HNF1A‑AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR‑214 to upregulate the expression of SOX-4

  • Authors:
    • Guannan Wang
    • Wugan Zhao
    • Xianzheng Gao
    • Dandan Zhang
    • Ye Li
    • Yanping Zhang
    • Wencai Li
  • View Affiliations

  • Published online on: June 8, 2017     https://doi.org/10.3892/ijo.2017.4034
  • Pages: 657-667
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies in the world, marked by dysphagia and weight loss, bringing great suffering to patients. HNF1A‑AS1 (HAS1), a long non-coding RNA (lncRNA), has been identified prevalently involved in various human cancers. However, the exact effects and molecular mechanisms of HAS1 in ESCC progression are still elusive. In this study, upregulated expression of HAS1 was detected in ESCC tissues and four human ESCC cell lines (KYSE70, KYSE450, EC109 and EC970) compared with normal tissues and cell lines. Small interfering RNA (siRNA)-mediated knockdown of HAS1 largely suppressed cell proliferation and promoted cell apoptosis in KYSE70 and EC109 cells. The decreased expression of proliferation marker proteins and elevated level of apoptosis marker proteins further verified that HAS1‑siRNA suppressed cell viability in ESCC cells. Besides, the silence of HAS1 strongly reduced the wound closing rate and the number of invasive cells compared with control group. HAS1-siRNA also restrained the expression of migration marker proteins matrix metalloproteinase-9 (MMP-9) and vascular endothelial cell growth factor (VEGF). In addition, miR‑214 was predicted as a direct target of HAS1 by bioinformatics analysis. Downregulated expression of miR‑214 was elevated in KYSE70 and EC109 cells transfected with HAS1-siRNA. Subsequently, elevated expression of miR‑214 was suppressed by co-transfecting with miR‑214 inhibitor in EC109 cells pretreated with HAS1-siRNA. The result of luciferase activity assay showed that luciferase activity was strongly weakened by the combination of LncR-HAS1 WT and miR‑214 mimic. Moreover, the expression of SOX-4, a predicted target gene of miR‑214, was suppressed by HAS1-siRNA and was increased by miR‑214 inhibitor. HAS1-siRNA counteracted the effect of miR‑214 inhibitor on cell viability and mobility in EC109 cells. Finally, the in vivo experiment revealed that HAS1-siRNA abated the role of miR‑214 inhibitor in promoting tumor growth and metastasis. miR-214 also mediated the effect of HAS1 on upregulating the expression of SOX-4 in vivo. Taken together, our study indicated a HAS1-miR‑214-SOX-4 pathway in regulating the growth and metastasis of ESCC, providing a promising target for ESCC therapy.

References

1 

Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Feng XS, Yang YT, Gao SG, Ru Y, Wang GP, Zhou B, Wang YF, Zhang PF, Li PY and Liu YX: Prevalence and age, gender and geographical area distribution of esophageal squamous cell carcinomas in North China from 1985 to 2006. Asian Pac J Cancer Prev. 15:1981–1987. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Liu CY, Wang BY, Lee MY, Tsai YC, Liu CC and Shih CH: The prognostic value of circumferential resection margin in esophageal squamous cell carcinoma after concurrent chemoradiation therapy and surgery. J Chin Med Assoc. 76:570–575. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Zhao Z, Wang P, Gao Y and He J: The high expression instead of mutation of p53 is predictive of overall survival in patients with esophageal squamous-cell carcinoma: A meta-analysis. Cancer Med. 6:54–66. 2017. View Article : Google Scholar

5 

Hirajima S, Komatsu S, Ichikawa D, Takeshita H, Konishi H, Shiozaki A, Morimura R, Tsujiura M, Nagata H, Kawaguchi T, et al: Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 108:1822–1829. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Zhang SS, Xie X, Wen J, Luo KJ, Liu QW, Yang H, Hu Y and Fu JH: TRPV6 plays a new role in predicting survival of patients with esophageal squamous cell carcinoma. Diagn Pathol. 11:142016. View Article : Google Scholar : PubMed/NCBI

7 

Wapinski O and Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol. 21:354–361. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, et al: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316:1484–1488. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Hauptman N and Glavač D: Long non-coding RNA in cancer. Int J Mol Sci. 14:4655–4669. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Li J, Xuan Z and Liu C: Long non-coding RNAs and complex human diseases. Int J Mol Sci. 14:18790–18808. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, Holm H, Sanna S, Kavousi M, Baumeister SE, et al Alcohol Genome-wide Association (AlcGen) Consortium; Diabetes Genetics Replication and Meta-analyses (DIAGRAM+) Study; Genetic Investigation of Anthropometric Traits (GIANT) Consortium; Global Lipids Genetics Consortium; Genetics of Liver Disease (GOLD) Consortium; International Consortium for Blood Pressure (ICBP-GWAS); Meta-analyses of Glucose and Insulin-Related Traits Consortium (MAGIC): Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 43:1131–1138. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K and Tammi MI: Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 278:1419–1428. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Siiskonen H, Oikari S, Pasonen-Seppänen S and Rilla K: Hyaluronan synthase 1: A mysterious enzyme with unexpected functions. Front Immunol. 6:432015. View Article : Google Scholar : PubMed/NCBI

14 

Ma YF, Liang T, Li CR, Li YJ, Jin S and Liu Y: Long non-coding RNA HNF1A-AS1 up-regulation in non-small cell lung cancer correlates to poor survival. Eur Rev Med Pharmacol Sci. 20:4858–4863. 2016.PubMed/NCBI

15 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Fan Z, Cui H, Xu X, Lin Z, Zhang X, Kang L, Han B, Meng J, Yan Z, Yan X, et al: MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting STAT3. Oncotarget. 6:25266–25280. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Ma L, Ma S, Zhao G, Yang L, Zhang P, Yi Q and Cheng S: miR-708/LSD1 axis regulates the proliferation and invasion of breast cancer cells. Cancer Med. 5:684–692. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Penna E, Orso F and Taverna D: miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J Invest Dermatol. 135:960–969. 2015. View Article : Google Scholar

20 

Bowles J, Schepers G and Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 227:239–255. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS and Huang TH: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 69:9038–9046. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Wang B, Li Y, Tan F and Xiao Z: Increased expression of SOX4 is associated with colorectal cancer progression. Tumour Biol. 37:9131–9137. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zhang J, Jiang H, Shao J, Mao R, Liu J, Ma Y, Fang X, Zhao N, Zheng S and Lin B: SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis. BMC Neurol. 14:2072014. View Article : Google Scholar : PubMed/NCBI

24 

Tao Y, Chai D, Ma L, Zhang T, Feng Z, Cheng Z, Wu S, Qin Y and Lai M: Identification of distinct gene expression profiles between esophageal squamous cell carcinoma and adjacent normal epithelial tissues. Tohoku J Exp Med. 226:301–311. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Liu J, Ma L, Li C, Zhang Z, Yang G and Zhang W: Tumor-targeting TRAIL expression mediated by miRNA response elements suppressed growth of uveal melanoma cells. Mol Oncol. 7:1043–1055. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, Xiao W, Yu G, Yao W, Zhou H, et al: LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget. 6:38005–38015. 2015.PubMed/NCBI

27 

Li H, Yu B, Li J, Su L, Yan M, Zhu Z and Liu B: Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 5:2318–2329. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Lu Q, Xu L, Li C, Yuan Y, Huang S and Chen H: miR-214 inhibits invasion and migration via downregulating GALNT7 in esophageal squamous cell cancer. Tumour Biol. 37:14605–14614. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Li W, Jiang G, Zhou J, Wang H, Gong Z, Zhang Z, Min K, Zhu H and Tan Y: Down-regulation of miR-140 induces EMT and promotes invasion by targeting Slug in esophageal cancer. Cell Physiol Biochem. 34:1466–1476. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Xu XC: Risk factors and gene expression in esophageal cancer. Methods Mol Biol. 471:335–360. 2009. View Article : Google Scholar

31 

Kosugi S, Nishimaki T, Kanda T, Nakagawa S, Ohashi M and Hatakeyama K: Clinical significance of serum carcinoembryonic antigen, carbohydrate antigen 19-9, and squamous cell carcinoma antigen levels in esophageal cancer patients. World J Surg. 28:680–685. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Lee J, Jung JH, Chae YS, Park HY, Kim WW, Lee SJ, Jeong JH and Kang SH: Long noncoding RNA snaR regulates proliferation, migration and invasion of triple-negative breast cancer cells. Anticancer Res. 36:6289–6295. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Golshani R, Hautmann SH, Estrella V, Cohen BL, Kyle CC, Manoharan M, Jorda M, Soloway MS and Lokeshwar VB: HAS1 expression in bladder cancer and its relation to urinary HA test. Int J Cancer. 120:1712–1720. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Yamada Y, Itano N, Narimatsu H, Kudo T, Morozumi K, Hirohashi S, Ochiai A, Ueda M and Kimata K: Elevated transcript level of hyaluronan synthase1 gene correlates with poor prognosis of human colon cancer. Clin Exp Metastasis. 21:57–63. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Yabushita H and Noguchi M, Kishida T, Fusano K, Noguchi Y, Itano N, Kimata K and Noguchi M: Hyaluronan synthase expression in ovarian cancer. Oncol Rep. 12:739–743. 2004.PubMed/NCBI

37 

Nykopp TK, Rilla K, Tammi MI, Tammi RH, Sironen R, Hämäläinen K, Kosma VM, Heinonen S and Anttila M: Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma. BMC Cancer. 10:5122010. View Article : Google Scholar : PubMed/NCBI

38 

Poukka M, Bykachev A, Siiskonen H, Tyynelä-Korhonen K, Auvinen P, Pasonen-Seppänen S and Sironen R: Decreased expression of hyaluronan synthase 1 and 2 associates with poor prognosis in cutaneous melanoma. BMC Cancer. 16:3132016. View Article : Google Scholar : PubMed/NCBI

39 

Wu Y, Liu H, Shi X, Yao Y, Yang W and Song Y: The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 6:9160–9172. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Golshani R, Lopez L, Estrella V, Kramer M, Iida N and Lokeshwar VB: Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res. 68:483–491. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, Abraham JM, Ibrahim S, Ravich W, Roland BC, et al: Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 63:881–890. 2014. View Article : Google Scholar

42 

Zhao H, Hou W, Tao J, Zhao Y, Wan G, Ma C and Xu H: Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/β-catenin signaling pathway. Am J Transl Res. 8:3503–3512. 2016.

43 

Peng R, Men J, Ma R, Wang Q, Wang Y, Sun Y and Ren J: miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells. Biochem Biophys Res Commun. 484:623–630. 2017. View Article : Google Scholar : PubMed/NCBI

44 

He GY, Hu JL, Zhou L, Zhu XH, Xin SN, Zhang D, Lu GF, Liao WT, Ding YQ and Liang L: The FOXD3/miR-214/MED19 axis suppresses tumour growth and metastasis in human colorectal cancer. Br J Cancer. 115:1367–1378. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Guo J, Ma J, Zhao G, Li G, Fu Y and Luo Y: Long non-coding RNA LINC0086 functions as a tumor suppressor in nasopharyngeal carcinoma by targeting miR-214. Oncol Res. Feb 13–2017.Epub ahead of print. View Article : Google Scholar : 2017.

46 

Li Y, Chen P, Zu L, Liu B, Wang M and Zhou Q: MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res. 6:127–140. 2016.PubMed/NCBI

47 

Zhou CL, Li JJ and Ji P: Propofol suppresses esophageal squamous cell carcinoma cell migration and invasion by down- regulation of Sex-Determining Region Y-box 4 (SOX4). Med Sci Monit. 23:419–427. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Liu Z, Wei X, Zhang A, Li C, Bai J and Dong J: Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem Biophys Res Commun. 473:1268–1275. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Dang Y, Lan F, Ouyang X, Wang K, Lin Y, Yu Y, Wang L, Wang Y and Huang Q: Expression and clinical significance of long non-coding RNA HNF1A-AS1 in human gastric cancer. World J Surg Oncol. 13:3022015. View Article : Google Scholar : PubMed/NCBI

50 

Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, Ekwenna OO, Acosta K, Merseburger AS, Soloway M and Lokeshwar VB: Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer. 117:1197–1209. 2011. View Article : Google Scholar

Related Articles

Journal Cover

August 2017
Volume 51 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, G., Zhao, W., Gao, X., Zhang, D., Li, Y., Zhang, Y., & Li, W. (2017). HNF1A‑AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR‑214 to upregulate the expression of SOX-4. International Journal of Oncology, 51, 657-667. https://doi.org/10.3892/ijo.2017.4034
MLA
Wang, G., Zhao, W., Gao, X., Zhang, D., Li, Y., Zhang, Y., Li, W."HNF1A‑AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR‑214 to upregulate the expression of SOX-4". International Journal of Oncology 51.2 (2017): 657-667.
Chicago
Wang, G., Zhao, W., Gao, X., Zhang, D., Li, Y., Zhang, Y., Li, W."HNF1A‑AS1 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging miR‑214 to upregulate the expression of SOX-4". International Journal of Oncology 51, no. 2 (2017): 657-667. https://doi.org/10.3892/ijo.2017.4034