|
1
|
Piccard H, Muschel RJ and Opdenakker G: On
the dual roles and polarized phenotypes of neutrophils in tumor
development and progression. Crit Rev Oncol Hematol. 82:296–309.
2012. View Article : Google Scholar
|
|
2
|
Brandau S, Dumitru CA and Lang S: Protumor
and antitumor functions of neutrophil granulocytes. Semin
Immunopathol. 35:163–176. 2013. View Article : Google Scholar
|
|
3
|
Dumitru CA, Lang S and Brandau S:
Modulation of neutrophil granulocytes in the tumor
microenvironment: Mechanisms and consequences for tumor
progression. Semin Cancer Biol. 23:141–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yan J, Kloecker G, Fleming C, Bousamra M
II, Hansen R, Hu X, Ding C, Cai Y, Xiang D, Donninger H, et al:
Human polymorphonuclear neutrophils specifically recognize and kill
cancerous cells. OncoImmunology. 3:e9501632014. View Article : Google Scholar
|
|
5
|
Jaganjac M, Poljak-Blazi M, Kirac I,
Borovic S, Joerg Schaur R and Zarkovic N: Granulocytes as effective
anticancer agent in experimental solid tumor models. Immunobiology.
215:1015–1020. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dissemond J, Weimann TK, Schneider LA,
Schneeberger A, Scharffetter-Kochanek K, Goos M and Wagner SN:
Activated neutrophils exert antitumor activity against human
melanoma cells: Reactive oxygen species-induced mechanisms and
their modulation by granulocyte-macrophage-colony-stimulating
factor. J Invest Dermatol. 121:936–938. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Granot Z, Henke E, Comen EA, King TA,
Norton L and Benezra R: Tumor entrained neutrophils inhibit seeding
in the premetastatic lung. Cancer Cell. 20:300–314. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
López-Lago MA, Posner S, Thodima VJ,
Molina AM, Motzer RJ and Chaganti RS: Neutrophil chemokines
secreted by tumor cells mount a lung antimetastatic response during
renal cell carcinoma progression. Oncogene. 32:1752–1760. 2013.
View Article : Google Scholar
|
|
9
|
Stockmeyer B, Beyer T, Neuhuber W, Repp R,
Kalden JR, Valerius T and Herrmann M: Polymorphonuclear
granulocytes induce antibody-dependent apoptosis in human breast
cancer cells. J Immunol. 171:5124–5129. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Albanesi M, Mancardi DA, Jönsson F,
Iannascoli B, Fiette L, Di Santo JP, Lowell CA and Bruhns P:
Neutrophils mediate antibody-induced antitumor effects in mice.
Blood. 122:3160–3164. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mayadas TN, Cullere X and Lowell CA: The
multifaceted functions of neutrophils. Annu Rev Pathol. 9:181–218.
2014. View Article : Google Scholar :
|
|
12
|
Amulic B, Cazalet C, Hayes GL, Metzler KD
and Zychlinsky A: Neutrophil function: From mechanisms to disease.
Annu Rev Immunol. 30:459–489. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kolaczkowska E and Kubes P: Neutrophil
recruitment and function in health and inflammation. Nat Rev
Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Scapini P and Cassatella MA: Social
networking of human neutrophils within the immune system. Blood.
124:710–719. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mantovani A, Cassatella MA, Costantini C
and Jaillon S: Neutrophils in the activation and regulation of
innate and adaptive immunity. Nat Rev Immunol. 11:519–531. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni
JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A,
Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate
T cell responses in early-stage human lung cancer. J Clin Invest.
124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Riise RE, Bernson E, Aurelius J, Martner
A, Pesce S, Della Chiesa M, Marcenaro E, Bylund J, Hellstrand K,
Moretta L, et al: TLR-stimulated neutrophils instruct NK cells to
trigger dendritic cell maturation and promote adaptive T cell
responses. J Immunol. 195:1121–1128. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Powell DR and Huttenlocher A: Neutrophils
in the tumor micro-environment. Trends Immunol. 37:41–52. 2016.
View Article : Google Scholar
|
|
19
|
Haqqani AS, Sandhu JK and Birnboim HC:
Expression of inter-leukin-8 promotes neutrophil infiltration and
genetic instability in mutatect tumors. Neoplasia. 2:561–568. 2000.
View Article : Google Scholar
|
|
20
|
Sandhu JK, Privora HF, Wenckebach G and
Birnboim HC: Neutrophils, nitric oxide synthase, and mutations in
the mutatect murine tumor model. Am J Pathol. 156:509–518. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Knaapen AM, Güngör N, Schins RP, Borm PJ
and Van Schooten FJ: Neutrophils and respiratory tract DNA damage
and mutagenesis: A review. Mutagenesis. 21:225–236. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Güngör N, Knaapen AM, Munnia A, Peluso M,
Haenen GR, Chiu RK, Godschalk RW and van Schooten FJ: Genotoxic
effects of neutrophils and hypochlorous acid. Mutagenesis.
25:149–154. 2010. View Article : Google Scholar
|
|
23
|
Campregher C, Luciani MG and Gasche C:
Activated neutrophils induce an hMSH2-dependent G2/M checkpoint
arrest and replication errors at a (CA)13-repeat in colon
epithelial cells. Gut. 57:780–787. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shang K, Bai YP, Wang C, Wang Z, Gu HY, Du
X, Zhou XY, Zheng CL, Chi YY, Mukaida N, et al: Crucial involvement
of tumor-associated neutrophils in the regulation of chronic
colitis-associated carcinogenesis in mice. PLoS One. 7:e518482012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang Y, Wang K, Han GC, Wang RX, Xiao H,
Hou CM, Guo RF, Dou Y, Shen BF, Li Y, et al: Neutrophil
infiltration favors colitis-associated tumorigenesis by activating
the interleukin-1 (IL-1)/ IL-6 axis. Mucosal Immunol. 7:1106–1115.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ning C, Li YY, Wang Y, Han GC, Wang RX,
Xiao H, Li XY, Hou CM, Ma YF, Sheng DS, et al: Complement
activation promotes colitis-associated carcinogenesis through
activating intestinal IL-1β/IL-17A axis. Mucosal Immunol.
8:1275–1284. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lakritz JR, Poutahidis T, Mirabal S,
Varian BJ, Levkovich T, Ibrahim YM, Ward JM, Teng EC, Fisher B,
Parry N, et al: Gut bacteria require neutrophils to promote mammary
tumorigenesis. Oncotarget. 6:9387–9396. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wilson CL, Jurk D, Fullard N, Banks P,
Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C,
et al: NFκB1 is a suppressor of neutrophil-driven hepatocellular
carcinoma. Nat Commun. 6:68182015. View Article : Google Scholar
|
|
29
|
Yan C, Huo X, Wang S, Feng Y and Gong Z:
Stimulation of hepatocarcinogenesis by neutrophils upon induction
of oncogenic kras expression in transgenic zebrafish. J Hepatol.
63:420–428. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Satpathy SR, Jala VR, Bodduluri SR,
Krishnan E, Hegde B, Hoyle GW, Fraig M, Luster AD and Haribabu B:
Crystalline silica-induced leukotriene B4-dependent inflammation
promotes lung tumour growth. Nat Commun. 6:70642015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Houghton AM, Rzymkiewicz DM, Ji H, Gregory
AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR,
et al: Neutrophil elastase-mediated degradation of IRS-1
accelerates lung tumor growth. Nat Med. 16:219–223. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gong L, Cumpian AM, Caetano MS, Ochoa CE,
De la Garza MM, Lapid DJ, Mirabolfathinejad SG, Dickey BF, Zhou Q
and Moghaddam SJ: Promoting effect of neutrophils on lung
tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol
Cancer. 12:1542013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hattar K, Franz K, Ludwig M, Sibelius U,
Wilhelm J, Lohmeyer J, Savai R, Subtil FS, Dahlem G, Eul B, et al:
Interactions between neutrophils and non-small cell lung cancer
cells: Enhancement of tumor proliferation and inflammatory mediator
synthesis. Cancer Immunol Immunother. 63:1297–1306. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ma X, Aoki T, Tsuruyama T and Narumiya S:
Definition of prostaglandin E2-EP2 signals in the colon tumor
microenvironment that amplify inflammation and tumor growth. Cancer
Res. 75:2822–2832. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Antonio N, Bønnelykke-Behrndtz ML, Ward
LC, Collin J, Christensen IJ, Steiniche T, Schmidt H, Feng Y and
Martin P: The wound inflammatory response exacerbates growth of
pre-neoplastic cells and progression to cancer. EMBO J.
34:2219–2236. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liang J, Piao Y, Holmes L, Fuller GN,
Henry V, Tiao N and de Groot JF: Neutrophils promote the malignant
glioma phenotype through S100A4. Clin Cancer Res. 20:187–198. 2014.
View Article : Google Scholar
|
|
37
|
Song W, Li L, He D, Xie H, Chen J, Yeh CR,
Chang LS, Yeh S and Chang C: Infiltrating neutrophils promote renal
cell carcinoma (RCC) proliferation via modulating androgen receptor
(AR) → c-Myc signals. Cancer Lett. 368:71–78. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Grégoire M, Guilloton F, Pangault C,
Mourcin F, Sok P, Latour M, Amé-Thomas P, Flecher E, Fest T and
Tarte K: Neutrophils trigger a NF-κB dependent polarization of
tumor-supportive stromal cells in germinal center B-cell lymphomas.
Oncotarget. 6:16471–16487. 2015. View Article : Google Scholar
|
|
39
|
Ramachandran IR, Condamine T, Lin C,
Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI and Nefedova Y: Bone
marrow PMN-MDSCs and neutrophils are functionally similar in
protection of multiple myeloma from chemotherapy. Cancer Lett.
371:117–124. 2016. View Article : Google Scholar
|
|
40
|
Liang W and Ferrara N: The complex role of
neutrophils in tumor angiogenesis and metastasis. Cancer Immunol
Res. 4:83–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Psaila B and Lyden D: The metastatic
niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tazawa H, Okada F, Kobayashi T, Tada M,
Mori Y, Une Y, Sendo F, Kobayashi M and Hosokawa M: Infiltration of
neutrophils is required for acquisition of metastatic phenotype of
benign murine fibrosarcoma cells: Implication of
inflammation-associated carcinogenesis and tumor progression. Am J
Pathol. 163:2221–2232. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Welch DR, Schissel DJ, Howrey RP and Aeed
PA: Tumor-elicited polymorphonuclear cells, in contrast to ‘normal’
circulating poly-morphonuclear cells, stimulate invasive and
metastatic potentials of rat mammary adenocarcinoma cells. Proc
Natl Acad Sci USA. 86:5859–5863. 1989. View Article : Google Scholar
|
|
44
|
El Rayes T, Catena R, Lee S, Stawowczyk M,
Joshi N, Fischbach C, Powell CA, Dannenberg AJ, Altorki NK, Gao D,
et al: Lung inflammation promotes metastasis through neutrophil
protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA.
112:16000–16005. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Queen MM, Ryan RE, Holzer RG, Keller-Peck
CR and Jorcyk CL: Breast cancer cells stimulate neutrophils to
produce oncostatin M: Potential implications for tumor progression.
Cancer Res. 65:8896–8904. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu Y, Zhao Q, Peng C, Sun L, Li XF and
Kuang DM: Neutrophils promote motility of cancer cells via a
hyaluronan-mediated TLR4/PI3K activation loop. J Pathol.
225:438–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dumitru CA, Gholaman H, Trellakis S,
Bruderek K, Dominas N, Gu X, Bankfalvi A, Whiteside TL, Lang S and
Brandau S: Tumor-derived macrophage migration inhibitory factor
modulates the biology of head and neck cancer cells via neutrophil
activation. Int J Cancer. 129:859–869. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek
T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al:
Granulocyte-colony stimulating factor promotes lung metastasis
through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci
USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gaida MM, Steffen TG, Günther F,
Tschaharganeh DF, Felix K, Bergmann F, Schirmacher P and Hänsch GM:
Polymorphonuclear neutrophils promote dyshesion of tumor cells and
elastase-mediated degradation of E-cadherin in pancreatic tumors.
Eur J Immunol. 42:3369–3380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Grosse-Steffen T, Giese T, Giese N,
Longerich T, Schirmacher P, Hänsch GM and Gaida MM:
Epithelial-to-mesenchymal transition in pancreatic ductal
adenocarcinoma and pancreatic tumor cell lines: The role of
neutrophils and neutrophil-derived elastase. Clin Dev Immunol.
2012:7207682012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Freisinger CM and Huttenlocher A: Live
imaging and gene expression analysis in zebrafish identifies a link
between neutrophils and epithelial to mesenchymal transition. PLoS
One. 9:e1121832014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hu P, Shen M, Zhang P, Zheng C, Pang Z,
Zhu L and Du J: Intratumoral neutrophil granulocytes contribute to
epithelial-mesenchymal transition in lung adenocarcinoma cells.
Tumour Biol. 36:7789–7796. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin C, Lin W, Yeh S, Li L and Chang C:
Infiltrating neutrophils increase bladder cancer cell invasion via
modulation of androgen receptor (AR)/MMP13 signals. Oncotarget.
6:43081–43089. 2015.PubMed/NCBI
|
|
54
|
Song W, Yeh CR, He D, Wang Y, Xie H, Pang
ST, Chang LS, Li L and Yeh S: Infiltrating neutrophils promote
renal cell carcinoma progression via VEGFa/HIF2α and estrogen
receptor β signals. Oncotarget. 6:19290–19304. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Coffelt SB, Kersten K, Doornebal CW,
Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M,
Hawinkels LJ, Jonkers J, et al: IL-17-producing γδ T cells and
neutrophils conspire to promote breast cancer metastasis. Nature.
522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu QD, Wang JH, Condron C, Bouchier-Hayes
D and Redmond HP: Human neutrophils facilitate tumor cell
transendothelial migration. Am J Physiol Cell Physiol.
280:C814–C822. 2001.PubMed/NCBI
|
|
57
|
Strell C, Lang K, Niggemann B, Zaenker KS
and Entschladen F: Neutrophil granulocytes promote the migratory
activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp
Cell Res. 316:138–148. 2010. View Article : Google Scholar
|
|
58
|
Huh SJ, Liang S, Sharma A, Dong C and
Robertson GP: Transiently entrapped circulating tumor cells
interact with neutrophils to facilitate lung metastasis
development. Cancer Res. 70:6071–6082. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Spicer JD, McDonald B, Cools-Lartigue JJ,
Chow SC, Giannias B, Kubes P and Ferri LE: Neutrophils promote
liver metastasis via Mac-1-mediated interactions with circulating
tumor cells. Cancer Res. 72:3919–3927. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tabariès S, Ouellet V, Hsu BE, Annis MG,
Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM and Siegel PM:
Granulocytic immune infiltrates are essential for the efficient
formation of breast cancer liver metastases. Breast Cancer Res.
17:452015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tazzyman S, Lewis CE and Murdoch C:
Neutrophils: Key mediators of tumour angiogenesis. Int J Exp
Pathol. 90:222–231. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tazzyman S, Niaz H and Murdoch C:
Neutrophil-mediated tumour angiogenesis: Subversion of immune
responses to promote tumour growth. Semin Cancer Biol. 23:149–158.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shojaei F, Wu X, Zhong C, Yu L, Liang XH,
Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8
regulates myeloid-cell-dependent tumour angiogenesis. Nature.
450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nozawa H, Chiu C and Hanahan D:
Infiltrating neutrophils mediate the initial angiogenic switch in a
mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA.
103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Deryugina EI, Zajac E, Juncker-Jensen A,
Kupriyanova TA, Welter L and Quigley JP: Tissue-infiltrating
neutrophils constitute the major in vivo source of
angiogenesis-inducing MMP-9 in the tumor microenvironment.
Neoplasia. 16:771–788. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu
Z, Yin XY and Zheng L: Peritumoral neutrophils link inflammatory
response to disease progression by fostering angiogenesis in
hepatocellular carcinoma. J Hepatol. 54:948–955. 2011. View Article : Google Scholar
|
|
67
|
Ardi VC, Kupriyanova TA, Deryugina EI and
Quigley JP: Human neutrophils uniquely release TIMP-free MMP-9 to
provide a potent catalytic stimulator of angiogenesis. Proc Natl
Acad Sci USA. 104:20262–20267. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bekes EM, Schweighofer B, Kupriyanova TA,
Zajac E, Ardi VC, Quigley JP and Deryugina EI: Tumor-recruited
neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately
the levels of tumor angiogenesis and efficiency of malignant cell
intravasation. Am J Pathol. 179:1455–1470. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rodriguez PC, Ernstoff MS, Hernandez C,
Atkins M, Zabaleta J, Sierra R and Ochoa AC: Arginase I-producing
myeloid-derived suppressor cells in renal cell carcinoma are a
subpopulation of activated granulocytes. Cancer Res. 69:1553–1560.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rotondo R, Barisione G, Mastracci L,
Grossi F, Orengo AM, Costa R, Truini M, Fabbi M, Ferrini S and
Barbieri O: IL-8 induces exocytosis of arginase 1 by neutrophil
polymorphonuclears in nonsmall cell lung cancer. Int J Cancer.
125:887–893. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
He G, Zhang H, Zhou J, Wang B, Chen Y,
Kong Y, Xie X, Wang X, Fei R, Wei L, et al: Peritumoural
neutrophils negatively regulate adaptive immunity via the
PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp
Clin Cancer Res. 34:1412015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Koyama S, Akbay EA, Li YY, Aref AR,
Skoulidis F, Herter-Sprie GS, Buczkowski KA, Liu Y, Awad MM,
Denning WL, et al: STK11/LKB1 deficiency promotes neutrophil
recruitment and proinflammatory cytokine production to suppress
T-cell activity in the lung tumor microenvironment. Cancer Res.
76:999–1008. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang J, Qiao X, Shi H, Han X, Liu W, Tian
X and Zeng X: Circulating tumor-associated neutrophils (cTAN)
contribute to circulating tumor cell survival by suppressing
peripheral leukocyte activation. Tumour Biol. 37:5397–5404. 2016.
View Article : Google Scholar
|
|
74
|
Brandau S, Trellakis S, Bruderek K,
Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J,
Zabel P, et al: Myeloid-derived suppressor cells in the peripheral
blood of cancer patients contain a subset of immature neutrophils
with impaired migratory properties. J Leukoc Biol. 89:311–317.
2011. View Article : Google Scholar
|
|
75
|
Fridlender ZG, Sun J, Mishalian I, Singhal
S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS,
et al: Transcriptomic analysis comparing tumor-associated
neutrophils with granulocytic myeloid-derived suppressor cells and
normal neutrophils. PLoS One. 7:e315242012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sceneay J, Chow MT, Chen A, Halse HM, Wong
CS, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ, et al:
Primary tumor hypoxia recruits
CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells
and compromises NK cell cytotoxicity in the premetastatic niche.
Cancer Res. 72:3906–3911. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Spiegel A, Brooks MW, Houshyar S,
Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J,
Zervantonakis IK, et al: Neutrophils suppress intraluminal NK-cell
mediated tumor cell clearance and enhance extravasation of
disseminated carcinoma cells. Cancer Discov. 6:630–649. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mishalian I, Bayuh R, Eruslanov E,
Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z
and Fridlender ZG: Neutrophils recruit regulatory T-cells into
tumors via secretion of CCL17 a new mechanism of impaired antitumor
immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z,
Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated
neutrophils recruit macrophages and T-regulatory cells to promote
progression of hepatocellular carcinoma and resistance to
sorafenib. Gastroenterology. S0016-5085(16)00231-6. 2016.
|
|
80
|
Casbon AJ, Reynaud D, Park C, Khuc E, Gan
DD, Schepers K, Passegué E and Werb Z: Invasive breast cancer
reprograms early myeloid differentiation in the bone marrow to
generate immunosuppressive neutrophils. Proc Natl Acad Sci USA.
112:E566–E575. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Branzk N and Papayannopoulos V: Molecular
mechanisms regulating NETosis in infection and disease. Semin
Immunopathol. 35:513–530. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Demers M and Wagner DD: NETosis: A new
factor in tumor progression and cancer-associated thrombosis. Semin
Thromb Hemost. 40:277–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cools-Lartigue J, Spicer J, Najmeh S and
Ferri L: Neutrophil extracellular traps in cancer progression. Cell
Mol Life Sci. 71:4179–4194. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fuchs TA, Brill A, Duerschmied D,
Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW,
Hartwig JH and Wagner DD: Extracellular DNA traps promote
thrombosis. Proc Natl Acad Sci USA. 107:15880–15885. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Demers M, Krause DS, Schatzberg D,
Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD:
Cancers predispose neutrophils to release extracellular DNA traps
that contribute to cancer-associated thrombosis. Proc Natl Acad Sci
USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Demers M and Wagner DD: Neutrophil
extracellular traps: A new link to cancer-associated thrombosis and
potential implications for tumor progression. OncoImmunology.
2:e229462013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cools-Lartigue J, Spicer J, McDonald B,
Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P and Ferri L:
Neutrophil extracellular traps sequester circulating tumor cells
and promote metastasis. J Clin Invest. 674842013.PubMed/NCBI
|
|
88
|
Cedervall J, Zhang Y, Huang H, Zhang L,
Femel J, Dimberg A and Olsson AK: Neutrophil extracellular traps
accumulate in peripheral blood vessels and compromise organ
function in tumor-bearing animals. Cancer Res. 75:2653–2662. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Guglietta S, Chiavelli A, Zagato E, Krieg
C, Gandini S, Ravenda PS, Bazolli B, Lu B, Penna G and Rescigno M:
Coagulation induced by C3aR-dependent NETosis drives protumorigenic
neutrophils during small intestinal tumorigenesis. Nat Commun.
7:110372016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi
AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H and Tsung A:
Neutrophil extracellular traps promote the development and
progression of liver metastases after surgical stress. Cancer Res.
76:1367–1380. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cortez-Retamozo V, Etzrodt M, Newton A,
Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B,
Gorbatov R, et al: Origins of tumor-associated macrophages and
neutrophils. Proc Natl Acad Sci USA. 109:2491–2496. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
De Larco JE, Wuertz BR and Furcht LT: The
potential role of neutrophils in promoting the metastatic phenotype
of tumors releasing interleukin-8. Clin Cancer Res. 10:4895–4900.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang
Z, Wang C, Zhang Z, Xia W, et al: γδT17 cells promote the
accumulation and expansion of myeloid-derived suppressor cells in
human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Raccosta L, Fontana R, Maggioni D,
Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E,
Trincavelli ML, Daniele S, et al: The oxysterol-CXCR2 axis plays a
key role in the recruitment of tumor-promoting neutrophils. J Exp
Med. 210:1711–1728. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Raccosta L, Fontana R, Traversari C and
Russo V: Oxysterols recruit tumor-supporting neutrophils within the
tumor micro-environment: The many facets of tumor-derived
oxysterols. OncoImmunology. 2:e264692013. View Article : Google Scholar
|
|
96
|
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH,
Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5
mediates neutrophil infiltration and indicates poor prognosis for
hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z,
Xiao YS, Hu ZQ, Huang XY, Yang GH, Shi YH, et al: CXCL5 contributes
to tumor metastasis and recurrence of intrahepatic
cholangio-carcinoma by recruiting infiltrative intratumoral
neutrophils. Carcinogenesis. 35:597–605. 2014. View Article : Google Scholar
|
|
98
|
Bald T, Quast T, Landsberg J, Rogava M,
Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den
Boorn-Konijnenberg D, Hömig-Hölzel C, et al:
Ultraviolet-radiation-induced inflammation promotes angiotropism
and metastasis in melanoma. Nature. 507:109–113. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Trellakis S, Farjah H, Bruderek K, Dumitru
CA, Hoffmann TK, Lang S and Brandau S: Peripheral blood neutrophil
granulocytes from patients with head and neck squamous cell
carcinoma functionally differ from their counterparts in healthy
donors. Int J Immunopathol Pharmacol. 24:683–693. 2011.PubMed/NCBI
|
|
100
|
Walmsley SR, Print C, Farahi N,
Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM,
Cowburn AS, Johnson N, et al: Hypoxia-induced neutrophil survival
is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med.
201:105–115. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y,
Kuang DM and Zheng L: Increased autophagy sustains the survival and
pro-tumourigenic effects of neutrophils in human hepatocellular
carcinoma. J Hepatol. 62:131–139. 2015. View Article : Google Scholar
|
|
102
|
Andzinski L, Wu CF, Lienenklaus S, Kröger
A, Weiss S and Jablonska J: Delayed apoptosis of tumor associated
neutrophils in the absence of endogenous IFN-β. Int J Cancer.
136:572–583. 2015.
|
|
103
|
Jablonska J, Wu CF, Andzinski L, Leschner
S and Weiss S: CXCR2-mediated tumor-associated neutrophil
recruitment is regulated by IFN-β. Int J Cancer. 134:1346–1358.
2014. View Article : Google Scholar
|
|
104
|
Finisguerra V, Di Conza G, Di Matteo M,
Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H,
Granot Z, et al: MET is required for the recruitment of
anti-tumoural neutrophils. Nature. 522:349–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Galli SJ, Borregaard N and Wynn TA:
Phenotypic and functional plasticity of cells of innate immunity:
Macrophages, mast cells and neutrophils. Nat Immunol. 12:1035–1044.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gabrilovich DI, Ostrand-Rosenberg S and
Bronte V: Coordinated regulation of myeloid cells by tumours. Nat
Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fridlender ZG, Sun J, Kim S, Kapoor V,
Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of
tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’
TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sagiv JY, Michaeli J, Assi S, Mishalian I,
Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, et
al: Phenotypic diversity and plasticity in circulating neutrophil
subpopulations in cancer. Cell Rep. 10:562–573. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mishalian I, Bayuh R, Levy L, Zolotarov L,
Michaeli J and Fridlender ZG: Tumor-associated neutrophils (TAN)
develop pro-tumorigenic properties during tumor progression. Cancer
Immunol Immunother. 62:1745–1756. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yan B, Wei JJ, Yuan Y, Sun R, Li D, Luo J,
Liao SJ, Zhou YH, Shu Y, Wang Q, et al: IL-6 cooperates with G-CSF
to induce protumor function of neutrophils in bone marrow by
enhancing STAT3 activation. J Immunol. 190:5882–5893. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan
X, Mao F, Wang M, Zhu W, Qian H, et al: The IL-6-STAT3 axis
mediates a reciprocal crosstalk between cancer-derived mesenchymal
stem cells and neutrophils to synergistically prompt gastric cancer
progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hu X, Zhou Y, Dong K, Sun Z, Zhao D, Wang
W, Yu G, Liu W, Xu G, Han Z, et al: Programming of the development
of tumor-promoting neutrophils by mesenchymal stromal cells. Cell
Physiol Biochem. 33:1802–1814. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jensen HK, Donskov F, Marcussen N,
Nordsmark M, Lundbeck F and von der Maase H: Presence of
intratumoral neutrophils is an independent prognostic factor in
localized renal cell carcinoma. J Clin Oncol. 27:4709–4717. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Trellakis S, Bruderek K, Dumitru CA,
Gholaman H, Gu X, Bankfalvi A, Scherag A, Hütte J, Dominas N,
Lehnerdt GF, et al: Polymorphonuclear granulocytes in human head
and neck cancer: Enhanced inflammatory activity, modulation by
cancer cells and expansion in advanced disease. Int J Cancer.
129:2183–2193. 2011. View Article : Google Scholar
|
|
115
|
Jensen TO, Schmidt H, Møller HJ, Donskov
F, Høyer M, Sjoegren P, Christensen IJ and Steiniche T:
Intratumoral neutrophils and plasmacytoid dendritic cells indicate
poor prognosis and are associated with pSTAT3 expression in AJCC
stage I/II melanoma. Cancer. 118:2476–2485. 2012. View Article : Google Scholar
|
|
116
|
Chen X, Sun J, Song Y, Gao P, Zhao J,
Huang X, Liu B, Xu H and Wang Z: The novel long noncoding RNA
AC138128.1 may be a predictive biomarker in gastric cancer. Med
Oncol. 31:2622014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yang SZ, Ji WH, Mao WM and Ling ZQ:
Elevated levels of preoperative circulating CD44+
lymphocytes and neutrophils predict poor survival for non-small
cell lung cancer patients. Clin Chim Acta. 439:172–177. 2015.
View Article : Google Scholar
|
|
118
|
Rao HL, Chen JW, Li M, Xiao YB, Fu J, Zeng
YX, Cai MY and Xie D: Increased intratumoral neutrophil in
colorectal carcinomas correlates closely with malignant phenotype
and predicts patients’ adverse prognosis. PLoS One. 7:e308062012.
View Article : Google Scholar
|
|
119
|
Zhao JJ, Pan K, Wang W, Chen JG, Wu YH, Lv
L, Li JJ, Chen YB, Wang DD, Pan QZ, et al: The prognostic value of
tumor-infiltrating neutrophils in gastric adenocarcinoma after
resection. PLoS One. 7:e336552012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao
YS and Xu YF: Intra-tumoral neutrophils: A poor prognostic factor
for hepatocellular carcinoma following resection. J Hepatol.
54:497–505. 2011. View Article : Google Scholar
|
|
121
|
Wang N, Feng Y, Wang Q, Liu S, Xiang L,
Sun M, Zhang X, Liu G, Qu X and Wei F: Neutrophils infiltration in
the tongue squamous cell carcinoma and its correlation with CEACAM1
expression on tumor cells. PLoS One. 9:e899912014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Hu P, Pang Z, Shen H, Wang G, Sun H and Du
J: Tumor-infiltrating neutrophils predict poor outcome in
adenocarcinoma of the esophagogastric junction. Tumour Biol.
36:2965–2971. 2015. View Article : Google Scholar
|
|
123
|
Wang J, Jia Y, Wang N, Zhang X, Tan B,
Zhang G and Cheng Y: The clinical significance of
tumor-infiltrating neutrophils and neutrophil-to-CD8+
lymphocyte ratio in patients with resectable esophageal squamous
cell carcinoma. J Transl Med. 12:72014. View Article : Google Scholar
|
|
124
|
Shen M, Hu P, Donskov F, Wang G, Liu Q and
Du J: Tumor-associated neutrophils as a new prognostic factor in
cancer: A systematic review and meta-analysis. PLoS One.
9:e982592014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Templeton AJ, McNamara MG, Šeruga B,
Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G,
Knox JJ, Tran B, et al: Prognostic role of neutrophil-to-lymphocyte
ratio in solid tumors: A systematic review and meta-analysis. J
Natl Cancer Inst. 106:dju1242014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ferrucci PF, Gandini S, Battaglia A,
Alfieri S, Di Giacomo AM, Giannarelli D, Cappellini GC, De Galitiis
F, Marchetti P, Amato G, et al: Baseline neutrophil-to-lymphocyte
ratio is associated with outcome of ipilimumab-treated metastatic
melanoma patients. Br J Cancer. 112:1904–1910. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Gregory AD and Houghton AM:
Tumor-associated neutrophils: New targets for cancer therapy.
Cancer Res. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Sun R, Luo J, Li D, Shu Y, Luo C, Wang SS,
Qin J, Zhang GM and Feng ZH: Neutrophils with protumor potential
could efficiently suppress tumor growth after cytokine priming and
in presence of normal NK cells. Oncotarget. 5:12621–12634. 2014.
View Article : Google Scholar
|
|
129
|
Pang Y, Gara SK, Achyut BR, Li Z, Yan HH,
Day CP, Weiss JM, Trinchieri G, Morris JC and Yang L: TGF-β
signaling in myeloid cells is required for tumor metastasis. Cancer
Discov. 3:936–951. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Andzinski L, Kasnitz N, Stahnke S, Wu CF,
Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S
and Jablonska J: Type I IFNs induce anti-tumor polarization of
tumor associated neutrophils in mice and human. Int J Cancer.
138:1982–1993. 2016. View Article : Google Scholar
|
|
131
|
Jamieson T, Clarke M, Steele CW, Samuel
MS, Neumann J, Jung A, Huels D, Olson MF, Das S, Nibbs RJ, et al:
Inhibition of CXCR2 profoundly suppresses inflammation-driven and
spontaneous tumorigenesis. J Clin Invest. 122:3127–3144. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tazzyman S, Barry ST, Ashton S, Wood P,
Blakey D, Lewis CE and Murdoch C: Inhibition of neutrophil
infiltration into A549 lung tumors in vitro and in vivo using a
CXCR2-specific antagonist is associated with reduced tumor growth.
Int J Cancer. 129:847–858. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wculek SK and Malanchi I: Neutrophils
support lung colonization of metastasis-initiating breast cancer
cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Shrestha S, Noh JM, Kim SY, Ham HY, Kim
YJ, Yun YJ, Kim MJ, Kwon MS, Song DK and Hong CW: Angiotensin
converting enzyme inhibitors and angiotensin II receptor antagonist
attenuate tumor growth via polarization of neutrophils toward an
antitumor phenotype. OncoImmunology. 5:e10677442015. View Article : Google Scholar
|
|
135
|
Hagerling C and Werb Z: Neutrophils:
Critical components in experimental animal models of cancer. Semin
Immunol. 28:197–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW,
Wang Z, Fan J, Dai Z and Zhou J: CXCR2/CXCL5 axis contributes to
epithelial-mesenchymal transition of HCC cells through activating
PI3K/ Akt/GSK-3β/Snail signaling. Cancer Lett. 358:124–135. 2015.
View Article : Google Scholar
|
|
137
|
Benevides L, da Fonseca DM, Donate PB,
Tiezzi DG, De Carvalho DD, de Andrade JM, Martins GA and Silva JS:
IL17 Promotes mammary tumor progression by changing the behavior of
tumor cells and eliciting tumorigenic neutrophils recruitment.
Cancer Res. 75:3788–3799. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wislez M, Rabbe N, Marchal J, Milleron B,
Crestani B, Mayaud C, Antoine M, Soler P and Cadranel J: Hepatocyte
growth factor production by neutrophils infiltrating
bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor
progression and death. Cancer Res. 63:1405–1412. 2003.PubMed/NCBI
|
|
139
|
Ibrahim SA, Katara GK, Kulshrestha A,
Jaiswal MK, Amin MA and Beaman KD: Breast cancer associated a2
isoform vacuolar ATPase immunomodulates neutrophils: Potential role
in tumor progression. Oncotarget. 6:33033–33045. 2015.PubMed/NCBI
|