|
1
|
Mahmoud SS and Croteau RB: Strategies for
transgenic manipulation of monoterpene biosynthesis in plants.
Trends Plant Sci. 7:366–373. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guimarães AG, Quintans JS and Quintans LJ
Jr: Monoterpenes with analgesic activity: a systematic review.
Phytother Res. 27:1–15. 2013. View
Article : Google Scholar
|
|
3
|
de Cássia da Silveira e Sá R, Andrade LN
and de Sousa DP: A review on anti-inflammatory activity of
monoterpenes. Molecules. 18:1227–1254. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bhalla Y, Gupta VK and Jaitak V:
Anticancer activity of essential oils: A review. J Sci Food Agric.
93:3643–3653. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Barreto RS, Albuquerque-Júnior RL, Araújo
AA, Almeida JR, Santos MR, Barreto AS, DeSantana JM, Siqueira-Lima
PS, Quintans JS and Quintans-Júnior LJ: A systematic review of the
wound-healing effects of monoterpenes and iridoid derivatives.
Molecules. 19:846–862. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hasan SK and Sultana S: Geraniol
attenuates 2-acetylamino-fluorene induced oxidative stress,
inflammation and apoptosis in the liver of wistar rats. Toxicol
Mech Methods. 25:559–573. 2015.
|
|
7
|
Medicherla K, Sahu BD, Kuncha M, Kumar JM,
Sudhakar G and Sistla R: Oral administration of geraniol
ameliorates acute experimental murine colitis by inhibiting
pro-inflammatory cytokines and NF-κB signaling. Food Funct.
6:2984–2995. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Soubh AA, Abdallah DM and El-Abhar HS:
Geraniol ameliorates TNBS-induced colitis: Involvement of
Wnt/β-catenin, p38MAPK, NF-κB, and PPARγ signaling pathways. Life
Sci. 136:142–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kozioł A, Stryjewska A, Librowski T, Sałat
K, Gaweł M, Moniczewski A and Lochyński S: An overview of the
pharmacological properties and potential applications of natural
monoterpenes. Mini Rev Med Chem. 14:1156–1168. 2014. View Article : Google Scholar
|
|
10
|
Gould MN: Cancer chemoprevention and
therapy by monoterpenes. Environ Health Perspect. 105(Suppl 4):
977–979. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Crowell PL: Prevention and therapy of
cancer by dietary monoterpenes. J Nutr. 129:775S–778S.
1999.PubMed/NCBI
|
|
12
|
Chen TC, Fonseca CO and Schönthal AH:
Preclinical development and clinical use of perillyl alcohol for
chemoprevention and cancer therapy. Am J Cancer Res. 5:1580–1593.
2015.PubMed/NCBI
|
|
13
|
Samaila D, Toy BJ, Wang RC and Elegbede
JA: Monoterpenes enhanced the sensitivity of head and neck cancer
cells to radiation treatment in vitro. Anticancer Res.
24:3089–3095. 2004.PubMed/NCBI
|
|
14
|
Bardon S, Foussard V, Fournel S and Loubat
A: Monoterpenes inhibit proliferation of human colon cancer cells
by modulating cell cycle-related protein expression. Cancer Lett.
181:187–194. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sobral MV, Xavier AL, Lima TC and de Sousa
DP: Antitumor activity of monoterpenes found in essential oils. Sci
World J. 2014:9534512014. View Article : Google Scholar
|
|
16
|
Lapczynski A, Bhatia SP, Foxenberg RJ,
Letizia CS and Api AM: Fragrance material review on geraniol. Food
Chem Toxicol. 46(Suppl 11): S160–S170. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Solórzano-Santos F and Miranda-Novales MG:
Essential oils from aromatic herbs as antimicrobial agents. Curr
Opin Biotechnol. 23:136–141. 2012. View Article : Google Scholar
|
|
18
|
Tiwari M and Kakkar P: Plant derived
antioxidants - Geraniol and camphene protect rat alveolar
macrophages against t-BHP induced oxidative stress. Toxicol In
Vitro. 23:295–301. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Carvalho KI, Bonamin F, Dos Santos RC,
Périco LL, Beserra FP, de Sousa DP, Filho JM, da Rocha LR and
Hiruma-Lima CA: Geraniol - a flavoring agent with multifunctional
effects in protecting the gastric and duodenal mucosa. Naunyn
Schmiedebergs Arch Pharmacol. 387:355–365. 2014. View Article : Google Scholar
|
|
20
|
Rekha KR, Selvakumar GP, Sethupathy S,
Santha K and Sivakamasundari RI: Geraniol ameliorates the motor
behavior and neurotrophic factors inadequacy in MPTP-induced mice
model of Parkinson's disease. J Mol Neurosci. 51:851–862. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Burke YD, Stark MJ, Roach SL, Sen SE and
Crowell PL: Inhibition of pancreatic cancer growth by the dietary
isoprenoids farnesol and geraniol. Lipids. 32:151–156. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Carnesecchi S, Schneider Y, Ceraline J,
Duranton B, Gosse F, Seiler N and Raul F: Geraniol, a component of
plant essential oils, inhibits growth and polyamine biosynthesis in
human colon cancer cells. J Pharmacol Exp Ther. 298:197–200.
2001.PubMed/NCBI
|
|
23
|
Duncan RE, Lau D, El-Sohemy A and Archer
MC: Geraniol and beta-ionone inhibit proliferation, cell cycle
progression, and cyclin-dependent kinase 2 activity in MCF-7 breast
cancer cells independent of effects on HMG-CoA reductase activity.
Biochem Pharmacol. 68:1739–1747. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ong TP, Heidor R, de Conti A, Dagli ML and
Moreno FS: Farnesol and geraniol chemopreventive activities during
the initial phases of hepatocarcinogenesis involve similar actions
on cell proliferation and DNA damage, but distinct actions on
apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis.
27:1194–1203. 2006. View Article : Google Scholar
|
|
25
|
Kim SH, Bae HC, Park EJ, Lee CR, Kim BJ,
Lee S, Park HH, Kim SJ, So I, Kim TW, et al: Geraniol inhibits
prostate cancer growth by targeting cell cycle and apoptosis
pathways. Biochem Biophys Res Commun. 407:129–134. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Galle M, Crespo R, Kladniew BR, Villegas
SM, Polo M and de Bravo MG: Suppression by geraniol of the growth
of A549 human lung adenocarcinoma cells and inhibition of the
mevalonate pathway in culture and in vivo: Potential use in cancer
chemotherapy. Nutr Cancer. 66:888–895. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Carnesecchi S, Langley K, Exinger F, Gosse
F and Raul F: Geraniol, a component of plant essential oils,
sensitizes human colonic cancer cells to 5-Fluorouracil treatment.
J Pharmacol Exp Ther. 301:625–630. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Carnesecchi S, Bras-Gonçalves R, Bradaia
A, Zeisel M, Gossé F, Poupon MF and Raul F: Geraniol, a component
of plant essential oils, modulates DNA synthesis and potentiates
5-fluorouracil efficacy on human colon tumor xenografts. Cancer
Lett. 215:53–59. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Polo MP and de Bravo MG: Effect of
geraniol on fatty-acid and mevalonate metabolism in the human
hepatoma cell line Hep G2. Biochem Cell Biol. 84:102–111. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim SH, Park EJ, Lee CR, Chun JN, Cho NH,
Kim IG, Lee S, Kim TW, Park HH, So I, et al: Geraniol induces
cooperative interaction of apoptosis and autophagy to elicit cell
death in PC-3 prostate cancer cells. Int J Oncol. 40:1683–1690.
2012.
|
|
31
|
Crespo R, Montero Villegas S, Abba MC, de
Bravo MG and Polo MP: Transcriptional and posttranscriptional
inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2
cell proliferation linked pathways. Biochem Cell Biol. 91:131–139.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zimmermann GR, Lehár J and Keith CT:
Multi-target therapeutics: When the whole is greater than the sum
of the parts. Drug Discov Today. 12:34–42. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Efferth T and Koch E: Complex interactions
between phytochemicals. The multi-target therapeutic concept of
phytotherapy. Curr Drug Targets. 12:122–132. 2011. View Article : Google Scholar
|
|
34
|
Rather MA, Bhat BA and Qurishi MA:
Multicomponent phyto-therapeutic approach gaining momentum: Is the
‘one drug to fit all’ model breaking down? Phytomedicine. 21:1–14.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tao L, Zhu F, Xu F, Chen Z, Jiang YY and
Chen YZ: Co-targeting cancer drug escape pathways confers clinical
advantage for multi-target anticancer drugs. Pharmacol Res.
102:123–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang S and Kauffman S: How to escape the
cancer attractor: Rationale and limitations of multi-target drugs.
Semin Cancer Biol. 23:270–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Floor SL, Dumont JE, Maenhaut C and Raspe
E: Hallmarks of cancer: Of all cancer cells, all the time? Trends
Mol Med. 18:509–515. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ellenbroek SI and van Rheenen J: Imaging
hallmarks of cancer in living mice. Nat Rev Cancer. 14:406–418.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Horne SD, Pollick SA and Heng HH:
Evolutionary mechanism unifies the hallmarks of cancer. Int J
Cancer. 136:2012–2021. 2015. View Article : Google Scholar
|
|
42
|
Sonnenschein C and Soto AM: The aging of
the 2000 and 2011 Hallmarks of Cancer reviews: A critique. J
Biosci. 38:651–663. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Carnesecchi S, Bradaia A, Fischer B,
Coelho D, Schöller-Guinard M, Gosse F and Raul F: Perturbation by
geraniol of cell membrane permeability and signal transduction
pathways in human colon cancer cells. J Pharmacol Exp Ther.
303:711–715. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hoshi D, Nakajima A, Inoue E, Shidara K,
Sato E, Kitahama M, Seto Y, Tanaka E, Urano W, Ichikawa N, et al:
Incidence of serious respiratory infections in patients with
rheumatoid arthritis treated with tocilizumab. Mod Rheumatol.
22:122–127. 2012. View Article : Google Scholar
|
|
45
|
Chaudhary SC, Siddiqui MS, Athar M and
Alam MS: Geraniol inhibits murine skin tumorigenesis by modulating
COX-2 expression, Ras-ERK1/2 signaling pathway and apoptosis. J
Appl Toxicol. 33:828–837. 2013. View Article : Google Scholar
|
|
46
|
Vinothkumar V, Manoharan S, Sindhu G,
Nirmal MR and Vetrichelvi V: Geraniol modulates cell proliferation,
apoptosis, inflammation, and angiogenesis during
7,12-dimethylbenz[a] anthracene-induced hamster buccal pouch
carcinogenesis. Mol Cell Biochem. 369:17–25. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cardozo MT, de Conti A, Ong TP, Scolastici
C, Purgatto E, Horst MA, Bassoli BK and Moreno FS: Chemopreventive
effects of β-ionone and geraniol during rat hepatocarcinogenesis
promotion: Distinct actions on cell proliferation, apoptosis,
HMGCoA reductase, and RhoA. J Nutr Biochem. 22:130–135. 2011.
View Article : Google Scholar
|
|
48
|
Wiseman DA, Werner SR and Crowell PL: Cell
cycle arrest by the isoprenoids perillyl alcohol, geraniol, and
farnesol is mediated by p21Cip1 and p27Kip1
in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther.
320:1163–1170. 2007. View Article : Google Scholar
|
|
49
|
Vieira A, Heidor R, Cardozo MT, Scolastici
C, Purgatto E, Shiga TM, Barbisan LF, Ong TP and Moreno FS:
Efficacy of geraniol but not of β-ionone or their combination for
the chemoprevention of rat colon carcinogenesis. Braz J Med Biol
Res. 44:538–545. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ahmad ST, Arjumand W, Seth A, Nafees S,
Rashid S, Ali N and Sultana S: Preclinical renal cancer
chemopreventive efficacy of geraniol by modulation of multiple
molecular pathways. Toxicology. 290:69–81. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Vinothkumar V and Manoharan S:
Chemopreventive efficacy of geraniol against
7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch
carcinogenesis. Redox Rep. 16:91–100. 2011. View Article : Google Scholar
|
|
52
|
Khan AQ, Khan R, Qamar W, Lateef A, Rehman
MU, Tahir M, Ali F, Hamiza OO, Hasan SK and Sultana S: Geraniol
attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced
oxidative stress and inflammation in mouse skin: Possible role of
p38 MAP Kinase and NF-κB. Exp Mol Pathol. 94:419–429. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Madankumar A, Jayakumar S, Gokuladhas K,
Rajan B, Raghunandhakumar S, Asokkumar S and Devaki T: Geraniol
modulates tongue and hepatic phase I and phase II conjugation
activities and may contribute directly to the chemopreventive
activity against experimental oral carcinogenesis. Eur J Pharmacol.
705:148–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wittig C, Scheuer C, Parakenings J, Menger
MD and Laschke MW: Geraniol suppresses angiogenesis by
down-regulating vascular endothelial growth factor (VEGF)/VEGFR-2
signaling. PLoS One. 10:e01319462015. View Article : Google Scholar
|
|
55
|
Gysin S, Salt M, Young A and McCormick F:
Therapeutic strategies for targeting ras proteins. Genes Cancer.
2:359–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wallace HM: Targeting polyamine
metabolism: A viable therapeutic/preventative solution for cancer?
Expert Opin Pharmacother. 8:2109–2116. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Peters GJ, Backus HH, Freemantle S, van
Triest B, Codacci-Pisanelli G, van der Wilt CL, Smid K, Lunec J,
Calvert AH, Marsh S, et al: Induction of thymidylate synthase as a
5-fluorouracil resistance mechanism. Biochim Biophys Acta.
1587:194–205. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Popat S, Matakidou A and Houlston RS:
Thymidylate synthase expression and prognosis in colorectal cancer:
A systematic review and meta-analysis. J Clin Oncol. 22:529–536.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Topolcan O and Holubec L Jr: The role of
thymidine kinase in cancer diseases. Expert Opin Med Diagn.
2:129–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jin X, Sun J, Miao X, Liu G and Zhong D:
Inhibitory effect of geraniol in combination with gemcitabine on
proliferation of BXPC-3 human pancreatic cancer cells. J Int Med
Res. 41:993–1001. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Polo MP, Crespo R and de Bravo MG:
Geraniol and simvastatin show a synergistic effect on a human
hepatocarcinoma cell line. Cell Biochem Funct. 29:452–458. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yu SG, Hildebrandt LA and Elson CE:
Geraniol, an inhibitor of mevalonate biosynthesis, suppresses the
growth of hepatomas and melanomas transplanted to rats and mice. J
Nutr. 125:2763–2767. 1995.PubMed/NCBI
|
|
63
|
Shoff SM, Grummer M, Yatvin MB and Elson
CE: Concentration-dependent increase of murine P388 and B16
population doubling time by the acyclic monoterpene geraniol.
Cancer Res. 51:37–42. 1991.PubMed/NCBI
|
|
64
|
He L, Mo H, Hadisusilo S, Qureshi AA and
Elson CE: Isoprenoids suppress the growth of murine B16 melanomas
in vitro and in vivo. J Nutr. 127:668–674. 1997.PubMed/NCBI
|
|
65
|
Mo H, Tatman D, Jung M and Elson CE:
Farnesyl anthranilate suppresses the growth, in vitro and in vivo,
of murine B16 melanomas. Cancer Lett. 157:145–153. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
McAnally JA, Jung M and Mo H:
Farnesyl-O-acetylhydroquinone and geranyl-O-acetylhydroquinone
suppress the proliferation of murine B16 melanoma cells, human
prostate and colon adenocarcinoma cells, human lung carcinoma
cells, and human leukemia cells. Cancer Lett. 202:181–192. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Aqil F, Munagala R, Jeyabalan J and
Vadhanam MV: Bioavailability of phytochemicals and its enhancement
by drug delivery systems. Cancer Lett. 334:133–141. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chung AS and Ferrara N: Developmental and
pathological angiogenesis. Annu Rev Cell Dev Biol. 27:563–584.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
DeBose-Boyd RA: Feedback regulation of
cholesterol synthesis: Sterol-accelerated ubiquitination and
degradation of HMG CoA reductase. Cell Res. 18:609–621. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chun JN, Lim JM, Kang Y, Kim EH, Shin YC,
Kim HG, Jang D, Kwon D, Shin SY, So I, et al: A network perspective
on unraveling the role of TRP channels in biology and disease.
Pflugers Arch. 466:173–182. 2014. View Article : Google Scholar
|
|
71
|
Barabási AL, Gulbahce N and Loscalzo J:
Network medicine: A network-based approach to human disease. Nat
Rev Genet. 12:56–68. 2011. View Article : Google Scholar :
|
|
72
|
Furlong LI: Human diseases through the
lens of network biology. Trends Genet. 29:150–159. 2013. View Article : Google Scholar
|
|
73
|
Ideker T and Krogan NJ: Differential
network biology. Mol Syst Biol. 8:5652012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Grossglauser M and Saner H: Data-driven
healthcare: From patterns to actions. Eur J Prev Cardiol.
21(Suppl): 14–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lusher SJ, McGuire R, van Schaik RC,
Nicholson CD and de Vlieg J: Data-driven medicinal chemistry in the
era of big data. Drug Discov Today. 19:859–868. 2014. View Article : Google Scholar
|
|
76
|
Quan Y, Wang ZY, Xiong M, Xiao ZT and
Zhang HY: Dissecting traditional Chinese medicines by omics and
bioinformatics. Nat Prod Commun. 9:1391–1396. 2014.
|
|
77
|
Quinn BJ, Kitagawa H, Memmott RM, Gills JJ
and Dennis PA: Repositioning metformin for cancer prevention and
treatment. Trends Endocrinol Metab. 24:469–480. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Anisimov VN: Do metformin a real
anticarcinogen? A critical reappraisal of experimental data. Ann
Transl Med. 2:602014.PubMed/NCBI
|