You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Sullivan JC and Finnerty JR: A surprising abundance of human disease genes in a simple ‘basal’ animal, the starlet sea anemone (Nematostella vectensis). Genome. 50:689–692. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sullivan JC, Reitzel AM and Finnerty JR: A high percentage of introns in human genes were present early in animal evolution: Evidence from the basal metazoan Nematostella vectensis. Genome Inform. 17:219–229. 2006. | |
|
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 317:86–94. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Reitzel AM, Sullivan JC, Traylor-Knowles N and Finnerty JR: Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. Biol Bull. 214:233–254. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Goldstone JV: Environmental sensing and response genes in cnidaria: The chemical defensome in the sea anemone Nematostella vectensis. Cell Biol Toxicol. 24:483–502. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson DR, Goldstone JV and Stegeman JJ: The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos Trans R Soc Lond B Biol Sci. 368:201204742013. View Article : Google Scholar : PubMed/NCBI | |
|
Sinkovics JG: RNA/DNA & Cancer. Springer Verlag; 2015, (In print). | |
|
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, et al: The Chlorella variabilis NC64A genome reveals adaptation to photo-symbiosis, coevolution with viruses, and cryptic sex. Plant Cell. 22:2943–2955. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, Edwards RA, Haynes M, Angly FE, Wegley L, et al: Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci USA. 105:18413–18418. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Davy SK, Allemand D and Weis VM: Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev. 76:229–261. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Grasis JA, Lachnit T, Anton-Erxleben F, Lim YW, Schmieder R, Fraune S, Franzenburg S, Insua S, Machado G, Haynes M, et al: Species-specific viromes in the ancestral holobiont Hydra. PLoS One. 9:e1099522014. View Article : Google Scholar : PubMed/NCBI | |
|
Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD and Finnerty JR: Two alleles of NF-kappaB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS One. 4:e73112009. View Article : Google Scholar : PubMed/NCBI | |
|
Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JR and Gilmore TD: Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol. 31:1076–1087. 2011. View Article : Google Scholar : | |
|
Armanious H, Gelebart P, Anand M, Belch A and Lai R: Constitutive activation of metalloproteinase ADAM10 in mantle cell lymphoma promotes cell growth and activates the TNFα/NF-κB pathway. Blood. 117:6237–6246. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Martin AG and Fresno M: Tumor necrosis factor-alpha activation of NF-kappa B requires the phosphorylation of Ser-471 in the transactivation domain of c-Rel. J Biol Chem. 275:24383–24391. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C and Levrero M: Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem. 272:26079–26082. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Challa-Malladi M, Bratton SB and Wright CW: Nuclear factor-κB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem. 289:30680–30689. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schaaf MJM, Willetts L, Hayes BP, Maschera B, Stylianou E and Farrow SN: The relationship between intranuclear mobility of the NF-kappaB subunit p65 and its DNA binding affinity. J Biol Chem. 281:22409–22420. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C, Schoonbroodt S, Goffin V, Nguyên TL-A, Gloire G, et al: Potentiation of tumor necrosis factor-induced NF-κB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IκBα. Mol Cell Biol. 23:6200–6209. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Liongue C and Ward AC: Evolution of the JAK-STAT pathway. JAKSTAT. 2:e227562013.PubMed/NCBI | |
|
Horvath CM: STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci. 25:496–502. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A and Levine AJ: The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2:a0011082010. View Article : Google Scholar | |
|
Pankow S and Bamberger C: The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One. 2:e7822007. View Article : Google Scholar : PubMed/NCBI | |
|
Momand J, Villegas A and Belyi VA: The evolution of MDM2 family genes. Gene. 486:23–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ and Verma C: Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle. 9:540–547. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas G, Anandatheerthavarada HK, Zaidi M and Avadhani NG: Mitochondria to nucleus stress signaling: A distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol. 161:507–519. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C and Avadhani NG: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20:1910–1920. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, Dörken B, Zenke M, Stein H and Scheidereit C: Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 196:605–617. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Nagy ZS, Rui H, Stepkowski SM, Karras J and Kirken RA: A preferential role for STAT5, not constitutively active STAT3, in promoting survival of a human lymphoid tumor. J Immunol. 177:5032–5040. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L and Ford RJ: Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood. 107:4540–4548. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pham LV, Fu L, Tamayo AT, Bueso-Ramos C, Drakos E, Vega F, Medeiros LJ and Ford RJ: Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood. 117:200–210. 2011. View Article : Google Scholar : | |
|
Gebauer N, Hardel TT, Gebauer J, Bernard V, Merz H, Feller AC, Rades D, Biersack H, Lehnert H and Thorns C: Activating mutations affecting the NF-kappa B pathway and EZH2-mediated epigenetic regulation are rare events in primary mediastinal large B-cell lymphoma. Anticancer Res. 34:5503–5507. 2014.PubMed/NCBI | |
|
Odqvist L, Montes-Moreno S, Sánchez-Pacheco RE, Young KH, Martín-Sánchez E, Cereceda L, Sánchez-Verde L, Pajares R, Mollejo M, Fresno MF, et al: NF-κB expression is a feature of both activated B-cell-like and germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. Mod Pathol. 27:1331–1337. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Demchenko YN and Kuehl WM: A critical role for the NF-κB pathway in multiple myeloma. Oncotarget. 1:59–68. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Litvinov IV, Cordeiro B, Fredholm S, Ødum N, Zargham H, Huang Y, Zhou Y, Pehr K, Kupper TS, Woetmann A, et al: Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle. 13:2975–2982. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gelfanov VG, Burgess GS, Litz-Jackson S, King AJ, Marshall MS, Nakasatri H and Boswell HS: Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL: Cooperation leads to p65 nuclear factor κB-mediated apoptosis involving c-IAP2. Blood. 98:2508–2517. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Feuerhake F, Kutok JL, Monti S, Chen W, LaCasce AS, Cattoretti G, Kurtin P, Pinkus GS, de Leval L, Harris NL, et al: NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 106:1392–1399. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Pont-Kingdon GA, Beagley CT, Okimoto R and Wolstenholme DR: Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): Prokaryote-like genes for tRNA(f-Met) and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons. J Mol Evol. 39:387–399. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Beagley CT, Okimoto R and Wolstenholme DR: The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): Introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics. 148:1091–1108. 1998.PubMed/NCBI | |
|
Kretz-Remy C, Munsch B and Arrigo AP: NFkappa B-dependent transcriptional activation during heat shock recovery. Thermolability of the NF-kappaB complex. J Biol Chem. 276:43723–43733. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Starczynowski DT, Trautmann H, Pott C, Harder L, Arnold N, Africa JA, Leeman JR, Siebert R and Gilmore TD: Mutation of an IKK phosphorylation site within the transactivation domain of REL in two patients with B-cell lymphoma enhances REL's in vitro transforming activity. Oncogene. 26:2685–2694. 2007. View Article : Google Scholar | |
|
Thompson RC, Vardinogiannis I and Gilmore TD: Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter. BMC Mol Biol. 14:242013. View Article : Google Scholar | |
|
Lind EF, Elford AR and Ohashi PS: Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J Immunol. 190:1210–1216. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D and Duvic M: Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 13:3331–3335. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Marosvári D, Téglási V, Csala I, Marschalkó M, Bödör C, Timár B, Csomor J, Hársing J and Reiniger L: Altered microRNA expression in folliculotropic and transformed mycosis fungoides. Pathol Oncol Res. 21:821–825. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Silva LM, Hirai KE, de Souza JR, Fuzii HT, Dias LB Jr, Carneiro FR, de Souza Aarão TL and Quaresma JA: Immunohistochemical analysis of the expression of cellular transcription NFκB (p65). AP-1c-Fos and c-Jun and JAK/STAT in leprosy. Human Pathol. 46:746–752. 2015. View Article : Google Scholar | |
|
Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR and Fox PL: Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol. 28:437–447. 2011. View Article : Google Scholar | |
|
Sinkovics JG, Howe CD and Shullenberger CC: Cellular activities in tissue culture of leukemic human bone marrow. Blood. 24:389–401. 1964.PubMed/NCBI | |
|
Baus D, Nonnenmacher F, Jankowski S, Döring C, Bräutigam C, Frank M, Hansmann ML and Pfitzner E: STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical Hodgkin lymphoma cell line. Leukemia. 23:1885–1893. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Canoz O, Rassidakis GZ, Admirand JH and Medeiros LJ: Immunohistochemical detection of BCL-3 in lymphoid neoplasms: A survey of 353 cases. Mod Pathol. 17:911–917. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cahir McFarland ED, Izumi KM and Mosialos G: Epstein-Barr virus transformation: Involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene. 18:6959–6964. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Espinoza JL, Takami A, Trung LQ, Kato S and Nakao S: Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV immortalized human B cells. PLoS One. 7:e13062012. View Article : Google Scholar | |
|
Kashanchi F, Araujo J, Doniger J, Muralidhar S, Hoch R, Khleif S, Mendelson E, Thompson J, Azumi N, Brady JN, et al: Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene. 14:359–367. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lacroix A, Collot-Teixeira S, Mardivirin L, Jaccard A, Petit B, Piguet C, Sturtz F, Preux P-M, Bordessoule D and Ranger-Rogez S: Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res. 16:4711–4721. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Q, Matta H and Chaudhary PM: Kaposi's sarcoma associated herpes virus-encoded viral FLICE inhibitory protein activates transcription from HIV-1 Long Terminal Repeat via the classical NF-kappaB pathway and functionally cooperates with Tat. Retrovirology. 2:92005. View Article : Google Scholar | |
|
Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, Al-Kuraya KS and Uddin S: Cross-talk between NF-κB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One. 7:e399452012. View Article : Google Scholar | |
|
Sun SC and Ballard DW: Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: Hijacking cellular IkappaB kinases. Oncogene. 18:6948–6958. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Shehata MF: Rel/Nuclear factor-kappa B apoptosis pathways in human cervical cancer cells. Cancer Cell Int. 5:102005. View Article : Google Scholar : PubMed/NCBI | |
|
Németh ZH, Deitch EA, Szabó C and Haskó G: Pyrrolidine-dithiocarbamate inhibits NF-kappaB activation and IL-8 production in intestinal epithelial cells. Immunol Lett. 85:41–46. 2003. View Article : Google Scholar | |
|
Wang W, Nag SA and Zhang R: Targeting the NF-κB signaling pathways for breast cancer prevention and therapy. Curr Med Chem. 22:264–289. 2015. View Article : Google Scholar | |
|
Guzmán EA, Maers K, Roberts J, Kemami-Wangun HV, Harmody D and Wright AE: The marine natural product micro-sclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 33:86–94. 2015. View Article : Google Scholar | |
|
Chan R, Gilbert M, Thompson KM, Marsh HN, Epstein DM and Pendergrast PS: Co-expression of anti-NFkappaB RNA aptamers and siRNAs leads to maximal suppression of NFkappaB activity in mammalian cells. Nucleic Acids Res. 34:e362006. View Article : Google Scholar : PubMed/NCBI | |
|
McKenna S and Wright CJ: Inhibiting IκBβ/NF-κB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci. 128:2143–2155. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chang HC, Lin KH, Tai YT, Chen JT and Chen RM: Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and oxidative stress production in macrophages are suppressed by ketamine through downregulating Toll-like receptor-mediated activation of ERK1/2 and NF-κB. Shock. 33:486–492. 2010. | |
|
García-Piñeres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL and Merfort I: Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 276:39713–39720. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Liang MC, Bardhan S, Porco JA Jr and Gilmore TD: The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line. Cancer Lett. 241:69–78. 2006. View Article : Google Scholar | |
|
Liang MC, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA Jr and Gilmore TD: Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: Correlation with its anti-cancer cell growth activity. Biochem Pharmacol. 71:634–645. 2006. View Article : Google Scholar | |
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC and Baltimore D: Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal. 6:ra752013. View Article : Google Scholar | |
|
Selvan N, Maiappa D, van den Toom HWP, Heck AJK, Ferenbach AT and van Aalten DMF: The early metazoan Trichoplax adhaerens possesses a functional O-GlcNAc system. J Biol Chem. 250:11969–11982. 2015. View Article : Google Scholar | |
|
Sümegi M, Hunyadi-Gulyás E, Medzihradszky KF and Udvardy A: 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem Biophys Res Commun. 312:1284–1289. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Heyne K, Winter C, Gerten F, Schmidt C and Roemer K: A novel mechanism of crosstalk between p53 and NF-κB pathways. Cell Cycle. 12:2479–2482. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cha B, Lim JW and Kim H: Jak1/Stat3 is an upstream signaling of NF-κB activation in Helicobacter pylori-induced IL-8 production in gastric epithelial AGS cells. Yonsei Med J. 56:862–866. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Linher-Melville K, Haftchenary S, Gunning P and Singh G: Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells. Mol Cell Biochem. 405:205–221. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pramanik KC, Fofaria NM, Gupta P, Ranjan A, Kim SH and Srivastava SK: Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-catenin/TCF-1 complex: Critical role of STAT-3. Oncotarget. 6:11561–11574. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Martinou JC and Kroemer G: Autophagy: Evolutionary and pathophysiological insights. Biochim Biophys Acta. 1793:1395–1396. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Katayama H, Kogure T, Mizushima N, Yoshimori T and Miyawaki A: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol. 18:1042–1052. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Buzgariu W, Chera S and Galliot B: Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol. 451:409–437. 2008. View Article : Google Scholar | |
|
Chera S, Buzgariu W, Ghila L and Galliot B: Autophagy in Hydra: A response to starvation and stress in early animal evolution. Biochim Biophys Acta. 1793:1432–1443. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dunn SR, Schnitzler CE and Weis VM: Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: Every which way you lose. Proc Biol Sci. 274:3079–3085. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Buss LW, Anderson C, Westerman E, Kritzberger C, Poudyal M, Moreno MA and Lakkis FG: Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolon-gicarpus. PLoS One. 7:e489142012. View Article : Google Scholar | |
|
Petersen HO, Höger SK, Looso M, Lengfeld T, Kuhn A, Warnken U, Nishimiya-Fujisawa C, Schnölzer M, Krüger M, Özbek S, et al: A comprehensive transcriptomic and proteomic analysis of hydra head regeneration. Mol Biol Evol. April 2–2015.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Galliot B: Autophagy and self-preservation: A step ahead from cell plasticity? Autophagy. 2:231–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Galliot B, Miljkovic-Licina M, Ghila L and Chera S: RNAi gene silencing affects cell and developmental plasticity in hydra. C R Biol. 330:491–497. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K and Galliot B: Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci. 119:846–857. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Räty S, Sand J, Laukkarinen J, Vasama K, Bassi C, Salvia R and Nordback I: Cyst fluid SPINK1 may help to differentiate benign and potentially malignant cystic pancreatic lesions. Pancreatology. 13:530–533. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lempinen M, Paju A, Kemppainen E, Smura T, Kylänpää ML, Nevanlinna H, Stenman J and Stenman UH: Mutations N34S and P55S of the SPINK1 gene in patients with chronic pancreatitis or pancreatic cancer and in healthy subjects: A report from Finland. Scand J Gastroenterol. 40:225–230. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Shimosegawa T, Kume K and Satoh K: Chronic pancreatitis and pancreatic cancer: Prediction and mechanism. Clin Gastroenterol Hepatol. 7(Suppl 11): S23–S28. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Koehler A, Desser S, Chang B, MacDonald J, Tepass U and Ringuette M: Molecular evolution of SPARC: Absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis. Dev Genes Evol. 219:509–521. 2009. View Article : Google Scholar | |
|
Fritzenwanker JH, Saina M and Technau U: Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol. 275:389–402. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sinkovics JG: Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review). Int J Oncol. 35:441–465. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Grant JL, Fishbein MC, Hong LS, Krysan K, Minna JD, Shay JW, Walser TC and Dubinett SM: A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis. Cancer Prev Res (Phila). 7:150–160. 2014. View Article : Google Scholar | |
|
Kaleağasıoğlu F and Berger MR: SIBLINGs and SPARC families: Their emerging roles in pancreatic cancer. World J Gastroenterol. 20:14747–14759. 2014. View Article : Google Scholar | |
|
Yang F, Zhou X, Miao X, Zhang T, Hang X, Tie R, Liu N, Tian F, Wang F and Yuan J: MAGEC2, an epithelial-mesenchymal transition inducer, is associated with breast cancer metastasis. Breast Cancer Res Treat. 145:23–32. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, Marlow H, Levanon D, Groner Y, Finnerty JR and Gat U: The evolutionary origin of the Runx/CBFbeta transcription factors--studies of the most basal metazoans. BMC Evol Biol. 8:2282008. View Article : Google Scholar : PubMed/NCBI | |
|
Klunker S, Chong MMW, Mantel PY, Palomares O, Bassin C, Ziegler M, Rückert B, Meiler F, Akdis M, Littman DR, et al: Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J Exp Med. 206:2701–2715. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lück SC, Russ AC, Du J, Gaidzik V, Schlenk RF, Pollack JR, Döhner K, Döhner H and Bullinger L: KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol. 148:925–937. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huang G, Zhao X, Wang L, Elf S, Xu H, Zhao X, Sashida G, Zhang Y, Liu Y, Lee J, et al: The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood. 118:6544–6552. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bledsoe KL, McGee-Lawrence ME, Camilleri ET, Wang X, Riester SM, van Wijnen AJ, Oliveira AM and Westendorf JJ: RUNX3 facilitates growth of Ewing sarcoma cells. J Cell Physiol. 229:2049–2056. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY and Kuo PL: Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem. 286:37335–37346. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Estécio MR, Maddipoti S, Bueso-Ramos C, DiNardo CD, Yang H, Wei Y, Kondo K, Fang Z, Stevenson W, Chang KS, et al: RUNX3 promoter hypermethylation is frequent in leukaemia cell lines and associated with acute myeloid leukaemia inv(16) subtype. Br J Haematol. 169:344–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Martin JW, Zielenska M, Stein GS, van Wijnen AJ and Squire JA: The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011:2827452011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Goldstein D, Crowe PJ and Yang JL: Impact of STAT3 inhibition on survival of osteosarcoma cell lines. Anticancer Res. 34:6537–6545. 2014.PubMed/NCBI | |
|
Yang Q, Zhang S, Kang M, Dong R and Zhao J: Synergistic growth inhibition by sorafenib and cisplatin in human osteosar-coma cells. Oncol Rep. 33:2537–2544. 2015.PubMed/NCBI | |
|
Sinkovics JG: Cytolytic Immune Lymphocytes. Schenk Buchverlag Passau; Germany; Dialog Campus, Budapest: pp. 2802008 | |
|
Burgess M and Tawbi H: Immunotherapeutic approaches to sarcoma. Curr Treat Options Oncol. 16:3452015. View Article : Google Scholar | |
|
Matus DQ, Magie CR, Pang K, Martindale MQ and Thomsen GH: The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol. 313:501–518. 2008. View Article : Google Scholar : | |
|
Bürglin TR: Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif. BMC Genomics. 9:1272008. View Article : Google Scholar : PubMed/NCBI | |
|
McCabe JM and Leahy DJ: Smoothened goes molecular: New pieces in the hedgehog signaling puzzle. J Biol Chem. 290:3500–3507. 2015. View Article : Google Scholar | |
|
Warner JF, McCarthy AM, Morris RL and McClay DR: Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol. 31:18–22. 2014. View Article : Google Scholar : | |
|
Kern D, Regl G, Hofbauer SW, Altenhofer P, Achatz G, Dlugosz A, Schnidar H, Greil R, Hartmann TN and Aberger F: Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene. 2015, doi.org/10.1038/onc.2014.450urisimpledoi.org/10.1038/onc.2014.450. View Article : Google Scholar | |
|
Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A and Williams R: Molecular signalling in hepatocellular carcinoma: Role of and crosstalk among WNT/β-catenin, Sonic Hedgehog, Notch and Dickkopf-1. Can J Gastroenterol Hepatol. 29:212–211. 2015. | |
|
Layden MJ and Martindale MQ: Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. Evodevo. 5:302014. View Article : Google Scholar | |
|
Layden MJ, Boekhout M and Martindale MQ: Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development. 139:1013–1022. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Marlow H, Roettinger E, Boekhout M and Martindale MQ: Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol. 362:295–308. 2012. View Article : Google Scholar | |
|
Krejcí A and Bray S: Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21:1322–1327. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Guito J and Lukac DM: KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses. 7:72–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Spadavecchia S, Gonzalez-Lopez O, Carroll KD, Palmeri D and Lukac DM: Convergence of Kaposi's sarcoma-associated herpesvirus reactivation with Epstein-Barr virus latency and cellular growth mediated by the notch signaling pathway in coinfected cells. J Virol. 84:10488–10500. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rettig EM, Chung CH, Bishop JA, Howard JD, Sharma R, Li RJ, Douville C, Karchin R, Izumchenko E, Sidransky D, et al: Cleaved NOTCH1 expression pattern in head and neck squamous cell carcinoma is associated with NOTCH1 mutation, HPV status, and high risk features. Cancer Prev Res (Phila). 8:287–295. 2015. View Article : Google Scholar | |
|
Ayaz F and Osborne BA: Non-canonical notch signaling in cancer and immunity. Front Oncol. 4:3452014. View Article : Google Scholar : PubMed/NCBI | |
|
Jager M, Quéinnec E, Le Guyader H and Manuel M: Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evodevo. 2:122011. View Article : Google Scholar : PubMed/NCBI | |
|
Shinzato C, Iguchi A, Hayward DC, Technau U, Ball EE and Miller DJ: Sox genes in the coral Acropora millepora: Divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. BMC Evol Biol. 8:3112008. View Article : Google Scholar : PubMed/NCBI | |
|
Richards GS and Rentzsch F: Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development. 141:4681–4689. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Magie CR, Pang K and Martindale MQ: Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol. 215:618–630. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Thu KL, Becker-Santos DD, Radulovich N, Pikor LA, Lam WL and Tsao MS: SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience. 1:326–335. 2014. | |
|
Sinkovics JG: The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp). 5:25–43. 2015. View Article : Google Scholar | |
|
Ryan JF and Baxevanis AD: Hox, Wnt, and the evolution of the primary body axis: Insights from the early-divergent phyla. Biol Direct. 2:372007. View Article : Google Scholar : PubMed/NCBI | |
|
Holstein TW: The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol. 4:a0079222012. View Article : Google Scholar : PubMed/NCBI | |
|
Xin M: Hedgehog inhibitors: A patent review (2013 - present). Expert Opin Ther Pat. 25:549–565. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lockhart NR, Waddell JA and Schrock NE: Itraconazole therapy in a pancreatic adenocarcinoma patient: A case report. J Oncol Pharm Pract. Feb 9–2015.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Huang YC, Chao KS, Liao HF and Chen YJ: Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evid Based Complement Alternat Med. 2013:7485872013. View Article : Google Scholar : PubMed/NCBI | |
|
Chung SS and Vadgama JV: Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NF-κB signaling. Anticancer Res. 35:39–46. 2015.PubMed/NCBI | |
|
Song L, Li ZY, Liu WP and Zhao MR: Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther. 16:1–7. 2015. View Article : Google Scholar | |
|
[a] Song J, Du Z, Ravasz M, Dong B, Wang Z and Ewing RM: A protein interaction between beta-catenin and Dnmtl regulates Wnt signaling and DNA methylation in colorectal cancer cells. Mol Cancer Res. 13:969–981. 2015. View Article : Google Scholar : PubMed/NCBI [b] Jin L, Hanigan CL, Wu Y, Wang W, Park BH, Woster PM and Casero RA: Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human cancer cells in a p53- and DNMT1 (DNA methyltransferase 1)-independent manner. Biochem J. 449:459–468. 2013. View Article : Google Scholar | |
|
Blackburn HL, Ellsworth DL, Shriver CD and Ellsworth RE: Role of cytochrome P450 genes in breast cancer etiology and treatment: Effects on estrogen biosynthesis, metabolism, and response to endocrine therapy. Cancer Causes Control. 26:319–332. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Go RE, Hwang KA and Choi KC: Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 147:24–30. 2015. View Article : Google Scholar | |
|
[a] Yue JX, Yu JK, Putnam NH and Holland LZ: The tran-scriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: A window into chordate evolution. Genome Biol Evol. 6:2681–2696. 2014. View Article : Google Scholar : PubMed/NCBI [b] Lu TM, Luo YJ and Yu JK: BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: Insights into the evolution of the peripheral sensory system. Development. 139:2020–2030. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sinkovics JG: Horizontal gene transfers with or without cell fusions in all categories of the living matter. Adv Exp Med Biol. 714:5–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mhawech P, Berczy M, Assaly M, Herrmann F, Bouzourene H, Allal AS, Dulguerov P and Schwaller J: Human achaete-scute homologue (hASH1) mRNA level as a diagnostic marker to distinguish esthesioneuroblastoma from poorly differentiated tumors arising in the sinonasal tract. Am J Clin Pathol. 122:100–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Carney ME, O'Reilly RC, Sholevar B, Buiakova 01, Lowry LD, Keane WM, Margolis FL and Rothstein JL: Expression of the human Achaete-scute 1 gene in olfactory neuroblastoma. J Neurooncol. 26:35–43. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Holoye PY, Samuels ML, Smith T and Sinkovics JG: Chemoimmunotherapy of small cell bronchogenic carcinoma. Cancer. 42:34–40. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, Lee V, Tan C, Sullivan JP, Larsen JE, et al: ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA. 111:14788–14793. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shabalina SA and Koonin EV: Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 23:578–587. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P and Arendt D: Ancient animal microRNAs and the evolution of tissue identity. Nature. 463:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS and Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 455:1193–1197. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hertel J, Bartschat S, Wintsche A, Otto C and Stadler PF; Students of the Bioinformatics Computer Lab. Evolution of the let-7 microRNA family. RNA Biol. 9:231–241. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ambros V: A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 57:49–57. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Krishna S, Nair A, Cheedipudi S, Poduval D, Dhawan J, Palakodeti D and Ghanekar Y: Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata. Nucleic Acids Res. 41:599–616. 2013. View Article : Google Scholar : | |
|
Juliano CE, Reich A, Liu N, Götzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE and Lin H: PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci USA. 111:337–342. 2014. View Article : Google Scholar : | |
|
Chen P, Xi Q, Wang Q and Wei P: Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol. 31:2352014. View Article : Google Scholar : PubMed/NCBI | |
|
Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D and Rao B: MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 31:2055–2062. 2014.PubMed/NCBI | |
|
Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, You MJ, Teruya-Feldstein J, Wang M, Gupta S, et al: miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 10:e10041772014. View Article : Google Scholar : PubMed/NCBI | |
|
Ng WL, Yan D, Zhang X, Mo YY and Wang Y: Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 9:1170–1175. 2010. View Article : Google Scholar | |
|
Morais DR, Reis ST, Viana N, Piantino CB, Massoco C, Moura C, Dip N, Silva IA, Srougi M and Leite KRM: The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability. Cancer Cell Int. 14:1192014. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Li X, Yu C, Wang M, Peng F, Xiao J, Tian R, Jiang J and Sun C: MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 35:11751–11759. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L and Peng X: Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 45:362–372. 2014.PubMed/NCBI | |
|
Ghose J and Bhattacharyya NP: Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol. 12:457–477. 2015. View Article : Google Scholar | |
|
Ma X, Li C, Sun L, Huang D, Li T, He X, Wu G, Yang Z, Zhong X, Song L, et al: Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun. 5:52122014. View Article : Google Scholar : PubMed/NCBI | |
|
Sinkovics JG: Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review). Int J Oncol. 40:305–349. 2012. | |
|
Iliopoulos D, Hirsch HA and Struhl K: An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 139:693–706. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bosch TC, Unger TF, Fisher DA and Steele RE: Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata. Mol Cell Biol. 9:4141–4151. 1989.PubMed/NCBI | |
|
Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G and Voolstra CR: Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics. 14:7042013. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz-Ramos DV and Baums IB: Microsatellite abundance across the Anthozoa and Hydrozoa in the phylum Cnidaria. BMC Genomics. 15:9392014. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, et al: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 466:720–726. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kerner P, Degnan SM, Marchand L, Degnan BM and Vervoort M: Evolution of RNA-binding proteins in animals: Insights from genome-wide analysis in the sponge Amphimedon queenslandica. Mol Biol Evol. 28:2289–2303. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, et al: The Trichoplax genome and the nature of placozoans. Nature. 454:955–960. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Schierwater B, de Jong D and Desalle R: Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol. 41:370–379. 2009. View Article : Google Scholar | |
|
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, et al: The ctenophore genome and the evolutionary origins of neural systems. Nature. 510:109–114. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson DR, Goldstone JV and Stegeman JJ: The cytochrome P-450 genesis locus: the origin and evolution of animal cytochrome P450. Philos Trans R Soc Lond B Biol Sci. 368:2012.04742013. | |
|
Robertson AJ, Larroux C, Degnan BM and Coffman JA: The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Res Notes. 2:592009. View Article : Google Scholar : PubMed/NCBI | |
|
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A and Finnerty JR: Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics. 15:712014. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández JG, Rodríguez DA, Valenzuela M, Calderon C, Urzúa U, Munroe D, Rosas C, Lemus D, Díaz N, Wright MC, et al: Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol Cancer. 13:2092014. View Article : Google Scholar | |
|
Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H and Manuel M: Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS One. 8:e843632013. View Article : Google Scholar | |
|
Pang K, Ryan JF, Mullikin JC, Baxevanis AD and Martindale MQ; NISC Comparative Sequencing Program. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo. 1:102010. View Article : Google Scholar : PubMed/NCBI | |
|
Schnitzler CE, Simmons DK, Pang K, Martindale MQ and Baxevanis AD: Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo. 5:152014. View Article : Google Scholar : PubMed/NCBI | |
|
Hua HW, Jiang F, Huang Q, Liao Z and Ding G: MicroRNA-153 promotes Wnt/β-catenin activation in hepatocellular carcinoma through suppression of WWOX. Oncotarget. 6:3840–3847. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HC, Xu J, Fang LS, Qiu YY, Lin XM, Huang HX and Han QY: Ectopic expression of the WWOX gene suppresses stemness of human ovarian cancer stem cells. Oncol Lett. 9:1614–1620. 2015.PubMed/NCBI | |
|
Ma R, Jiang T and Kang X: Circulating microRNAs in cancer: Origin, function and application. J Exp Clin Cancer Res. 31:382012. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Oh S-Y, Do SI, Lee HJ, Kang HJ, Rho YS, Bae WJ and Lim YC: SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer. 111:2122–2130. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Irshad K, Mohapatra SK, Srivastava C, Garg H, Mishra S, Dikshit B, Sarkar C, Gupta D, Chandra PS, Chattopadhyay P, et al: A combined gene signature of hypoxia and notch pathway in human glioblastoma and its prognostic relevance. PLoS One. 10:e01182012015. View Article : Google Scholar : PubMed/NCBI | |
|
Robert J: Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol. 34:915–925. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey CJ, Yu J, Becker H, Maharry K, et al: Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 17:333–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh S and Hayden MS: Celebrating 25 years of NF-κB research. Immunol Rev. 246:5–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao G and Fu J: NF-κB and cancer: A paradigm of Yin-Yang. Am J Cancer Res. 1:192–221. 2011. | |
|
Ueda Y and Richmond A: NF-kappaB activation in melanoma. Pigment Cell Res. 19:112–124. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Patel PS, Varney ML, Dave BJ and Singh RK: Regulation of constitutive and induced NF-kappaB activation in malignant melanoma cells by capsaicin modulates interleukin-8 production and cell proliferation. J Interferon Cytokine Res. 22:427–435. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Martini M, Ciraolo E, Gulluni F and Hirsch E: Targeting PI3K in cancer: Any good news? Front Oncol. 3:1082013. View Article : Google Scholar : PubMed/NCBI | |
|
Editorial. FDA approves PI3K inhibitor, idelalisib for treatment of relapsed CLL, follicular jymphoma and small lymphocytic lymphoma. Science & Education on Oncology PRO. http://oncologypro.esmo.org. | |
|
Mukohara T: PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer. 7:111–123. 2015.PubMed/NCBI | |
|
Sinkovics JG: Antileukemia and antitumor effects of the graft-versus-host disease: A new immunovirological approach. Acta Microbiol Immunol Hung. 57:253–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Geiger TL and Rubnitz JE: New approaches for the immunotherapy of acute myeloid leukemia. Discov Med. 19:275–284. 2015.PubMed/NCBI | |
|
Magee MS and Snook AE: Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer. Discov Med. 18:265–271. 2014.PubMed/NCBI | |
|
Sinkovics JG and Horvath JC: Human natural killer cells: A comprehensive review. Int J Oncol. 27:5–47. 2005.PubMed/NCBI | |
|
Bruchard M and Ghiringhelli F: Microenvironment tumoral. Cellules régulatrices et cytokines immunosuppressives. Med Sci. 30:429–435. 2014. | |
|
Old LJ: Tumor necrosis factor (TNF). Science. 230:630–632. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Urschel K and Cicha I: TNF-α in the cardiovascular system: from physiology to therapy. Internat J Interferon Cytokine Med Res. 7:9–25. 2015. | |
|
Quistad SD, Stotland A, Barott KL, Smurthwaite CA, Hilton BJ, Grasis JA, Wolkowicz R and Rohwer FL: Evolution of TNF-induced apoptosis reveals 550 My functional conservation. Proc Natl Acad Sci USA. 111:9567–9572. 2014. View Article : Google Scholar | |
|
Spandidos DA and Lang JC: In vitro cell transformation by ras oncogenes. Crit Rev Oncog. 1:195–209. 1989.PubMed/NCBI |
Journal ID (publisher-id): IJO
Title: International Journal of Oncology
ISSN (print): 1019-6439
ISSN (electronic): 1791-2423
Publisher: D.A. Spandidos
Copyright © 2015, Spandidos Publications
Copyright: 2015
License (open-access, https://creativecommons.org/licenses/by-nc-nd/4.0):
This is an open access article distributed under the terms of a Creative Commons Attribution License
Publication date (collection): October 2015
Volume: 47
Issue: 4
Page: 1229
Publisher ID: ijo-47-04-1211
AddendumInt J Oncol 19: 473–488, 2001; DOI: 10.3892/ijo.19.3.473
The authors would like to acknowledge that the Coriphosphine O stain shown in the upper panel of Figure 8 was a kind gift from Dr T.P. Loughran of the H.L. Moffitt Cancer Center, Tampa, FL, USA.
Categories:
Subject: Articles
Warnings reported by the processor due to anomalous or incomplete markup follow:
Either the element should be provided a label, or their cross-reference(s) should have literal text content.
{ label needed for corresp[@id='c1-ijo-47-04-1211'] }This display is generated from NLM/NCBI Journal Publishing 3.0 XML with jpub3-html.xsl. The XSLT engine is Saxonica