Role of autophagy in breast cancer and breast cancer stem cells (Review)

  • Authors:
    • Yanyan Han
    • Shujun Fan
    • Tao Qin
    • Jinfeng Yang
    • Yan Sun
    • Ying Lu
    • Jun Mao
    • Lianhong Li
  • View Affiliations

  • Published online on: February 8, 2018     https://doi.org/10.3892/ijo.2018.4270
  • Pages: 1057-1070
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.

References

1 

Dandawate PR, Subramaniam D, Jensen RA and Anant S: Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol. 40–41:192–208. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Vessoni AT, Filippi-Chiela EC, Menck CF and Lenz G: Autophagy and genomic integrity. Cell Death Differ. 20:1444–1454. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Mowers EE, Sharifi MN and Macleod KF: Autophagy in cancer metastasis. Oncogene. 36:1619–1630. 2017. View Article : Google Scholar :

5 

Ruocco N, Costantini S and Costantini M: Blue-print autophagy: Potential for cancer treatment. Mar Drugs. 14:142016. View Article : Google Scholar

6 

Wang C, Hu Q and Shen HM: Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res. 105:164–175. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Lee JS, Kim YJ, Kim CL and Lee GM: Differential induction of autophagy in caspase-3/7 down-regulating and Bcl-2 overexpressing recombinant CHO cells subjected to sodium butyrate treatment. J Biotechnol. 161:34–41. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Knutson BA: Insights into the domain and repeat architecture of target of rapamycin. J Struct Biol. 170:354–363. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Sauer E, Imseng S, Maier T and Hall MN: Conserved sequence motifs and the structure of the mTOR kinase domain. Biochem Soc Trans. 41:889–895. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ and Pavletich NP: mTOR kinase structure, mechanism and regulation. Nature. 497:217–223. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P and Sabatini DM: GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 11:895–904. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsume T and Mizushima N: Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 285:20109–20116. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Takai H, Wang RC, Takai KK, Yang H and de Lange T: Tel2 regulates the stability of PI3K-related protein kinases. Cell. 131:1248–1259. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS and Sabatini DM: DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 137:873–886. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Wullschleger S, Loewith R and Hall MN: TOR signaling in growth and metabolism. Cell. 124:471–484. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6:458–471. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH and Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6:472–483. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Moscat J and Diaz-Meco MT: p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 137:1001–1004. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S and Sabatini DM: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 141:290–303. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L and Sabatini DM: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 320:1496–1501. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y and Sabatini DM: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334:678–683. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et al: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095–1108. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Copetti T, Bertoli C, Dalla E, Demarchi F and Schneider C: p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol. 29:2594–2608. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Lu C, Wang W, Jia Y, Liu X, Tong Z and Li B: Inhibition of AMPK/autophagy potentiates parthenolide-induced apoptosis in human breast cancer cells. J Cell Biochem. 115:1458–1466. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Abdal Dayem A, Choi HY, Yang GM, Kim K, Saha SK and Cho SG: The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients. 8:581–618. 2016. View Article : Google Scholar :

27 

Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F and Paredes J: Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol. 64:937–946. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN and Manjili MH: CD44(+)/CD24(−/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol. 43:364–373. 2012. View Article : Google Scholar

29 

Ahmed MA, Aleskandarany MA, Rakha EA, Moustafa RZ, Benhasouna A, Nolan C, Green AR, Ilyas M and Ellis IO: A CD44/CD24+ phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat. 133:979–995. 2012. View Article : Google Scholar

30 

Fonseca NA, Cruz AF, Moura V, Simões S and Moreira JN: The cancer stem cell phenotype as a determinant factor of the heterotypic nature of breast tumors. Crit Rev Oncol Hematol. 113:111–121. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Ingham PW and McMahon AP: Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI

32 

McMahon AP, Ingham PW and Tabin CJ: Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 53:1–114. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Murone M, Rosenthal A and de Sauvage FJ: Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr Biol. 9:76–84. 1999. View Article : Google Scholar : PubMed/NCBI

34 

Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 7:678–689. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K and Mori M: Cancer stem cells and chemoradiation resistance. Cancer Sci. 99:1871–1877. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Wang M, Zhang J, Huang Y, Ji S, Shao G, Feng S, Chen D, Zhao K, Wang Z and Wu A: Cancer-associated fibroblasts autophagy enhances progression of triple-negative breast cancer cells. Med Sci Monit. 23:3904–3912. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Sun R, Shen S, Zhang YJ, Xu CF, Cao ZT, Wen LP and Wang J: Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials. 103:44–55. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL and Chang JC: The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 376:249–258. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Bincoletto C, Bechara A, Pereira GJS, Santos CP, Antunes F, Peixoto da-Silva J, Muler M, Gigli RD, Monteforte PT, Hirata H, et al: Interplay between apoptosis and autophagy, a challenging puzzle: New perspectives on antitumor chemotherapies. Chem Biol Interact. 206:279–288. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T and Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI

41 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Mukhopadhyay S, Panda PK, Sinha N, Das DN and Bhutia SK: Autophagy and apoptosis: Where do they meet? Apoptosis. 19:555–566. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Yao D, Wang P, Zhang J, Fu L, Ouyang L and Wang J: Deconvoluting the relationships between autophagy and metastasis for potential cancer therapy. Apoptosis. 21:683–698. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Han Q, Deng Y, Chen S, Chen R, Yang M, Zhang Z, Sun X, Wang W, He Y, Wang F, et al: Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis. Sci Rep. 7:47592017. View Article : Google Scholar : PubMed/NCBI

45 

Kongara S, Kravchuk O, Teplova I, Lozy F, Schulte J, Moore D, Barnard N, Neumann CA, White E and Karantza V: Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol Cancer Res. 8:873–884. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Kuraishy A, Karin M and Grivennikov SI: Tumor promotion via injury- and death-induced inflammation. Immunity. 35:467–477. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Kung CP, Budina A, Balaburski G, Bergenstock MK and Murphy M: Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr. 21:71–100. 2011. View Article : Google Scholar : PubMed/NCBI

48 

White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Choi KS: Autophagy and cancer. Exp Mol Med. 44:109–120. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Denton D, Nicolson S and Kumar S: Cell death by autophagy: Facts and apparent artefacts. Cell Death Differ. 19:87–95. 2012. View Article : Google Scholar :

51 

Maycotte P, Jones KL, Goodall ML, Thorburn J and Thorburn A: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res. 13:651–658. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Wolf J, Dewi DL, Fredebohm J, Müller-Decker K, Flechtenmacher C, Hoheisel JD and Boettcher M: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res. 15:R1092013. View Article : Google Scholar : PubMed/NCBI

53 

Gong C, Bauvy C, Tonelli G, Yue W, Deloménie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, et al: Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 32:2261–2272. 1–11. 2013. View Article : Google Scholar :

54 

Zhao Y, Huang Q, Yang J, Lou M, Wang A, Dong J, Qin Z and Zhang T: Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res. 1313:250–258. 2010. View Article : Google Scholar

55 

Singh BN, Kumar D, Shankar S and Srivastava RK: Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol. 84:1154–1163. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Kumar D, Shankar S and Srivastava RK: Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: Molecular mechanisms. Mol Cancer. 12:1712013. View Article : Google Scholar : PubMed/NCBI

57 

Wei MF, Chen MW, Chen KC, Lou PJ, Lin SY, Hung SC, Hsiao M, Yao CJ and Shieh MJ: Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy. 10:1179–1192. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Yue W, Hamaï A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P and Mehrpour M: Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy. 9:714–729. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Chiang GG and Abraham RT: Targeting the mTOR signaling network in cancer. Trends Mol Med. 13:433–442. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Xu K, Liu P and Wei W: mTOR signaling in tumorigenesis. Biochim Biophys Acta. 1846:638–654. 2014.PubMed/NCBI

61 

Mateo F, Arenas EJ, Aguilar H, Serra-Musach J, de Garibay GR, Boni J, Maicas M, Du S, Iorio F, Herranz-Ors C, et al: Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene. 36:2737–2749. 2017. View Article : Google Scholar :

62 

Zhang L, Fu L, Zhang S, Zhang J, Zhao Y, Zheng Y, He G, Yang S, Ouyang L and Liu B: Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem Sci (Camb). 8:2687–2701. 2017. View Article : Google Scholar

63 

Jang JE, Eom JI, Jeung HK, Cheong JW, Lee JY, Kim JS and Min YH: Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells. Autophagy. 13:761–762. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Zhou Y, Rucker EB III and Zhou BP: Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin (Shanghai). 48:60–74. 2016.

65 

Yeo SK, Wen J, Chen S and Guan JL: Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signaling. Cancer Res. 76:3397–3410. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Nagy P, Kovács L, Sándor GO and Juhász G: Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. Dis Model Mech. 9:501–512. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Liu K, Zhao Q, Liu P, Cao J, Gong J, Wang C, Wang W, Li X, Sun H, Zhang C, et al: ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy. 12:2000–2008. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Zhang L, Li J, Ouyang L, Liu B and Cheng Y: Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett. 373:19–26. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Antonelli M, Strappazzon F, Arisi I, Brandi R, D'Onofrio M, Sambucci M, Manic G, Vitale I, Barilà D and Stagni V: ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy. Oncotarget. 8:21692–21709. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Liu H, He Z, von Rütte T, Yousefi S, Hunger RE and Simon HU: Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med. 5:202ra1232013. View Article : Google Scholar : PubMed/NCBI

71 

Debnath J: The multifaceted roles of autophagy in tumors-implications for breast cancer. J Mammary Gland Biol Neoplasia. 16:173–187. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Chaterjee M and van Golen KL: Breast cancer stem cells survive periods of farnesyl-transferase inhibitor-induced dormancy by undergoing autophagy. Bone Marrow Res. 2011:3629382011. View Article : Google Scholar : PubMed/NCBI

73 

Memni H, Macherki Y, Klayech Z, Ben-Haj-Ayed A, Farhat K, Remadi Y, Gabbouj S, Mahfoudh W, Bouzid N, Bouaouina N, et al: E-cadherin genetic variants predict survival outcome in breast cancer patients. J Transl Med. 14:3202016. View Article : Google Scholar : PubMed/NCBI

74 

Zhuang W, Li B, Long L, Chen L, Huang Q and Liang Z: Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer. 129:2720–2731. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Qin Z, Xue J, He Y, Ma H, Jin G, Chen J, Hu Z, Liu X and Shen H: Potentially functional polymorphisms in ATG10 are associated with risk of breast cancer in a Chinese population. Gene. 527:491–495. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS and Pochampally RR: Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis. 32:964–972. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Urruticoechea A, Martin-Castillo B and Menendez JA: Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: Utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget. 3:1600–1614. 2012. View Article : Google Scholar

78 

Chang SJ, Ou-Yang F, Tu HP, Lin CH, Huang SH, Kostoro J, Hou MF, Chai CY and Kwan AL: Decreased expression of autophagy protein LC3 and stemness (CD44+/CD24/low) indicate poor prognosis in triple-negative breast cancer. Hum Pathol. 48:48–55. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Carpenter RL, Sirkisoon S, Zhu D, Rimkus T, Harrison A, Anderson A, Paw I, Qasem S, Xing F, Liu Y, et al: Combined inhibition of AKT and HSF1 suppresses breast cancer stem cells and tumor growth. Oncotarget. 8:73947–73963. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, et al: Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32:1903–1916. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Wang Y, Han C, Lu L, Magliato S and Wu T: Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology. 58:995–1010. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Espina V and Liotta LA: What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer. 11:68–75. 2011. View Article : Google Scholar

83 

Yang H, Zheng Y, Zhang Y, Cao Z and Jiang Y: Mesenchymal stem cells derived from multiple myeloma patients protect against chemotherapy through autophagy-dependent activation of NF-κB signaling. Leuk Res. 60:82–88. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Huang S, Wang D, Zhang S, Huang X, Wang D, Ijaz M and Shi Y: Tunicamycin potentiates paclitaxel-induced apoptosis through inhibition of PI3K/AKT and MAPK pathways in breast cancer. Cancer Chemother Pharmacol. 80:685–696. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Sharma N, Thomas S, Golden EB, Hofman FM, Chen TC, Petasis NA, Schönthal AH and Louie SG: Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett. 326:143–154. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Ma YW, Liu YZ and Pan JX: Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res. 6:2816–2830. 2016.

87 

Shi TT, Yu XX, Yan LJ and Xiao HT: Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol. 79:287–294. 2017. View Article : Google Scholar

88 

Solomon VR, Almnayan D and Lee H: Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad. Eur J Med Chem. 137:156–166. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Siddharth S, Nayak D, Nayak A, Das S and Kundu CN: ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA Repair (Amst). 45:44–55. 2016. View Article : Google Scholar

90 

Mishra P, Dauphinee AN, Ward C, Sarkar S, Gunawardena AHLAN and Manjithaya R: Discovery of pan autophagy inhibitors through a high-throughput screen highlights macro-autophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms. Autophagy. 13:1556–1572. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Liang S, Chen Z, Jiang G, Zhou Y, Liu Q, Su Q, Wei W, Du J and Wang H: Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett. 386:12–23. 2017. View Article : Google Scholar

92 

Torrente E, Parodi C, Ercolani L, De Mei C, Ferrari A, Scarpelli R and Grimaldi B: Synthesis and in vitro anticancer activity of the first cass of dual inhibitors of REV-ERBβ and autophagy. J Med Chem. 58:5900–5915. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Zhou X, Yue GG, Chan AM, Tsui SK, Fung KP, Sun H, Pu J and Lau CB: Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer. Biochem Pharmacol. 142:58–70. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Wong VKW, Zeng W, Chen J, Yao XJ, Leung ELH, Wang QQ, Chiu P, Ko BCB and Law BYK: Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front Pharmacol. 8:3512017. View Article : Google Scholar

95 

Han H, Li J, Feng X, Zhou H, Guo S and Zhou W: Autophagy-related genes are induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid via the activation of cathepsin B in human breast cancer cells. Oncotarget. 8:53352–53365. 2017.PubMed/NCBI

96 

Chen X, Yu X, Chen J, Yang Z, Shao Z, Zhang Z, Guo X and Feng Y: Radiotherapy can improve the disease-free survival rate in triple-negative breast cancer patients with T1-T2 disease and one to three positive lymph nodes after mastectomy. Oncologist. 18:141–147. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Chen X, Yu X, Chen J, Zhang Z, Tuan J, Shao Z, Guo X and Feng Y: Analysis in early stage triple-negative breast cancer treated with mastectomy without adjuvant radiotherapy: Patterns of failure and prognostic factors. Cancer. 119:2366–2374. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Liu EY, Xu N, O'Prey J, Lao LY, Joshi S, Long JS, O'Prey M, Croft DR, Beaumatin F, Baudot AD, et al: Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci USA. 112:773–778. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Zhou ZR, Yang ZZ, Wang SJ, Zhang L, Luo JR, Feng Y, Yu XL, Chen XX and Guo XM: The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy. Acta Pharmacol Sin. 38:513–523. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Davison Z, de Blacquière GE, Westley BR and May FEB: Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: Implications for therapy. Neoplasia. 13:504–515. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Wu W, Ma J, Shao N, Shi Y, Liu R, Li W, Lin Y and Wang S: Co-targeting IGF-1R and autophagy enhances the effects of cell growth suppression and apoptosis induced by the IGF-1R inhibitor NVP-AEW541 in triple-negative breast cancer cells. PLoS One. 12:e01692292017. View Article : Google Scholar : PubMed/NCBI

102 

Maxfield KE, Macion J, Vankayalapati H and Whitehurst AW: SIK2 restricts autophagic flux to support triple-negative breast cancer survival. Mol Cell Biol. 36:3048–3057. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Gao J, Fan M, Peng S, Zhang M, Xiang G, Li X, Guo W, Sun Y, Wu X, Wu X, et al: Small-molecule RL71-triggered excessive autophagic cell death as a potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis. 8:e30492017. View Article : Google Scholar : PubMed/NCBI

104 

Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J and Ma X: TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Rep. 7:31582017. View Article : Google Scholar

105 

Liu Z, Shi A, Song D, Han B, Zhang Z, Ma L, Liu D and Fan Z: Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction. Am J Cancer Res. 7:574–583. 2017.PubMed/NCBI

106 

Poillet-Perez L, Jacquet M, Hervouet E, Gauthier T, Fraichard A, Borg C, Pallandre JR, Gonzalez BJ, Ramdani Y, Boyer-Guittaut M, et al: GABARAPL1 tumor suppressive function is independent of its conjugation to autophagosomes in MCF-7 breast cancer cells. Oncotarget. 8:55998–56020. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Rodríguez CE, Reidel SI, Bal de Kier Joffé ED, Jasnis MA and Fiszman GL: Autophagy protects from trastuzumab-induced cytotoxicity in HER2 overexpressing breast tumor spheroids. PLoS One. 10:e01379202015. View Article : Google Scholar : PubMed/NCBI

108 

Zambrano J, Yeh ES and Zambrano J: Autophagy and apoptotic crosstalk: Mechanism of therapeutic resistance in HER2-positive breast cncer. Breast Cancer (Auckl). 10:13–23. 2016.

109 

Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, López-Bonet E, Martin-Castillo B, Joven J and Menendez JA: The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep. 3:24692013. View Article : Google Scholar : PubMed/NCBI

110 

Garbar C, Mascaux C, Giustiniani J, Merrouche Y and Bensussan A: Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci Rep. 7:72012017. View Article : Google Scholar : PubMed/NCBI

111 

Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL, et al: STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res. 74:2579–2590. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Wang S, Wang K, Wang H, Han J and Sun H: Autophagy is essential for flavopiridol-induced cytotoxicity against MCF-7 breast cancer cells. Mol Med Rep. 16:9715–9720. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Chang CT, Korivi M, Huang HC, Thiyagarajan V, Lin KY, Huang PJ, Liu JY, Hseu YC and Yang HL: Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food Chem Toxicol. 103:1–17. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Zheng N, Liu L, Liu WW, Li F, Hayashi T, Tashiro SI, Onodera S and Ikejima T: Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro. Acta Pharmacol Sin. 38:277–289. 2017. View Article : Google Scholar :

115 

Liu ZY, He KW, Song XG, Wang XZ, Zhuo PY, Wang XW, Ma QH, Huo ZJ and Yu ZY: Effect of autophagy inhibitor combined with EGFR inhibitor on triple-negative breast cancer MDA-MB-468 and MDA-MB-231 cells. Zhonghua Zhong Liu Za Zhi. 38:417–424. 2016.In Chinese. PubMed/NCBI

116 

Tran AT, Ramalinga M, Kedir H, Clarke R and Kumar D: Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells. Eur J Nutr. 54:265–272. 2015. View Article : Google Scholar

117 

Liu Z, He K, Ma Q, Yu Q, Liu C, Ndege I, Wang X and Yu Z: Autophagy inhibitor facilitates gefitinib sensitivity in vitro and in vivo by activating mitochondrial apoptosis in triple negative breast cancer. PLoS One. 12:e01776942017. View Article : Google Scholar : PubMed/NCBI

118 

Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H and Lou L: Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 108:1458–1468. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Gong C, Hu C, Gu F, Xia Q, Yao C, Zhang L, Qiang L, Gao S and Gao Y: Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment. J Control Release. 266:272–286. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Shen P, Chen M, He M, Chen L, Song Y, Xiao P, Wan X, Dai F, Pan T and Wang Q: Inhibition of ERα/ERK/P62 cascades induces 'autophagic switch' in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 7:48501–48516. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Li HC, Xia ZH, Chen YF, Yang F, Feng W, Cai H, Mei Y, Jiang YM, Xu K and Feng DX: Cantharidin inhibits the growth of triple-negative breast cancer cells by suppressing autophagy and inducing apoptosis in vitro and in vivo. Cell Physiol Biochem. 43:1829–1840. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Gu Y, Chen T, Li G, Xu C, Xu Z, Zhang J, He K, Zheng L, Guan Z, Su X, et al: Lower Beclin 1 downregulates HER2 expression to enhance tamoxifen sensitivity and predicts a favorable outcome for ER positive breast cancer. Oncotarget. 8:52156–52177. 2016.

Related Articles

Journal Cover

April 2018
Volume 52 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Han, Y., Fan, S., Qin, T., Yang, J., Sun, Y., Lu, Y. ... Li, L. (2018). Role of autophagy in breast cancer and breast cancer stem cells (Review). International Journal of Oncology, 52, 1057-1070. https://doi.org/10.3892/ijo.2018.4270
MLA
Han, Y., Fan, S., Qin, T., Yang, J., Sun, Y., Lu, Y., Mao, J., Li, L."Role of autophagy in breast cancer and breast cancer stem cells (Review)". International Journal of Oncology 52.4 (2018): 1057-1070.
Chicago
Han, Y., Fan, S., Qin, T., Yang, J., Sun, Y., Lu, Y., Mao, J., Li, L."Role of autophagy in breast cancer and breast cancer stem cells (Review)". International Journal of Oncology 52, no. 4 (2018): 1057-1070. https://doi.org/10.3892/ijo.2018.4270