1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Teltscharov L, Vlachov K and Marovski T:
Effect of radiotherapy on the liver function of cancer patients.
Radiobiol Radiother (Berl). 5:673–677. 1964.In German.
|
3
|
He L, Lai H and Chen T: Dual-function
nanosystem for synergetic cancer chemo-/radiotherapy through
ROS-mediated signaling pathways. Biomaterials. 51:30–42. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
DeNicola GM, Karreth FA, Humpton TJ,
Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES,
et al: Oncogene-induced Nrf2 transcription promotes ROS
detoxification and tumorigenesis. Nature. 475:106–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Merchant AA, Singh A, Matsui W and Biswal
S: The redox-sensitive transcription factor Nrf2 regulates murine
hematopoietic stem cell survival independently of ROS levels.
Blood. 118:6572–6579. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hayes JD and Dinkova-Kostova AT: The Nrf2
regulatory network provides an interface between redox and
intermediary metabolism. Trends Biochem Sci. 39:199–218. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kitteringham NR, Abdullah A, Walsh J,
Randle L, Jenkins RE, Sison R, Goldring CE, Powell H, Sanderson C,
Williams S, et al: Proteomic analysis of Nrf2 deficient transgenic
mice reveals cellular defence and lipid metabolism as primary
Nrf2-dependent pathways in the liver. J Proteomics. 73:1612–1631.
2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mitsuishi Y, Taguchi K, Kawatani Y,
Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2
redirects glucose and glutamine into anabolic pathways in metabolic
reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu KC, Cui JY and Klaassen CD: Effect of
graded Nrf2 activation on phase-I and -II drug metabolizing enzymes
and transporters in mouse liver. PLoS One. 7:e390062012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saw CL, Wu Q and Kong AN: Anti-cancer and
potential chemo-preventive actions of ginseng by activating Nrf2
(NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin
Med. 5:372010. View Article : Google Scholar
|
11
|
Seng S, Avraham HK, Jiang S, Yang S,
Sekine M, Kimelman N, Li H and Avraham S: The nuclear matrix
protein, NRP/B, enhances Nrf2-mediated oxidative stress responses
in breast cancer cells. Cancer Res. 67:8596–8604. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hong CC, Ambrosone CB, Ahn J, Choi JY,
McCullough ML, Stevens VL, Rodriguez C, Thun MJ and Calle EE:
Genetic variability in iron-related oxidative stress pathways
(Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of
postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev.
16:1784–1794. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zipper LM and Mulcahy RT: The Keap1
BTB/POZ dimerization function is required to sequester Nrf2 in
cytoplasm. J Biol Chem. 277:36544–36552. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nasiri HR, Linge S and Ullmann D:
Thermodynamic profiling of inhibitors of Nrf2:Keap1 interactions.
Bioorg Med Chem Lett. 26:526–529. 2016. View Article : Google Scholar
|
15
|
Leinonen HM, Kansanen E, Pölönen P,
Heinäniemi M and Levonen AL: Dysregulation of the Keap1-Nrf2
pathway in cancer. Biochem Soc Trans. 43:645–649. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
McMahon M, Thomas N, Itoh K, Yamamoto M
and Hayes JD: Dimerization of substrate adaptors can facilitate
cullin-mediated ubiquitylation of proteins by a 'tethering'
mechanism: A two-site interaction model for the Nrf2-Keap1 complex.
J Biol Chem. 281:24756–24768. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tong KI, Kobayashi A, Katsuoka F and
Yamamoto M: Two-site substrate recognition model for the Keap1-Nrf2
system: A hinge and latch mechanism. Biol Chem. 387:1311–1320.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang C, Li C, Peng H, Ye Z, Zhang J, Liu X
and Lou T: Activation of the Nrf2-ARE pathway attenuates
hyperglycemia-mediated injuries in mouse podocytes. Cell Physiol
Biochem. 34:891–902. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee LY, Köhler UA, Zhang L, Roenneburg D,
Werner S, Johnson JA and Foley DP: Activation of the Nrf2-ARE
pathway in hepatocytes protects against steatosis in nutritionally
induced non-alcoholic steatohepatitis in mice. Toxicol Sci.
142:361–374. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rada P, Rojo AI, Offergeld A, Feng GJ,
Velasco-Martín JP, González-Sancho JM, Valverde ÁM, Dale T,
Regadera J and Cuadrado A: WNT-3A regulates an Axin1/NRF2 complex
that regulates antioxidant metabolism in hepatocytes. Antioxid
Redox Signal. 22:555–571. 2015. View Article : Google Scholar :
|
21
|
MacDonald BT, Semenov MV, Huang H and He
X: Dissecting molecular differences between Wnt coreceptors LRP5
and LRP6. PLoS One. 6:e235372011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mi K and Johnson GV: Role of the
intracellular domains of LRP5 and LRP6 in activating the Wnt
canonical pathway. J Cell Biochem. 95:328–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zeng X, Tamai K, Doble B, Li S, Huang H,
Habas R, Okamura H, Woodgett J and He X: A dual-kinase mechanism
for Wnt co-receptor phosphorylation and activation. Nature.
438:873–877. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
MacDonald BT, Yokota C, Tamai K, Zeng X
and He X: Wnt signal amplification via activity, cooperativity, and
regulation of multiple intracellular PPPSP motifs in the Wnt
co-receptor LRP6. J Biol Chem. 283:16115–16123. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim M, Kim S, Lee SH, Kim W, Sohn MJ, Kim
HS, Kim J and Jho EH: Merlin inhibits Wnt/β-catenin signaling by
blocking LRP6 phosphorylation. Cell Death Differ. 23:1638–1647.
2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Morgan JT, Raghunathan VK, Chang YR,
Murphy CJ and Russell P: Wnt inhibition induces persistent
increases in intrinsic stiffness of human trabecular meshwork
cells. Exp Eye Res. 132:174–178. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Abrami L, Kunz B, Iacovache I and van der
Goot FG: Palmitoylation and ubiquitination regulate exit of the Wnt
signaling protein LRP6 from the endoplasmic reticulum. Proc Natl
Acad Sci USA. 105:5384–5389. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Komekado H, Yamamoto H, Chiba T and
Kikuchi A: Glycosylation and palmitoylation of Wnt-3a are coupled
to produce an active form of Wnt-3a. Genes Cells. 12:521–534. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kurayoshi M, Yamamoto H, Izumi S and
Kikuchi A: Post-translational palmitoylation and glycosylation of
Wnt-5a are necessary for its signalling. Biochem J. 402:515–523.
2007. View Article : Google Scholar :
|
30
|
Rhee SG: Redox signaling: Hydrogen
peroxide as intracellular messenger. Exp Mol Med. 31:53–59. 1999.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics for Hispanics/Latinos, 2012. CA Cancer J Clin.
62:283–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hosoda Y, Kim Y, Nishino M, Okano M, Nagai
K, Yasui M and Tsujinaka T: A case of rectal cancer successfully
treated with stereotactic radiotherapy for liver and lung
metastases. Gan To Kagaku Ryoho. 42:2109–2111. 2015.In
Japanese.
|
34
|
Tono T, Hashimoto K, Yamada Y, Nishida K,
Yanagawa T, Danno K, Fujie Y, Fujita S, Fujita J, Yoshida T, et al:
Efficacy of stereotactic radiotherapy for primary and metastatic
liver cancer. Gan To Kagaku Ryoho. 40:1853–1855. 2013.In
Japanese.
|
35
|
Zhou S, Ye W, Shao Q, Zhang M and Liang J:
Nrf2 is a potential therapeutic target in radioresistance in human
cancer. Crit Rev Oncol Hematol. 88:706–715. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Menegon S, Columbano A and Giordano S: The
dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Nault JC, Rebouissou S and Zucman Rossi J:
NRF2/KEAP1 and Wnt/β-catenin in the multistep process of liver
carcinogenesis in humans and rats. Hepatology. 62:677–679. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Go GW, Srivastava R, Hernandez-Ono A, Gang
G, Smith SB, Booth CJ, Ginsberg HN and Mani A: The combined
hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by
Wnt3a rescue. Cell Metab. 19:209–220. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Madan B, Ke Z, Harmston N, Ho SY, Frois
AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al:
Wnt addiction of genetically defined cancers reversed by PORCN
inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar
|
40
|
Jiang X, Hao HX, Growney JD, Woolfenden S,
Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al:
Inactivating mutations of RNF43 confer Wnt dependency in pancreatic
ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wei H, Wang H, Ji Q, Sun J, Tao L and Zhou
X: NRBP1 is down-regulated in breast cancer and NRBP1
overexpression inhibits cancer cell proliferation through
Wnt/β-catenin signaling pathway. Onco Targets Ther. 8:3721–3730.
2015.
|
42
|
Rudy SF, Brenner JC, Harris JL, Liu J, Che
J, Scott MV, Owen JH, Komarck CM, Graham MP, Bellile EL, et al: In
vivo Wnt pathway inhibition of human squamous cell carcinoma growth
and metastasis in the chick chorioallantoic model. J Otolaryngol
Head Neck Surg. 45:262016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fraveto A, Cardinale V, Bragazzi MC,
Giuliante F, De Rose AM, Grazi GL, Napoletano C, Semeraro R, Lustri
AM, Costantini D, et al: Sensitivity of human intrahepatic
cholangiocarcinoma subtypes to chemotherapeutics and molecular
targeted agents: A study on primary cell cultures. PLoS One.
10:e01421242015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Galvao J, Davis B, Tilley M, Normando E,
Duchen MR and Cordeiro MF: Unexpected low-dose toxicity of the
universal solvent DMSO. FASEB J. 28:1317–1330. 2014. View Article : Google Scholar
|