|
1
|
Miao RQ, Gao Y, Harrison KD, Prendergast
J, Acevedo LM, Yu J, Hu F, Strittmatter SM and Sessa WC:
Identification of a receptor necessary for Nogo-B stimulated
chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad
Sci USA. 103:10997–11002. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rana U, Liu Z, Kumar SN, Zhao B, Hu W,
Bordas M, Cossette S, Szabo S, Foeckler J, Weiler H, et al: Nogo-B
receptor deficiency causes cerebral vasculature defects during
embryonic development in mice. Dev Biol. 410:190–201. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Long SL, Li YK, Xie YJ, Long ZF, Shi JF
and Mo ZC: Neurite outgrowth inhibitor B receptor: A versatile
receptor with multiple functions and actions. DNA Cell Biol.
36:1142–1150. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dodd DA, Niederoest B, Bloechlinger S,
Dupuis L, Loeffler JP and Schwab ME: Nogo-A, -B, and -C are found
on the cell surface and interact together in many different cell
types. J Biol Chem. 280:12494–12502. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li M and Song J: Nogo-B receptor possesses
an intrinsically unstructured ectodomain and a partially folded
cytoplasmic domain. Biochem Biophys Res Commun. 360:128–134. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Schwab ME: Nogo and axon regeneration.
Curr Opin Neurobiol. 14:118–124. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Holcomb J, Doughan M, Spellmon N, Lewis B,
Perry E, Zhang Y, Nico L, Wan J, Chakravarthy S, Shang W, et al:
SAXS analysis of a soluble cytosolic NgBR construct including
extracellular and transmembrane domains. PLoS One. 13:e01913712018.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Szafranski P, Von Allmen GK, Graham BH,
Wilfong AA, Kang SH, Ferreira JA, Upton SJ, Moeschler JB, Bi W,
Rosenfeld JA, et al: 6q22.1 microdeletion and susceptibility to
pediatric epilepsy. Eur J Hum Genet. 23:173–179. 2015. View Article : Google Scholar :
|
|
9
|
Grabińska KA, Park EJ and Sessa WC:
cis-prenyltransferase: new insights into protein glycosylation,
rubber synthesis, and human diseases. J Biol Chem. 291:18582–18590.
2016. View Article : Google Scholar
|
|
10
|
Park EJ, Grabińska KA, Guan Z and Sessa
WC: NgBR is essential for endothelial cell glycosylation and
vascular development. EMBO Rep. 17:167–177. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hu W, Zhang W, Chen Y, Rana U, Teng RJ,
Duan Y, Liu Z, Zhao B, Foeckler J, Weiler H, et al: Nogo-B receptor
deficiency increases liver X receptor alpha nuclear translocation
and hepatic lipogenesis through an adenosine
monophosphate-activated protein kinase alpha-dependent pathway.
Hepatology. 64:1559–1576. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Park EJ, Grabińska KA, Guan Z, Stránecký
V, Hartmannová H, Hodaňová K, Barešová V, Sovová J, Jozsef L,
Ondrušková N, et al: Mutation of Nogo-B receptor, a subunit of
cis-prenyltransferase, causes a congenital disorder of
glycosylation. Cell Metab. 20:448–457. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Eckharter C, Junker N, Winter L, Fischer
I, Fogli B, Kistner S, Pfaller K, Zheng B, Wiche G, Klimaschewski
L, et al: Schwann cell expressed Nogo-B modulates axonal branching
of adult sensory neurons through the Nogo-B receptor NgBR. Front
Cell Neurosci. 9:4542015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang B, Zhao B, North P, Kong A, Huang J
and Miao QR: Expression of NgBR is highly associated with estrogen
receptor alpha and survivin in breast cancer. PLoS One.
8:e780832013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dong C, Zhao B, Long F, Liu Y, Liu Z, Li
S, Yang X, Sun D, Wang H, Liu Q, et al: Nogo-B receptor promotes
the chemoresistance of human hepatocellular carcinoma via the
ubiquitination of p53 protein. Oncotarget. 7:8850–8865. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Calik J, Pula B, Piotrowska A, Wojnar A,
Witkiewicz W, Grzegrzolka J, Podhorska-Okolow M and Dziegiel P:
Prognostic significance of NOGO-A/B and NOGO-B receptor expression
in malignant melanoma - A preliminary study. Anticancer Res.
36:3401–3407. 2016.PubMed/NCBI
|
|
17
|
Pula B, Werynska B, Olbromski M,
Muszczynska-Bernhard B, Chabowski M, Janczak D, Zabel M,
Podhorska-Okolow M and Dziegiel P: Expression of Nogo isoforms and
Nogo-B receptor (NgBR) in non-small cell lung carcinomas.
Anticancer Res. 34:4059–4068. 2014.PubMed/NCBI
|
|
18
|
Zhao B, Xu B, Hu W, Song C, Wang F, Liu Z,
Ye M, Zou H and Miao QR: Comprehensive proteome quantification
reveals NgBR as a new regulator for epithelial-mesenchymal
transition of breast tumor cells. J Proteomics. 112:38–52. 2015.
View Article : Google Scholar :
|
|
19
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pula B, Olbromski M, Owczarek T, Ambicka
A, Witkiewicz W, Ugorski M, Rys J, Zabel M, Dziegiel P and
Podhorska-Okolow M: Nogo-B receptor expression correlates
negatively with malignancy grade and ki-67 antigen expression in
invasive ductal breast carcinoma. Anticancer Res. 34:4819–4828.
2014.PubMed/NCBI
|
|
21
|
Maluccio M and Covey A: Recent progress in
understanding, diagnosing, and treating hepatocellular carcinoma.
CA Cancer J Clin. 62:394–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kuo TC, Chang PY, Huang SF, Chou CK and
Chao CC: Knockdown of HURP inhibits the proliferation of
hepacellular carcinoma cells via downregulation of gankyrin and
accumulation of p53. Biochem Pharmacol. 83:758–768. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Elder DE: Melanoma screening and
mortality. J Natl Cancer Inst. Mar 29–2018.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lee JH, Miele ME, Hicks DJ, Phillips KK,
Trent JM, Weissman BE and Welch DR: KiSS-1, a novel human malignant
melanoma metastasis-suppressor gene. J Natl Cancer Inst.
88:1731–1737. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu D, Zhao B, Qi X, Peng F, Fu H, Chi X,
Miao QR and Shao S: Nogo-B receptor promotes epithelial-mesenchymal
transition in non-small cell lung cancer cells through the
Ras/ERK/Snail1 pathway. Cancer Lett. 418:135–146. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cui J, He W, Yi B, Zhao H, Lu K, Ruan H
and Ma D: mTOR pathway is involved in ADP-evoked astrocyte
activation and ATP release in the spinal dorsal horn in a rat
neuropathic pain model. Neuroscience. 275:395–403. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhao B, Chun C, Liu Z, Horswill MA,
Pramanik K, Wilkinson GA, Ramchandran R and Miao RQ: Nogo-B
receptor is essential for angiogenesis in zebrafish via Akt
pathway. Blood. 116:5423–5433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao B, Hu W, Kumar S, Gonyo P, Rana U,
Liu Z, Wang B, Duong WQ, Yang Z, Williams CL, et al: The Nogo-B
receptor promotes Ras plasma membrane localization and activation.
Oncogene. 36:3406–3416. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Inoue K and Fry EA: Aberrant splicing of
the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer. 139:33–41.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ryu HW, Shin DH, Lee DH, Won HR and Kwon
SH: A potent hydroxamic acid-based, small-molecule inhibitor A452
preferentially inhibits HDAC6 activity and induces cytotoxicity
toward cancer cells irrespective of p53 status. Carcinogenesis.
39:72–83. 2018. View Article : Google Scholar
|
|
31
|
Abraham AG and O’Neill E:
PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans.
42:798–803. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jo M, Lester RD, Montel V, Eastman B,
Takimoto S and Gonias SL: Reversibility of epithelial-mesenchymal
transition (EMT) induced in breast cancer cells by activation of
urokinase receptor-dependent cell signaling. J Biol Chem.
284:22825–22833. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brabletz T: EMT and MET in metastasis:
Where are the cancer stem cells? Cancer Cell. 22:699–701. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Larue L and Bellacosa A:
Epithelial-mesenchymal transition in development and cancer: Role
of phosphatidylinositol 3′ kinase/ AKT pathways. Oncogene.
24:7443–7454. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bakin AV, Tomlinson AK, Bhowmick NA, Moses
HL and Arteaga CL: Phosphatidylinositol 3-kinase function is
required for transforming growth factor beta-mediated epithelial to
mesenchymal transition and cell migration. J Biol Chem.
275:36803–36810. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wendt MK, Smith JA and Schiemann WP:
Transforming growth factor-β-induced epithelial-mesenchymal
transition facilitates epidermal growth factor-dependent breast
cancer progression. Oncogene. 29:6485–6498. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang L, Han S and Sun Y: An IL6-STAT3 loop
mediates resistance to PI3K inhibitors by inducing
epithelial-mesenchymal transition and cancer stem cell expansion in
human breast cancer cells. Biochem Biophys Res Commun. 453:582–587.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Song Q, Jiang S, Zhang X, Pan C, Lu C,
Peng J and Li Q: Radiosensitivity of human ovarian cancer cells is
enhanced by pseudolaric acid B due to the inhibition of the
Ras/Raf/ERK signaling pathway. Exp Ther Med. 15:685–690.
2018.PubMed/NCBI
|
|
39
|
Sriskanthadevan-Pirahas S, Lee J and
Grewal SS: The EGF/ Ras pathway controls growth in Drosophila via
ribosomal RNA synthesis. Dev Biol. 439:19–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Takahashi-Niki K, Kato-Ose I, Murata H,
Maita H, Iguchi-Ariga SM and Ariga H: Epidermal growth
factor-dependent activation of the extracellular signal-regulated
kinase pathway by DJ-1 protein through its direct binding to c-Raf
protein. J Biol Chem. 290:17838–17847. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rotblat B, Belanis L, Liang H, Haklai R,
Elad-Zefadia G, Hancock JF, Kloog Y and Plowman SJ: H-Ras
nanocluster stability regulates the magnitude of MAPK signal
output. PLoS One. 5:e119912010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Roy S, Luetterforst R, Harding A, Apolloni
A, Etheridge M, Stang E, Rolls B, Hancock JF and Parton RG:
Dominant-negative caveolin inhibits H-Ras function by disrupting
cholesterol-rich plasma membrane domains. Nat Cell Biol. 1:98–105.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jin Y, Hu W, Liu T, Rana U,
Aguilera-Barrantes I, Kong A, Kumar SN, Wang B, Gao P, Wang X, et
al: Nogo-B receptor increases the resistance of estrogen receptor
positive breast cancer to paclitaxel. Cancer Lett. 419:233–244.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Buday L and Downward J: Many faces of Ras
activation. Biochim Biophys Acta. 1786:178–187. 2008.PubMed/NCBI
|
|
45
|
Prior IA and Hancock JF: Ras trafficking,
localization and compartmentalized signalling. Semin Cell Dev Biol.
23:145–153. 2012. View Article : Google Scholar :
|
|
46
|
Karadedou CT, Gomes AR, Chen J, Petkovic
M, Ho KK, Zwolinska AK, Feltes A, Wong SY, Chan KY, Cheung YN, et
al: FOXO3a represses VEGF expression through FOXM1-dependent and
-independent mechanisms in breast cancer. Oncogene. 31:1845–1858.
2012. View Article : Google Scholar
|
|
47
|
Sherbet GV: Suppression of angiogenesis
and tumour progression by combretastatin and derivatives. Cancer
Lett. 403:289–295. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mantovani G, Macciò A, Madeddu C,
Gramignano G, Lusso MR, Serpe R, Massa E, Astara G and Deiana L: A
phase II study with antioxidants, both in the diet and
supplemented, pharmaconutritional support, progestagen, and
anti-cyclooxygenase-2 showing efficacy and safety in patients with
cancer-related anorexia/ cachexia and oxidative stress. Cancer
Epidemiol Biomarkers Prev. 15:1030–1034. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Saharinen P, Eklund L, Pulkki K, Bono P
and Alitalo K: VEGF and angiopoietin signaling in tumor
angiogenesis and metastasis. Trends Mol Med. 17:347–362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Vasudevan D and Thomas DD: Insights into
the diverse effects of nitric oxide on tumor biology. Vitam Horm.
96:265–298. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ricciuti B, Foglietta J, Bianconi V,
Sahebkar A and Pirro M: Enzymes involved in tumor-driven
angiogenesis: A valuable target for anticancer therapy. Semin
Cancer Biol. Nov 8–2017, (Epub ahead of print).
S1044-579X(17)30043-3. pp. 2017 View Article : Google Scholar
|
|
52
|
Teng RJ, Rana U, Afolayan AJ, Zhao B, Miao
QR and Konduri GG: Nogo-B receptor modulates angiogenesis response
of pulmonary artery endothelial cells through eNOS coupling. Am J
Respir Cell Mol Biol. 51:169–177. 2014.PubMed/NCBI
|
|
53
|
Jo HN, Kang H, Lee A, Choi J, Chang W, Lee
MS and Kim J: Endothelial miR-26a regulates VEGF-Nogo-B
receptor-mediated angiogenesis. BMB Rep. 50:384–389. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cruz P, Torres C, Ramírez ME, Epuñán MJ,
Valladares LE and Sierralta WD: Proliferation of human mammary
cancer cells exposed to 27-hydroxycholesterol. Exp Ther Med.
1:531–536. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Furberg AS, Veierød MB, Wilsgaard T,
Bernstein L and Thune I: Serum high-density lipoprotein
cholesterol, metabolic profile, and breast cancer risk. J Natl
Cancer Inst. 96:1152–1160. 2004. View Article : Google Scholar
|
|
56
|
Alikhani N, Ferguson RD, Novosyadlyy R,
Gallagher EJ, Scheinman EJ, Yakar S and LeRoith D: Mammary tumor
growth and pulmonary metastasis are enhanced in a hyperlipidemic
mouse model. Oncogene. 32:961–967. 2013. View Article : Google Scholar
|
|
57
|
Ooi K, Shiraki K, Sakurai Y, Morishita Y
and Nobori T: Clinical significance of abnormal lipoprotein
patterns in liver diseases. Int J Mol Med. 15:655–660.
2005.PubMed/NCBI
|
|
58
|
Rice SJ, Liu X, Miller B, Joshi M, Zhu J,
Caruso C, Gilbert C, Toth J, Reed M, Rassaei N, et al: Proteomic
profiling of human plasma identifies apolipoprotein E as being
associated with smoking and a marker for squamous metaplasia of the
lung. Proteomics. 15:3267–3277. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Repa JJ and Mangelsdorf DJ: The role of
orphan nuclear receptors in the regulation of cholesterol
homeostasis. Annu Rev Cell Dev Biol. 16:459–481. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shackelford DB: Unravelling the connection
between metabolism and tumorigenesis through studies of the liver
kinase B1 tumour suppressor. J Carcinog. 12:162013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hardie DG, Schaffer BE and Brunet A: AMPK:
An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends
Cell Biol. 26:190–201. 2016. View Article : Google Scholar
|
|
62
|
Hardie DG: AMPK: A target for drugs and
natural products with effects on both diabetes and cancer.
Diabetes. 62:2164–2172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He G, Zhang YW, Lee JH, Zeng SX, Wang YV,
Luo Z, Dong XC, Viollet B, Wahl GM and Lu H: AMP-activated protein
kinase induces p53 by phosphorylating MDMX and inhibiting its
activity. Mol Cell Biol. 34:148–157. 2014. View Article : Google Scholar :
|
|
64
|
Li W, Saud SM, Young MR, Chen G and Hua B:
Targeting AMPK for cancer prevention and treatment. Oncotarget.
6:7365–7378. 2015.PubMed/NCBI
|
|
65
|
Jones RG, Plas DR, Kubek S, Buzzai M, Mu
J, Xu Y, Birnbaum MJ and Thompson CB: AMP-activated protein kinase
induces a p53-dependent metabolic checkpoint. Mol Cell. 18:283–293.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Handa N, Takagi T, Saijo S, Kishishita S,
Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, et al:
Structural basis for compound C inhibition of the human
AMP-activated protein kinase α2 subunit kinase domain. Acta
Crystallogr D Biol Crystallogr. 67:480–487. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hadad SM, Baker L, Quinlan PR, Robertson
KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG,
et al: Histological evaluation of AMPK signalling in primary breast
cancer. BMC Cancer. 9:3072009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang W, Yang X, Chen Y, Hu W, Liu L,
Zhang X, Liu M, Sun L, Liu Y, Yu M, et al: Activation of hepatic
Nogo-B receptor expression-A new anti-liver steatosis mechanism of
statins. Biochim Biophys Acta. 1863.177–190. 2018.
|
|
70
|
Grabińska KA, Edani BH, Park EJ, Kraehling
JR and Sessa WC: A conserved carboxy-terminal RxG motif in the NgBR
subunit of cis-prenyltransferase is critical for prenyltransferase
activity. J Biol Chem. 292:17351–17361. 2017. View Article : Google Scholar
|
|
71
|
Boersema PJ, Geiger T, Wisniewski JR and
Mann M: Quantification of the N-glycosylated secretome by
super-SILAC during breast cancer progression and in human blood
samples. Mol Cell Proteomics. 12:158–171. 2013. View Article : Google Scholar :
|
|
72
|
Li N, Xu H, Fan K, Liu X, Qi J, Zhao C,
Yin P, Wang L, Li Z and Zha X: Altered β1,6-GlcNAc branched
N-glycans impair TGF-β-mediated epithelial-to-mesenchymal
transition through Smad signalling pathway in human lung cancer. J
Cell Mol Med. 18:1975–1991. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen CY, Jan YH, Juan YH, Yang CJ, Huang
MS, Yu CJ, Yang PC, Hsiao M, Hsu TL and Wong CH: Fucosyltransferase
8 as a functional regulator of nonsmall cell lung cancer. Proc Natl
Acad Sci USA. 110:630–635. 2013. View Article : Google Scholar
|
|
74
|
Uramoto H, Sugio K, Oyama T, Nakata S, Ono
K, Yoshimastu T, Morita M and Yasumoto K: Expression of endoplasmic
reticulum molecular chaperone Grp78 in human lung cancer and its
clinical significance. Lung Cancer. 49:55–62. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim KM, Yu TK, Chu HH, Park HS, Jang KY,
Moon WS, Kang MJ, Lee DG, Kim MH, Lee JH, et al: Expression of ER
stress and autophagy-related molecules in human non-small cell lung
cancer and premalignant lesions. Int J Cancer. 131:E362–E370. 2012.
View Article : Google Scholar
|
|
76
|
Lin Y, Wang Z, Liu L and Chen L: Akt is
the downstream target of GRP78 in mediating cisplatin resistance in
ER stress-tolerant human lung cancer cells. Lung Cancer.
71:291–297. 2011. View Article : Google Scholar
|
|
77
|
Clarke R, Cook KL, Hu R, Facey CO,
Tavassoly I, Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y, et
al: Endoplasmic reticulum stress, the unfolded protein response,
autophagy, and the integrated regulation of breast cancer cell
fate. Cancer Res. 72:1321–1331. 2012.PubMed/NCBI
|
|
78
|
Meng XX, Yao M, Zhang XD, Xu HX and Dong
Q: ER stress-induced autophagy in melanoma. Clin Exp Pharmacol
Physiol. 42:811–816. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Martin S, Hill DS, Paton JC, Paton AW,
Birch-Machin MA, Lovat PE and Redfern CP: Targeting GRP78 to
enhance melanoma cell death. Pigment Cell Melanoma Res. 23:675–682.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Matsumoto T, Uchiumi T, Monji K, Yagi M,
Setoyama D, Amamoto R, Matsushima Y, Shiota M, Eto M and Kang D:
Doxycycline induces apoptosis via ER stress selectively to cells
with a cancer stem cell-like properties: Importance of stem cell
plasticity. Oncogenesis. 6:3972017. View Article : Google Scholar : PubMed/NCBI
|