|
1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Choudhary C, Kumar C, Gnad F, Nielsen ML,
Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation
targets protein complexes and co-regulates major cellular
functions. Science. 325:834–840. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kim SC, Sprung R, Chen Y, Xu Y, Ball H,
Pei J, Cheng T, Kho Y, Xiao H, Xiao L, et al: Substrate and
functional diversity of lysine acetylation revealed by a proteomics
survey. Mol Cell. 23:607–618. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Guan KL and Xiong Y: Regulation of
intermediary metabolism by protein acetylation. Trends Biochem Sci.
36:108–116. 2011. View Article : Google Scholar :
|
|
6
|
Frye RA: Phylogenetic classification of
prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res
Commun. 273:793–798. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Haigis MC and Guarente LP: Mammalian
sirtuins - emerging roles in physiology, aging, and calorie
restriction. Genes Dev. 20:2913–2921. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Weir HJ, Lane JD and Balthasar N: SIRT3: A
central regulator of mitochondrial adaptation in health and
disease. Genes Cancer. 4:118–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hallows WC, Albaugh BN and Denu JM: Where
in the cell is SIRT3? - functional localization of an
NAD+-dependent protein deacetylase. Biochem J.
411:e11–e13. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jing E, Emanuelli B, Hirschey MD, Boucher
J, Lee KY, Lombard D, Verdin EM and Kahn CR: Sirtuin-3 (Sirt3)
regulates skeletal muscle metabolism and insulin signaling via
altered mitochondrial oxidation and reactive oxygen species
production. Proc Natl Acad Sci USA. 108:14608–14613. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sundaresan NR, Samant SA, Pillai VB,
Rajamohan SB and Gupta MP: SIRT3 is a stress-responsive deacetylase
in cardiomyocytes that protects cells from stress-mediated cell
death by deacetylation of Ku70. Mol Cell Biol. 28:6384–6401. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kumar S and Lombard DB: Mitochondrial
sirtuins and their relationships with metabolic disease and cancer.
Antioxid Redox Signal. 22:1060–1077. 2015. View Article : Google Scholar :
|
|
13
|
Haigis MC, Deng C-X, Finley LWS, Kim H-S
and Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific
tale that connects aberrant cellular ROS, the Warburg effect, and
carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Finley LWS and Haigis MC: Metabolic
regulation by SIRT3: Implications for tumorigenesis. Trends Mol
Med. 18:516–523. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Alhazzazi TY, Kamarajan P, Verdin E and
Kapila YL: Sirtuin-3 (SIRT3) and the hallmarks of cancer. Genes
Cancer. 4:164–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen Y, Fu LL, Wen X, Wang XY, Liu J,
Cheng Y and Huang J: Sirtuin-3 (SIRT3), a therapeutic target with
oncogenic and tumor-suppressive function in cancer. Cell Death Dis.
5:e10472014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nguyen GT, Schaefer S, Gertz M, Weyand M
and Steegborn C: Structures of human sirtuin 3 complexes with
ADP-ribose and with carba-NAD+ and SRT1720: Binding
details and inhibition mechanism. Acta Crystallogr D Biol
Crystallogr. 69:1423–1432. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao
C, Dai H, Choy W, Bemis JE, Jirousek MR, et al: Crystal structures
of human SIRT3 displaying substrate-induced conformational changes.
J Biol Chem. 284:24394–24405. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schwer B, North BJ, Frye RA, Ott M and
Verdin E: The human silent information regulator (Sir)2 homologue
hSIRT3 is a mitochondrial nicotinamide adenine
dinucleotide-dependent deacetylase. J Cell Biol. 158:647–657. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cooper HM, Huang JY, Verdin E and
Spelbrink JN: A new splice variant of the mouse SIRT3 gene encodes
the mitochondrial precursor protein. PLoS One. 4:e49862009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Onyango P, Celic I, McCaffery JM, Boeke JD
and Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent
deacetylase localized to mitochondria. Proc Natl Acad Sci USA.
99:13653–13658. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Scher MB, Vaquero A and Reinberg D: SirT3
is a nuclear NAD+-dependent histone deacetylase that
translocates to the mitochondria upon cellular stress. Genes Dev.
21:920–928. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ahn B-H, Kim H-S, Song S, Lee IH, Liu J,
Vassilopoulos A, Deng CX and Finkel T: A role for the mitochondrial
deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad
Sci USA. 105:14447–14452. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, Hui
H, Lu N and Guo QL: Oroxylin A induces dissociation of hexokinase
II from the mitochondria and inhibits glycolysis by SIRT3-mediated
deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis.
4:e6012013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang H, Zhou L, Shi Q, Zhao Y, Lin H,
Zhang M, Zhao S, Yang Y, Ling ZQ, Guan KL, et al: SIRT3-dependent
GOT2 acetylation status affects the malate-aspartate NADH shuttle
activity and pancreatic tumor growth. EMBO J. 34:1110–1125. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hallows WC, Lee S and Denu JM: Sirtuins
deacetylate and activate mammalian acetyl-CoA synthetases. Proc
Natl Acad Sci USA. 103:10230–10235. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schwer B, Bunkenborg J, Verdin RO,
Andersen JS and Verdin E: Reversible lysine acetylation controls
the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.
Proc Natl Acad Sci USA. 103:10224–10229. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shan C, Kang H-B, Elf S, Xie J, Gu TL,
Aguiar M, Lonning S, Hitosugi T, Chung TW, Arellano M, et al:
Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase
1 and promotes tumor growth. J Biol Chem. 289:21413–21422. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Someya S, Yu W, Hallows WC, Xu J, Vann JM,
Leeuwenburgh C, Tanokura M, Denu JM and Prolla TA: Sirt3 mediates
reduction of oxidative damage and prevention of age-related hearing
loss under caloric restriction. Cell. 143:802–812. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cimen H, Han MJ, Yang Y, Tong Q, Koc H and
Koc EC: Regulation of succinate dehydrogenase activity by SIRT3 in
mammalian mitochondria. Biochemistry. 49:304–311. 2010. View Article : Google Scholar :
|
|
31
|
Finley LW, Haas W, Desquiret-Dumas V,
Wallace DC, Procaccio V, Gygi SP and Haigis MC: Succinate
dehydrogenase is a direct target of sirtuin 3 deacetylase activity.
PLoS One. 6:e232952011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schlicker C, Gertz M, Papatheodorou P,
Kachholz B, Becker CF and Steegborn C: Substrates and regulation
mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J
Mol Biol. 382:790–801. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hallows WC, Yu W, Smith BC, Devries MK,
Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith
LM, et al: Sirt3 promotes the urea cycle and fatty acid oxidation
during dietary restriction. Mol Cell. 41:139–149. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hirschey MD, Shimazu T, Goetzman E, Jing
E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S,
Ilkayeva OR, et al: SIRT3 regulates mitochondrial fatty-acid
oxidation by reversible enzyme deacetylation. Nature. 464:121–125.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shimazu T, Hirschey MD, Hua L,
Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt
FW, Denu JM, et al: SIRT3 deacetylates mitochondrial
3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body
production. Cell Metab. 12:654–661. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sundaresan NR, Gupta M, Kim G, Rajamohan
SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic
response by augmenting Foxo3a-dependent antioxidant defense
mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI
|
|
37
|
Pillai VB, Sundaresan NR, Kim G, Gupta M,
Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A and Gupta
MP: Exogenous NAD blocks cardiac hypertrophic response via
activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol
Chem. 285:3133–3144. 2010. View Article : Google Scholar :
|
|
38
|
Cantó C, Gerhart-Hines Z, Feige JN,
Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P and Auwerx
J: AMPK regulates energy expenditure by modulating NAD+
metabolism and SIRT1 activity. Nature. 458:1056–1060. 2009.
View Article : Google Scholar
|
|
39
|
Yang H, Yang T, Baur JA, Perez E, Matsui
T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A,
et al: Nutrient-sensitive mitochondrial NAD+ levels
dictate cell survival. Cell. 130:1095–1107. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cheng Y, Ren X, Gowda ASP, Shan Y, Zhang
L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, et al:
Interaction of Sirt3 with OGG1 contributes to repair of
mitochondrial DNA and protects from apoptotic cell death under
oxidative stress. Cell Death Dis. 4:e7312013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang Y, Cimen H, Han MJ, Shi T, Deng JH,
Koc H, Palacios OM, Montier L, Bai Y, Tong Q, et al:
NAD+-dependent deacetylase SIRT3 regulates mitochondrial
protein synthesis by deacetylation of the ribosomal protein MRPL10.
J Biol Chem. 285:7417–7429. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Samant SA, Zhang HJ, Hong Z, Pillai VB,
Sundaresan NR, Wolfgeher D, Archer SL, Chan DC and Gupta MP: SIRT3
deacetylates and activates OPA1 to regulate mitochondrial dynamics
during stress. Mol Cell Biol. 34:807–819. 2014. View Article : Google Scholar :
|
|
43
|
Shulga N and Pastorino JG: Ethanol
sensitizes mitochondria to the permeability transition by
inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J
Cell Sci. 123:4117–4127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Papa L and Germain D: SirT3 regulates the
mitochondrial unfolded protein response. Mol Cell Biol. 34:699–710.
2014. View Article : Google Scholar :
|
|
45
|
Yang B, Fu X, Shao L, Ding Y and Zeng D:
Aberrant expression of SIRT3 is conversely correlated with the
progression and prognosis of human gastric cancer. Biochem Biophys
Res Commun. 443:156–160. 2014. View Article : Google Scholar
|
|
46
|
Cui Y, Qin L, Wu J, Qu X, Hou C, Sun W, Li
S, Vaughan AT, Li JJ and Liu J: SIRT3 enhances glycolysis and
proliferation in SIRT3-expressing gastric cancer cells. PLoS One.
10:e01298342015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li H, Feng Z, Wu W, Li J, Zhang J and Xia
T: SIRT3 regulates cell proliferation and apoptosis related to
energy metabolism in non-small cell lung cancer cells through
deacetylation of NMNAT2. Int J Oncol. 43:1420–1430. 2013.PubMed/NCBI
|
|
48
|
Xiao K, Jiang J, Wang W, Cao S, Zhu L,
Zeng H, Ouyang R, Zhou R and Chen P: Sirt3 is a tumor suppressor in
lung adenocarcinoma cells. Oncol Rep. 30:1323–1328. 2013.PubMed/NCBI
|
|
49
|
Liang L, Li Q, Huang L, Li D and Li X:
Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to
enhance its activity. Biochem Biophys Res Commun. 468:807–812.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu C, Huang Z, Jiang H and Shi F: The
sirtuin 3 expression profile is associated with pathological and
clinical outcomes in colon cancer patients. Biomed Res Int.
2014:871263. 2014.PubMed/NCBI
|
|
51
|
Lai C-C, Lin P-M, Lin S-F, Hsu CH, Lin HC,
Hu ML, Hsu CM and Yang MY: Altered expression of SIRT gene family
in head and neck squamous cell carcinoma. Tumour Biol.
34:1847–1854. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mahjabeen I and Kayani MA: Loss of
mitochondrial tumor suppressor genes expression is associated with
unfavorable clinical outcome in head and neck squamous cell
carcinoma: Data from retrospective study. PLoS One.
11:e01469482016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Alhazzazi TY, Kamarajan P, Xu Y, Ai T,
Chen L, Verdin E and Kapila YL: A novel sirtuin-3 inhibitor,
LC-0296, inhibits cell survival and proliferation, and promotes
apoptosis of head and neck cancer cells. Anticancer Res. 36:49–60.
2016.PubMed/NCBI
|
|
54
|
Zhao Y, Yang H, Wang X, Zhang R, Wang C
and Guo Z: Sirtuin-3 (SIRT3) expression is associated with overall
survival in esophageal cancer. Ann Diagn Pathol. 17:483–485. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Torrens-Mas M, Pons DG, Sastre-Serra J,
Oliver J and Roca P: SIRT3 silencing sensitizes breast cancer cells
to cytotoxic treatments through an increment in ROS production. J
Cell Biochem. Jul 15–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Alhazzazi TY, Kamarajan P, Joo N, Huang
JY, Verdin E, D’Silva NJ and Kapila YL: Sirtuin-3 (SIRT3), a novel
potential therapeutic target for oral cancer. Cancer.
117:1670–1678. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
George J, Nihal M, Singh CK, Zhong W, Liu
X and Ahmad N: Pro-proliferative function of mitochondrial sirtuin
deacetylase SIRT3 in human melanoma. J Invest Dermatol.
136:809–818. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Choi J, Koh E, Lee YS, Lee HW, Kang HG,
Yoon YE, Han WK, Choi KH and Kim KS: Mitochondrial Sirt3 supports
cell proliferation by regulating glutamine-dependent oxidation in
renal cell carcinoma. Biochem Biophys Res Commun. 474:547–553.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shackelford R, Hirsh S, Henry K,
Abdel-Mageed A, Kandil E and Coppola D: Nicotinamide
phosphoribosyltransferase and SIRT3 expression are increased in
well-differentiated thyroid carcinomas. Anticancer Res.
33:3047–3052. 2013.PubMed/NCBI
|
|
60
|
Desouki MM, Doubinskaia I, Gius D and
Abdulkadir SA: Decreased mitochondrial SIRT3 expression is a
potential molecular biomarker associated with poor outcome in
breast cancer. Hum Pathol. 45:1071–1077. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sastre-Serra J, Nadal-Serrano M, Pons DG,
Valle A, Garau I, García-Bonafé M, Oliver J and Roca P: The
oxidative stress in breast tumors of postmenopausal women is
ERα/ERβ ratio dependent. Free Radic Biol Med. 61:11–17. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang CZ, Liu L, Cai M, Pan Y, Fu J, Cao Y
and Yun J: Low SIRT3 expression correlates with poor
differentiation and unfavorable prognosis in primary hepatocellular
carcinoma. PLoS One. 7:e517032012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang B, Qin L, Zhou C-J, Liu Y-L, Qian
H-X and He S-B: SIRT3 expression in hepatocellular carcinoma and
its impact on proliferation and invasion of hepatoma cells. Asian
Pac J Trop Med. 6:649–652. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang J-X, Yi Y, Li Y-W, Cai XY, He HW, Ni
XC, Zhou J, Cheng YF, Jin JJ, Fan J, et al: Down-regulation of
sirtuin 3 is associated with poor prognosis in hepatocellular
carcinoma after resection. BMC Cancer. 14:2972014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang Y-Y and Zhou L-M: Sirt3 inhibits
hepatocellular carcinoma cell growth through reducing Mdm2-mediated
p53 degradation. Biochem Biophys Res Commun. 423:26–31. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li Y, Wang W, Xu X, Sun S and Qu XJ:
{2-[1-
(3-methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic
acid methyl ester (MIAM) inhibited human hepatocellular carcinoma
growth through upregulation of Sirtuin-3 (SIRT3). Biomed
Pharmacother. 69:125–132. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tao NN, Zhou HZ, Tang H, Cai XF, Zhang WL,
Ren JH, Zhou L, Chen X, Chen K, Li WY, et al: Sirtuin 3 enhanced
drug sensitivity of human hepatoma cells through glutathione
S-transferase pi 1/JNK signaling pathway. Oncotarget.
7:50117–50130. 2016.PubMed/NCBI
|
|
68
|
McGlynn LM, McCluney S, Jamieson NB,
Thomson J, MacDonald AI, Oien K, Dickson EJ, Carter CR, McKay CJ
and Shiels PG: SIRT3 & SIRT7: Potential novel biomarkers for
determining outcome in pancreatic cancer patients. PLoS One.
10:e01313442015. View Article : Google Scholar :
|
|
69
|
Jeong SM, Lee J, Finley LWS, Schmidt PJ,
Fleming MD and Haigis MC: SIRT3 regulates cellular iron metabolism
and cancer growth by repressing iron regulatory protein 1.
Oncogene. 34:2115–2124. 2015. View Article : Google Scholar
|
|
70
|
Yu W, Denu RA, Krautkramer KA, Grindle KM,
Yang DT, Asimakopoulos F, Hematti P and Denu JM: Loss of SIRT3
provides growth advantage for B cell malignancies. J Biol Chem.
291:3268–3279. 2016. View Article : Google Scholar
|
|
71
|
Temel M, Koc MN, Ulutas S and Gogebakan B:
The expression levels of the sirtuins in patients with BCC. Tumour
Biol. 37:6429–6435. 2016. View Article : Google Scholar
|
|
72
|
Dong XC, Jing LM, Wang WX and Gao YX:
Down-regulation of SIRT3 promotes ovarian carcinoma metastasis.
Biochem Biophys Res Commun. 475:245–250. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chandel NS and Tuveson DA: The promise and
perils of antioxidants for cancer patients. N Engl J Med.
371:177–178. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Finkel T: Signal transduction by reactive
oxygen species. J Cell Biol. 194:7–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim H-S, Patel K, Muldoon-Jacobs K, Bisht
KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage
J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor
suppressor required for maintenance of mitochondrial integrity and
metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bell EL, Emerling BM, Ricoult SJH and
Guarente L: SirT3 suppresses hypoxia inducible factor 1α and tumor
growth by inhibiting mitochondrial ROS production. Oncogene.
30:2986–2996. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zou X, Santa-Maria CA, O’Brien J, Gius D
and Zhu Y: Manganese superoxide dismutase acetylation and
dysregulation, due to loss of SIRT3 activity, promote a luminal
B-like breast carcinogenic-permissive phenotype. Antioxid Redox
Signal. 25:326–336. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Qiao A, Wang K, Yuan Y, Guan Y, Ren X, Li
L, Chen X, Li F, Chen AF, Zhou J, et al: Sirt3-mediated mitophagy
protects tumor cells against apoptosis under hypoxia. Oncotarget.
May 30–2016.(Epub ahead of print). View Article : Google Scholar
|
|
79
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Christofk HR, Vander Heiden MG, Harris MH,
Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and
Cantley LC: The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wei L, Zhou Y, Qiao C, Ni T, Li Z, You Q,
Guo Q and Lu N: Oroxylin A inhibits glycolysis-dependent
proliferation of human breast cancer via promoting SIRT3-mediated
SOD2 transcription and HIF1α destabilization. Cell Death Dis.
6:e17142015. View Article : Google Scholar
|
|
84
|
Yao W, Ji S, Qin Y, Yang J, Xu J, Zhang B,
Xu W, Liu J, Shi S, Liu L, et al: Profilin-1 suppresses
tumorigenicity in pancreatic cancer through regulation of the
SIRT3-HIF1α axis. Mol Cancer. 13:1872014. View Article : Google Scholar
|
|
85
|
Fan J, Shan C, Kang HB, Elf S, Xie J,
Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, et al: Tyr
phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3
to regulate the pyruvate dehydrogenase complex. Mol Cell.
53:534–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhao K, Zhou Y, Qiao C, Ni T, Li Z, Wang
X, Guo Q, Lu N and Wei L: Oroxylin A promotes PTEN-mediated
negative regulation of MDM2 transcription via SIRT3-mediated
deacetylation to stabilize p53 and inhibit glycolysis in wt-p53
cancer cells. J Hematol Oncol. 8:412015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Quan Y, Wang N, Chen Q, Xu J, Cheng W, Di
M, Xia W and Gao WQ: SIRT3 inhibits prostate cancer by
destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt
pathway. Oncotarget. 6:26494–26507. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Pillai VB, Sundaresan NR and Gupta MP:
Regulation of Akt signaling by sirtuins: Its implication in cardiac
hypertrophy and aging. Circ Res. 114:368–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Carrano AC, Eytan E, Hershko A and Pagano
M: SKP2 is required for ubiquitin-mediated degradation of the CDK
inhibitor p27. Nat Cell Biol. 1:193–199. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang Z, Inuzuka H, Zhong J, Liu P, Sarkar
FH, Sun Y and Wei W: Identification of acetylation-dependent
regulatory mechanisms that govern the oncogenic functions of Skp2.
Oncotarget. 3:1294–1300. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li S, Banck M, Mujtaba S, Zhou M-M, Sugrue
MM and Walsh MJ: p53-induced growth arrest is regulated by the
mitochondrial SirT3 deacetylase. PLoS One. 5:e104862010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Allison SJ and Milner J: SIRT3 is
pro-apoptotic and participates in distinct basal apoptotic
pathways. Cell Cycle. 6:2669–2677. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Marfe G, Tafani M, Indelicato M,
Sinibaldi-Salimei P, Reali V, Pucci B, Fini M and Russo MA:
Kaempferol induces apoptosis in two different cell lines via Akt
inactivation, Bax and SIRT3 activation, and mitochondrial
dysfunction. J Cell Biochem. 106:643–650. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xiang XY, Kang JS, Yang XC, Su J, Wu Y,
Yan XY, Xue YN, Xu Y, Liu YH, Yu CY, et al: SIRT3 participates in
glucose metabolism interruption and apoptosis induced by BH3
mimetic S1 in ovarian cancer cells. Int J Oncol. 49:773–784.
2016.PubMed/NCBI
|
|
95
|
Shin SI, Freedman VH, Risser R and Pollack
R: Tumorigenicity of virus-transformed cells in nude mice is
correlated specifically with anchorage independent growth in vitro.
Proc Natl Acad Sci USA. 72:4435–4439. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kantak SS and Kramer RH: E-cadherin
regulates anchorage-independent growth and survival in oral
squamous cell carcinoma cells. J Biol Chem. 273:16953–16961. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kamarajan P, Bunek J, Lin Y, Nunez G and
Kapila YL: Receptor-interacting protein shuttles between cell death
and survival signaling pathways. Mol Biol Cell. 21:481–488. 2010.
View Article : Google Scholar :
|
|
98
|
Kamarajan P, Alhazzazi TY, Danciu T,
D’silva NJ, Verdin E and Kapila YL: Receptor-interacting protein
(RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and
tumorigenesis. Cancer. 118:5800–5810. 2012. View Article : Google Scholar : PubMed/NCBI
|