelson MA: c-myc overexpression in hepatocarcinogenesis. Hum Pathol. 35:1299–1302. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y and Hino O: Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology. 32:958–961. 2000. View Article : Google Scholar

90 

Erhardt A, Hassan M, Heintges T and Haussinger D: Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology. 292:272–284. 2002. View Article : Google Scholar

91 

He Y, Nakao H, Tan SL, et al: Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol. 76:9207–9217. 2002. View Article : Google Scholar : PubMed/NCBI

92 

Qadri I, Iwahashi M, Capasso JM, Hopken MW, Flores S, Schaack J and Simon FR: Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J. 378:919–928. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Zhao LJ, Wang L, Ren H, Cao J, Li L, Ke JS and Qi ZT: Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res. 305:23–32. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Hassan M, Ghozlan H and Abdel-Kader O: Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology. 333:324–336. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Choi SH and Hwang SB: Modulation of the transforming growth factor-beta signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem. 281:7468–7478. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Hassan M, Selimovic D, Ghozlan H and Abdel-Kader O: Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology. 49:1469–1482. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Park KJ, Choi SH, Choi DH, Park JM, Yie SW, Lee SY and Hwang SB: Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J Biol Chem. 278:30711–30718. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Lin W, Tsai WL, Shao RX, Wu G, Peng LF, Barlow LL, Chung WJ, et al: Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner. Gastroenterology. 138:2509–2518. 2518.e12010. View Article : Google Scholar

99 

Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, et al: Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol. 78:1527–1531. 1997.PubMed/NCBI

100 

Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, et al: The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 4:1065–1067. 1998. View Article : Google Scholar : PubMed/NCBI

101 

Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, Okuda M, et al: Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 122:352–365. 2002. View Article : Google Scholar : PubMed/NCBI

102 

Dzieran J, Fabian J, Feng T, et al: Comparative analysis of TGF-beta/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS One. 8:e722522013. View Article : Google Scholar : PubMed/NCBI

103 

Dienstag JL, Schiff ER, Wright TL, et al: Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med. 341:1256–1263. 1999. View Article : Google Scholar : PubMed/NCBI

104 

Marcellin P, Chang TT, Lim SG, et al: Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med. 348:808–816. 2003. View Article : Google Scholar : PubMed/NCBI

105 

Chang TT, Gish RG, de Man R, et al: A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med. 354:1001–1010. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Lai CL, Gane E, Liaw YF, et al: Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med. 357:2576–2588. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Khakoo S, Glue P, Grellier L, et al: Ribavirin and interferon alfa-2b in chronic hepatitis C: assessment of possible pharmacokinetic and pharmacodynamic interactions. Br J Clin Pharmacol. 46:563–570. 1998. View Article : Google Scholar : PubMed/NCBI

108 

Shiratori Y, Imazeki F, Moriyama M, et al: Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med. 132:517–524. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Morgan TR, Ghany MG, Kim HY, et al: Outcome of sustained virological responders with histologically advanced chronic hepatitis C. Hepatology. 52:833–844. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Yoshida H, Shiratori Y, Moriyama M, et al: Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med. 131:174–181. 1999. View Article : Google Scholar

111 

Suzuki Y, Kumada H, Ikeda K, et al: Histological changes in liver biopsies after one year of lamivudine treatment in patients with chronic hepatitis B infection. J Hepatol. 30:743–748. 1999.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yoshida K, Murata M, Yamaguchi T and Matsuzaki K: TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). Int J Oncol 45: 1363-1371, 2014.
APA
Yoshida, K., Murata, M., Yamaguchi, T., & Matsuzaki, K. (2014). TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). International Journal of Oncology, 45, 1363-1371. https://doi.org/10.3892/ijo.2014.2552
MLA
Yoshida, K., Murata, M., Yamaguchi, T., Matsuzaki, K."TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)". International Journal of Oncology 45.4 (2014): 1363-1371.
Chicago
Yoshida, K., Murata, M., Yamaguchi, T., Matsuzaki, K."TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)". International Journal of Oncology 45, no. 4 (2014): 1363-1371. https://doi.org/10.3892/ijo.2014.2552
Copy and paste a formatted citation
x
Spandidos Publications style
Yoshida K, Murata M, Yamaguchi T and Matsuzaki K: TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). Int J Oncol 45: 1363-1371, 2014.
APA
Yoshida, K., Murata, M., Yamaguchi, T., & Matsuzaki, K. (2014). TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). International Journal of Oncology, 45, 1363-1371. https://doi.org/10.3892/ijo.2014.2552
MLA
Yoshida, K., Murata, M., Yamaguchi, T., Matsuzaki, K."TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)". International Journal of Oncology 45.4 (2014): 1363-1371.
Chicago
Yoshida, K., Murata, M., Yamaguchi, T., Matsuzaki, K."TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)". International Journal of Oncology 45, no. 4 (2014): 1363-1371. https://doi.org/10.3892/ijo.2014.2552
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team