|
1
|
Zhou CK, Check DP, Lortet-Tieulent J,
Laversanne M, Jemal A, Ferlay J, Bray F, Cook MB and Devesa SS:
Prostate cancer incidence in 43 populations worldwide: An analysis
of time trends overall and by age group. Int J Cancer.
138:1388–1400. 2016. View Article : Google Scholar :
|
|
2
|
Mitchell S, Abel P, Ware M, Stamp G and
Lalani E: Phenotypic and genotypic characterization of commonly
used human prostatic cell lines. BJU Int. 85:932–944. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Spiotto MT and Chung TD: STAT3 mediates
IL-6-induced neuro-endocrine differentiation in prostate cancer
cells. Prostate. 42:186–195. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mori K, Le Goff B, Charrier C, Battaglia
S, Heymann D and Rédini F: DU145 human prostate cancer cells
express functional receptor activator of NFkappaB: New insights in
the prostate cancer bone metastasis process. Bone. 40:981–990.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
van Duijn PW and Trapman J: PI3K/Akt
signaling regulates p27(kip1) expression via Skp2 in PC3 and DU145
prostate cancer cells, but is not a major factor in p27(kip1)
regulation in LNCaP and PC346 cells. Prostate. 66:749–760. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Proverbs-Singh T, Feldman JL, Morris MJ,
Autio KA and Traina TA: Targeting the androgen receptor in prostate
and breast cancer: Several new agents in development. Endocr Relat
Cancer. 22:R87–R106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Quinn DI, Tangen CM, Hussain M, Lara PN
Jr, Goldkorn A, Moinpour CM, Garzotto MG, Mack PCA, Carducci MA,
Monk JP, et al: Docetaxel and atrasentan versus docetaxel and
placebo for men with advanced castration-resistant prostate cancer
(SWOG S0421): A randomised phase 3 trial. Lancet Oncol. 14:893–900.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Morin F, Beauregard JM, Bergeron M, Nguile
Makao M, Lacombe L, Fradet V, Fradet Y and Pouliot F: Metabolic
Imaging of Prostate Cancer Reveals Intrapatient Intermetastasis
Response Heterogeneity to Systemic Therapy. Eur Urol Focus.
3:639–642. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Katzenwadel A and Wolf P: Androgen
deprivation of prostate cancer: Leading to a therapeutic dead end.
Cancer Lett. 367:12–17. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gravis G, Fizazi K, Joly F, Oudard S,
Priou F, Esterni B, Latorzeff I, Delva R, Krakowski I, Laguerre B,
et al: Androgen-deprivation therapy alone or with docetaxel in
non-castrate metastatic prostate cancer (GETUG-AFU 15): A
randomised, open-label, phase 3 trial. Lancet Oncol. 14:149–158.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gillessen S, Omlin A, Attard G, de Bono
JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith
MR, et al: Management of patients with advanced prostate cancer:
Recommendations of the St Gallen Advanced Prostate Cancer Consensus
Conference (APCCC) 2015. Ann Oncol. 26:1589–1604. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ohlmann CH, Goebell PJ, Grimm MO, Klier J,
König F, Machtens S, Schostak M, Schrader AJ and Albers P:
Metastatic prostate cancer: Update: position paper for the use of
chemotherapy. Urologe A. 56:1597–1602. 2017.In German. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Oudard S, Fizazi K, Sengeløv L, Daugaard
G, Saad F, Hansen S, Hjälm-Eriksson M, Jassem J, Thiery-Vuillemin
A, Caffo O, et al: Cabazitaxel versus docetaxel as first-line
therapy for patients with metastatic castration-resistant prostate
cancer: A randomized phase III trial-FIRSTANA. J Clin Oncol.
35:3189–3197. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Galsky MD and Vogelzang NJ:
Docetaxel-based combination therapy for castration-resistant
prostate cancer. Ann Oncol. 21:2135–2144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pitcher B, Khoja L, Hamilton RJ, Abdallah
K, Pintilie M and Joshua AM: Assessment of a prognostic model, PSA
metrics and toxicities in metastatic castrate resistant prostate
cancer using data from Project Data Sphere (PDS). PLoS One.
12:e01705442017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hwang C: Overcoming docetaxel resistance
in prostate cancer: A perspective review. Ther Adv Med Oncol.
4:329–340. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Attard G, Parker C, Eeles RA, Schröder F,
Tomlins SA, Tannock I, Drake CG and de Bono JS: Prostate cancer.
Lancet. 387:70–82. 2016. View Article : Google Scholar
|
|
18
|
Mouhid L, Corzo-Martínez M, Torres C,
Vázquez L, Reglero G, Fornari T and Ramírez de Molina A: Improving
in vivo efficacy of bioactive molecules: An overview of potentially
antitumor phytochemicals and currently available lipid-based
delivery systems. J Oncol. 2017:73519762017. View Article : Google Scholar :
|
|
19
|
Tummala R, Lou W, Gao AC and Nadiminty N:
Quercetin targets hnRNPA1 to overcome enzalutamide resistance in
prostate cancer cells. Mol Cancer Ther. 16:2770–2779. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang Y and Talalay P: Anticarcinogenic
activities of organic isothiocyanates: Chemistry and mechanisms.
Cancer Res. 54 (Suppl 7): 1976s–1981s. 1994.PubMed/NCBI
|
|
21
|
Zhao B, Seow A, Lee EJ, Poh WT, Teh M, Eng
P, Wang YT, Tan WC, Yu MC and Lee HP: Dietary isothiocyanates,
glutathione S-transferase -M1, -T1 polymorphisms and lung cancer
risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers
Prev. 10:1063–1067. 2001.
|
|
22
|
Ambrosone CB, McCann SE, Freudenheim JL,
Marshall JR, Zhang Y and Shields PG: Breast cancer risk in
premenopausal women is inversely associated with consumption of
broccoli, a source of isothiocyanates, but is not modified by GST
genotype. J Nutr. 134:1134–1138. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Halkier BA and Gershenzon J: Biology and
biochemistry of glucosinolates. Annu Rev Plant Biol. 57:303–333.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Guo Z, Smith TJ, Wang E, Eklind KI, Chung
FL and Yang CS: Structure-activity relationships of arylalkyl
isothiocyanates for the inhibition of
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism and the
modulation of xenobiotic-metabolizing enzymes in rats and mice.
Carcinogenesis. 14:1167–1173. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rampal G, Thind TS, Arora R, Vig AP and
Arora S: Synergistic antimutagenic effect of isothiocyanates
against varied mutagens. Food Chem Toxicol. 109:879–887. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Papi A, Orlandi M, Bartolini G, Barillari
J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF and
Valgimigli L: Cytotoxic and antioxidant activity of
4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L.
(Kaiware Daikon) sprouts. J Agric Food Chem. 56:875–883. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cheung KL and Kong AN: Molecular targets
of dietary phenethyl isothiocyanate and sulforaphane for cancer
chemoprevention. AAPS J. 12:87–97. 2010. View Article : Google Scholar :
|
|
28
|
Wu CL, Huang AC, Yang JS, Liao CL, Lu HF,
Chou ST, Ma CY, Hsia TC, Ko YC and Chung JG: Benzyl isothiocyanate
(BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of
reactive oxygen species causes cell cycle arrest and induces
apoptosis via activation of caspase-3, mitochondria dysfunction and
nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J
Orthop Res. 29:1199–1209. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kadir NH, David R, Rossiter JT and
Gooderham NJ: The selective cytotoxicity of the alkenyl
glucosinolate hydrolysis products and their presence in Brassica
vegetables. Toxicology. 334:59–71. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Arora R, Kumar R, Mahajan J, Vig AP, Singh
B, Singh B and Arora S: 3-Butenyl isothiocyanate: A hydrolytic
product of glucosinolate as a potential cytotoxic agent against
human cancer cell lines. J Food Sci Technol. 53:3437–3445. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Okamura T, Umemura T, Inoue T, Tasaki M,
Ishii Y, Nakamura Y, Park EY, Sato K, Matsuo T, Okamoto S, et al:
Chemopreventive effects of 4-methylthio-3-butenyl Isothiocyanate
(Raphasatin) but not curcumin against pancreatic carcinogenesis in
hamsters. J Agric Food Chem. 61:2103–2108. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Suzuki I, Cho YM, Hirata T, Toyoda T,
Akagi JI, Nakamura Y, Sasaki A, Nakamura T, Okamoto S, Shirota K,
et al: Toxic effects of 4-methylthio-3-butenyl isothiocyanate
(Raphasatin) in the rat urinary bladder without genotoxicity. J
Appl Toxicol. 37:485–494. 2017. View Article : Google Scholar
|
|
33
|
Novío S, Cartea ME, Soengas P,
Freire-Garabal M and Núñez-Iglesias MJ: Effects of Brassicaceae
isothiocyanates on prostate cancer. Molecules. 21:E6262016.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Padilla G, Cartea ME, Velasco P, de Haro A
and Ordás A: Variation of glucosinolates in vegetable crops of
Brassica rapa. Phytochemistry. 68:536–545. 2007. View Article : Google Scholar
|
|
35
|
Smith TK, Lund EK, Clarke RG, Bennett RN
and Johnson IT: Effects of Brussels sprout juice on the cell cycle
and adhesion of human colorectal carcinoma cells (HT29) in vitro. J
Agric Food Chem. 53:3895–3901. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xiao D, Choi S, Johnson DE, Vogel VG,
Johnson CS, Trump DL, Lee YJ and Singh SV: Diallyl
trisulfide-induced apoptosis in human prostate cancer cells
involves c-Jun N-terminal kinase and extracellular-signal regulated
kinase-mediated phosphorylation of Bcl-2. Oncogene. 23:5594–5606.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xiao D, Vogel V and Singh SV: Benzyl
isothiocyanate-induced apoptosis in human breast cancer cells is
initiated by reactive oxygen species and regulated by Bax and Bak.
Mol Cancer Ther. 5:2931–2945. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mao L, Yang C, Wang J, Li W, Wen R, Chen J
and Zheng J: SATB1 is overexpressed in metastatic prostate cancer
and promotes prostate cancer cell growth and invasion. J Transl
Med. 11:1112013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
da Silva Ferreira R, Zhou D, Gasperazzo J,
Cabral MC, Silva-Lucca RA, Mentele R, Paredes-Gamero EJ, Bertolin
TC, dos Santos MT, Guedes PM, et al: Crystal structure of Crataeva
tapia bark protein (CrataBL) and its effect in human prostate
cancer cell lines. PLoS One. 8:e644262013. View Article : Google Scholar
|
|
40
|
Lee HY, Oh SH, Suh YA, Baek JH,
Papadimitrakopoulou V, Huang S and Hong WK: Response of non-small
cell lung cancer cells to the inhibitors of phosphatidylinositol
3-kinase/ Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase
pathways: An effective therapeutic strategy for lung cancer. Clin
Cancer Res. 11:6065–6074. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fimognari C, Nüsse M, Iori R,
Cantelli-Forti G and Hrelia P: The new isothiocyanate
4-(methylthio)butylisothiocyanate selectively affects cell-cycle
progression and apoptosis induction of human leukemia cells. Invest
New Drugs. 22:119–129. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Barillari J, Iori R, Papi A, Orlandi M,
Bartolini G, Gabbanini S, Pedulli GF and Valgimigli L: Kaiware
Daikon (Raphanus sativus L.) extract: A naturally multipotent
chemopreventive agent. J Agric Food Chem. 56:7823–7830. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Papi A, Farabegoli F, Iori R, Orlandi M,
De Nicola GR, Bagatta M, Angelino D, Gennari L and Ninfali P:
Vitexin-2-O-xyloside, raphasatin and (-)-epigallocatechin-3-gallate
synergistically affect cell growth and apoptosis of colon cancer
cells. Food Chem. 138:1521–1530. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Yao S and Li J: Vegetable-derived
isothiocyanates: Anti-proliferative activity and mechanism of
action. Proc Nutr Soc. 65:68–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang Y: The molecular basis that unifies
the metabolism, cellular uptake and chemopreventive activities of
dietary isothiocyanates. Carcinogenesis. 33:2–9. 2012. View Article : Google Scholar :
|
|
46
|
Wang N, Wang W, Huo P, Liu CQ, Jin JC and
Shen LQ: Mitochondria-mediated apoptosis in human lung cancer A549
cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish
seeds. Asian Pac J Cancer Prev. 15:2133–2139. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Daja MM, Niu X, Zhao Z, Brown JM and
Russell PJ: Characterization of expression of matrix
metalloproteinases and tissue inhibitors of metalloproteinases in
prostate cancer cell lines. Prostate Cancer Prostatic Dis. 6:15–26.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tai S, Sun Y, Squires JM, Zhang H, Oh WK,
Liang CZ and Huang J: PC3 is a cell line characteristic of
prostatic small cell carcinoma. Prostate. 71:1668–1679. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Stanton RA, Gernert KM, Nettles JH and
Aneja R: Drugs that target dynamic microtubules: A new molecular
perspective. Med Res Rev. 31:443–481. 2011. View Article : Google Scholar :
|
|
50
|
Mi L, Xiao Z, Hood BL, Dakshanamurthy S,
Wang X, Govind S, Conrads TP, Veenstra TD and Chung FL: Covalent
binding to tubulin by isothiocyanates. A mechanism of cell growth
arrest and apoptosis. J Biol Chem. 283:22136–22146. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mi L, Gan N, Cheema A, Dakshanamurthy S,
Wang X, Yang DC and Chung FL: Cancer preventive isothiocyanates
induce selective degradation of cellular alpha- and beta-tubulins
by proteasomes. J Biol Chem. 284:17039–17051. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xiao Z, Mi L, Chung FL and Veenstra TD:
Proteomic analysis of covalent modifications of tubulins by
isothiocyanates. J Nutr. 142:1377S–1381S. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Magadoux L, Isambert N, Plenchette S,
Jeannin JF and Laurens V: Emerging targets to monitor and overcome
docetaxel resistance in castration resistant prostate cancer
(review). Int J Oncol. 45:919–928. 2014.review. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu ML, Horbinski CM, Garzotto M, Qian DZ,
Beer TM and Kyprianou N: Tubulin-targeting chemotherapy impairs
androgen receptor activity in prostate cancer. Cancer Res.
70:7992–8002. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Khurana N, Talwar S, Chandra PK, Sharma P,
Abdel-Mageed AB, Mondal D and Sikka SC: Sulforaphane increases the
efficacy of anti-androgens by rapidly decreasing androgen receptor
levels in prostate cancer cells. Int J Oncol. 49:1609–1619. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim SH and Singh SV: D, L-Sulforaphane
causes transcriptional repression of androgen receptor in human
prostate cancer cells. Mol Cancer Ther. 8:1946–1954. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lane DP: Cancer p53, guardian of the
genome. Nature. 358:15–16. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou M, Gu L, Li F, Zhu Y, Woods WG and
Findley HW: DNA damage induces a novel p53-survivin signaling
pathway regulating cell cycle and apoptosis in acute lymphoblastic
leukemia cells. J Pharmacol Exp Ther. 303:124–131. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Qian J, Hirasawa K, Bostwick DG,
Bergstralh EJ, Slezak JM, Anderl KL, Borell TJ, Lieber MM and
Jenkins RB: Loss of p53 and c-myc overrepresentation in stage
T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer
progression. Mod Pathol. 15:35–44. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Strano S, Dell'Orso S, Di Agostino S,
Fontemaggi G, Sacchi A and Blandino G: Mutant p53: An oncogenic
transcription factor. Oncogene. 26:2212–2219. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gan L, Wang J, Xu H and Yang X: Resistance
to docetaxel-induced apoptosis in prostate cancer cells by
p38/p53/p21 signaling. Prostate. 71:1158–1166. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu C, Zhu Y, Lou W, Nadiminty N, Chen X,
Zhou Q, Shi XB, deVere White RW and Gao AC: Functional p53
determines docetaxel sensitivity in prostate cancer cells.
Prostate. 73:418–427. 2013. View Article : Google Scholar
|
|
63
|
Muller PA and Vousden KH: p53 mutations in
cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar
|
|
64
|
Conley-LaComb MK, Saliganan A, Kandagatla
P, Chen YQ, Cher ML and Chinni SR: PTEN loss mediated Akt
activation promotes prostate tumor growth and metastasis via
CXCL12/ CXCR4 signaling. Mol Cancer. 12:852013. View Article : Google Scholar
|
|
65
|
Guan X: Cancer metastases: Challenges and
opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wells A, Yates C and Shepard CR:
E-cadherin as an indicator of mesenchymal to epithelial reverting
transitions during the metastatic seeding of disseminated
carcinomas. Clin Exp Metastasis. 25:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Härmä V, Haavikko R, Virtanen J, Ahonen I,
Schukov HP, Alakurtti S, Purev E, Rischer H, Yli-Kauhaluoma J,
Moreira VM, et al: Optimization of Invasion-Specific Effects of
Betulin Derivatives on Prostate Cancer Cells through Lead
Development. PLoS One. 10:e01261112015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bai SW, Herrera-Abreu MT, Rohn JL, Racine
V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B and
Ridley AJ: Identification and characterization of a set of
conserved and new regulators of cytoskeletal organization, cell
morphology and migration. BMC Biol. 9:542011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jackson SJ and Singletary KW:
Sulforaphane: A naturally occurring mammary carcinoma mitotic
inhibitor, which disrupts tubulin polymerization. Carcinogenesis.
25:219–227. 2004. View Article : Google Scholar
|