|
1
|
Yang S and Huang XY: Ca2+
influx through L-type Ca2+ channels controls the
trailing tail contraction in growth factor-induced fibroblast cell
migration. J Biol Chem. 280:27130–27137. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tsai FC, Seki A, Yang HW, Hayer A,
Carrasco S, Malmersjö S and Meyer T: A polarized Ca2+,
diacylglycerol and STIM1 signalling system regulates directed cell
migration. Nat Cell Biol. 16:133–144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xiong J, Camello PJ, Verkhratsky A and
Toescu EC: Mitochondrial polarisation status and
[Ca2+]i signalling in rat cerebellar granule
neurones aged in vitro. Neurobiol Aging. 25:349–359. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang S, Wang X, Shen Q, Yang X, Yu C, Cai
C, Cai G, Meng X and Zou F: Mitochondrial Ca2+ uniporter
is critical for store-operated Ca2+ entry-dependent
breast cancer cell migration. Biochem Biophys Res Commun.
458:186–193. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen L, Sun Q, Zhou D, Song W, Yang Q, Ju
B, Zhang L, Xie H, Zhou L, Hu Z, et al: HINT2 triggers
mitochondrial Ca2+ influx by regulating the
mitochondrial Ca2+ uniporter (MCU) complex and enhances
gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett.
411:106–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Deak AT, Blass S, Khan MJ, Groschner LN,
Waldeck- Weiermair M, Hallström S, Graier WF and Malli R:
IP3-mediated STIM1 oligomerization requires intact mitochondrial
Ca2+ uptake. J Cell Sci. 127:2944–2955. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Imbert N, Cognard C, Duport G, Guillou C
and Raymond G: Abnormal calcium homeostasis in Duchenne muscular
dystrophy myotubes contracting in vitro. Cell Calcium. 18:177–186.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Budd SL and Nicholls DG: A reevaluation of
the role of mitochondria in neuronal Ca2+ homeostasis. J
Neurochem. 66:403–411. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hartmann J and Verkhratsky A: Relations
between intracellular Ca2+ stores and store-operated
Ca2+ entry in primary cultured human glioblastoma cells.
J Physiol. 513:411–424. 1998. View Article : Google Scholar
|
|
10
|
Hoth M, Button DC and Lewis RS:
Mitochondrial control of calcium-channel gating: A mechanism for
sustained signaling and transcriptional activation in T
lymphocytes. Proc Natl Acad Sci USA. 97:10607–10612. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jouaville LS, Pinton P, Bastianutto C,
Rutter GA and Rizzuto R: Regulation of mitochondrial ATP synthesis
by calcium: Evidence for a long-term metabolic priming. Proc Natl
Acad Sci USA. 96:13807–13812. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rizzuto R, Pinton P, Carrington W, Fay FS,
Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with
the endoplasmic reticulum as determinants of mitochondrial
Ca2+ responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gomez-Suaga P, Paillusson S, Stoica R,
Noble W, Hanger DP and Miller CC: The ER-mitochondria tethering
complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 27:371–385.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Báthori G, Csordás G, Garcia-Perez C,
Davies E and Hajnóczky G: Ca2+-dependent control of the
permeability properties of the mitochondrial outer membrane and
voltage-dependent anion- selective channel (VDAC). J Biol Chem.
281:17347–17358. 2006. View Article : Google Scholar
|
|
15
|
Tekmen M and Gleason E: Multiple
Ca2+-dependent mechanisms regulate L-type
Ca2+ current in retinal amacrine cells. J Neurophysiol.
104:1849–1866. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hiester BG, Bourke AM, Sinnen BL, Cook SG,
Gibson ES, Smith KR and Kennedy MJ: L-type voltage-gated
Ca2+ channels regulate synaptic-activity-triggered
recycling endosome fusion in neuronal dendrites. Cell Rep.
21:2134–2146. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Baughman JM, Perocchi F, Girgis HS,
Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L,
Goldberger O, Bogorad RL, et al: Integrative genomics identifies
MCU as an essential component of the mitochondrial calcium
uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tsai CW, Wu Y, Pao PC, Phillips CB,
Williams C, Miller C, Ranaghan M and Tsai MF: Proteolytic control
of the mitochondrial calcium uniporter complex. Proc Natl Acad Sci
USA. 114:4388–4393. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen W, Yang J, Chen S, Xiang H, Liu H,
Lin D, Zhao S, Peng H, Chen P, Chen AF, et al: Importance of
mitochondrial calcium uniporter in high glucose-induced endothelial
cell dysfunction. Diab Vasc Dis Res. 14:494–501. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Luongo TS, Lambert JP, Gross P, Nwokedi M,
Lombardi AA, Shanmughapriya S, Carpenter AC, Kolmetzky D, Gao E,
van Berlo JH, et al: The mitochondrial
Na+/Ca2+ exchanger is essential for
Ca2+ homeostasis and viability. Nature. 545:93–97. 2017.
View Article : Google Scholar
|
|
21
|
Roy S, Dey K, Hershfinkel M, Ohana E and
Sekler I: Identification of residues that control Li+
versus Na+ dependent Ca2+ exchange at the
transport site of the mitochondrial NCLX. Biochim Biophys Acta Mol
Cell Res. 1864:997–1008. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Austin S, Tavakoli M, Pfeiffer C, Seifert
J, Mattarei A, De Stefani D, Zoratti M and Nowikovsky K:
LETM1-mediated K+ and Na+ homeostasis
regulates mitochondrial Ca2+ efflux. Front Physiol.
8:8392017. View Article : Google Scholar
|
|
23
|
Melchionda M, Pittman JK, Mayor R and
Patel S: Ca2+/H+ exchange by acidic
organelles regulates cell migration in vivo. J Cell Biol.
212:803–813. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shao J, Fu Z, Ji Y, Guan X, Guo S, Ding Z,
Yang X, Cong Y and Shen Y: Leucine zipper-EF-hand containing
transmembrane protein 1 (LETM1) forms a
Ca2+/H+ antiporter. Sci Rep. 6:341742016.
View Article : Google Scholar
|
|
25
|
Koshiba T, Detmer SA, Kaiser JT, Chen H,
McCaffery JM and Chan DC: Structural basis of mitochondrial
tethering by mitofusin complexes. Science. 305:858–862. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ausman J, Abbade J, Ermini L, Farrell A,
Tagliaferro A, Post M and Caniggia I: Ceramide-induced BOK promotes
mitochondrial fission in preeclampsia. Cell Death Dis. 9:2982018.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gutiérrez T, Parra V, Troncoso R, Pennanen
C, Contreras- Ferrat A, Vasquez-Trincado C, Morales PE,
Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, et al: Alteration
in mitochondrial Ca(2+) uptake disrupts insulin signaling in
hypertrophic cardio-myocytes. Cell Commun Signal. 12:682014.
|
|
28
|
Giorgi C, Bonora M, Sorrentino G,
Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di
Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum
regulates apoptosis in a Ca2+-dependent manner. Proc
Natl Acad Sci USA. 112:1779–1784. 2015. View Article : Google Scholar
|
|
29
|
Park SJ, Lee SB, Suh Y, Kim SJ, Lee N,
Hong JH, Park C, Woo Y, Ishizuka K, Kim JH, et al: DISC1 modulates
neuronal stress responses by gate-keeping ER-mitochondria
Ca2+ transfer through the MAM. Cell Rep. 21:2748–2759.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Decuypere JP, Welkenhuyzen K, Luyten T,
Ponsaerts R, Dewaele M, Molgó J, Agostinis P, Missiaen L, De Smedt
H, Parys JB, et al: Ins(1,4,5)P3 receptor-mediated Ca2+
signaling and autophagy induction are interrelated. Autophagy.
7:1472–1489. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hur YS, Kim KD, Paek SH and Yoo SH:
Evidence for the existence of secretory granule (dense-core
vesicle)-based inositol 1,4,5-trisphosphate-dependent
Ca2+ signaling system in astrocytes. PLoS One.
5:e119732010. View Article : Google Scholar
|
|
32
|
Furuichi T, Simon-Chazottes D, Fujino I,
Yamada N, Hasegawa M, Miyawaki A, Yoshikawa S, Guénet JL and
Mikoshiba K: Widespread expression of inositol 1,4,5-trisphosphate
receptor type 1 gene (Insp3r1) in the mouse central nervous system.
Receptors Channels. 1:11–24. 1993.PubMed/NCBI
|
|
33
|
Sugiyama T, Yamamoto-Hino M, Miyawaki A,
Furuichi T, Mikoshiba K and Hasegawa M: Subtypes of inositol
1,4,5-trisphosphate receptor in human hematopoietic cell lines:
Dynamic aspects of their cell-type specific expression. FEBS Lett.
349:191–196. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cárdenas C, Miller RA, Smith I, Bui T,
Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, et al:
Essential regulation of cell bioenergetics by constitutive InsP3
receptor Ca2+ transfer to mitochondria. Cell.
142:270–283. 2010. View Article : Google Scholar
|
|
35
|
Kennedy ED, Rizzuto R, Theler JM, Pralong
WF, Bastianutto C, Pozzan T and Wollheim CB: Glucose-stimulated
insulin secretion correlates with changes in mitochondrial and
cytosolic Ca2+ in aequorin-expressing INS-1 cells. J
Clin Invest. 98:2524–2538. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kennedy HJ, Pouli AE, Ainscow EK,
Jouaville LS, Rizzuto R and Rutter GA: Glucose generates sub-plasma
membrane ATP microdomains in single islet beta-cells. Potential
role for strategically located mitochondria. J Biol Chem.
274:13281–13291. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rutter GA, Burnett P, Rizzuto R, Brini M,
Murgia M, Pozzan T, Tavaré JM and Denton RM: Subcellular imaging of
intramitochondrial Ca2+ with recombinant targeted
aequorin: Significance for the regulation of pyruvate dehydrogenase
activity. Proc Natl Acad Sci USA. 93:5489–5494. 1996. View Article : Google Scholar
|
|
38
|
Territo PR, Mootha VK, French SA and
Balaban RS: Ca(2+) activation of heart mitochondrial oxidative
phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell
Physiol. 278:C423–C435. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gizak A, Pirog M and Rakus D: Muscle
FBPase binds to cardiomyocyte mitochondria under glycogen synthase
kinase-3 inhibition or elevation of cellular Ca2+ level.
FEBS Lett. 586:13–19. 2012. View Article : Google Scholar
|
|
40
|
Wiśniewski J, Piróg M, Hołubowicz R,
Dobryszycki P, McCubrey JA, Rakus D and Gizak A: Dimeric and
tetrameric forms of muscle fructose-1,6-bisphosphatase play
different roles in the cell. Oncotarget. 8:115420–115433. 2017.
View Article : Google Scholar
|
|
41
|
Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y,
Tomizawa K, Nairn AC, Takei K, Matsui H and Matsushita M: CaM
kinase I alpha-induced phosphorylation of Drp1 regulates
mitochondrial morphology. J Cell Biol. 182:573–585. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ji WK, Hatch AL, Merrill RA, Strack S and
Higgs HN: Actin filaments target the oligomeric maturation of the
dynamin GTPase Drp1 to mitochondrial fission sites. eLife.
4:e115532015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xu S, Pi H, Chen Y, Zhang N, Guo P, Lu Y,
He M, Xie J, Zhong M, Zhang Y, et al: Cadmium induced
Drp1-dependent mitochondrial fragmentation by disturbing calcium
homeostasis in its hepatotoxicity. Cell Death Dis. 4:e5402013.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pennanen C, Parra V, López-Crisosto C,
Morales PE, Del Campo A, Gutierrez T, Rivera-Mejías P, Kuzmicic J,
Chiong M, Zorzano A, et al: Mitochondrial fission is required for
cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin
signaling pathway. J Cell Sci. 127:2659–2671. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ohshima Y, Takata N, Suzuki-Karasaki M,
Yoshida Y, Tokuhashi Y and Suzuki-Karasaki Y: Disrupting
mitochondrial Ca2+ homeostasis causes tumor-selective
TRAIL sensitization through mitochondrial network abnormalities.
Int J Oncol. 51:1146–1158. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang X and Schwarz TL: The mechanism of
Ca2+ -dependent regulation of kinesin-mediated
mitochondrial motility. Cell. 136:163–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kremneva E, Kislin M, Kang X and Khiroug
L: Motility of astrocytic mitochondria is arrested by
Ca2+-dependent interaction between mitochondria and
actin filaments. Cell Calcium. 53:85–93. 2013. View Article : Google Scholar
|
|
48
|
Gandhi S, Wood-Kaczmar A, Yao Z,
Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi
SJ, Wood NW, et al: PINK1-associated Parkinson's disease is caused
by neuronal vulnerability to calcium-induced cell death. Mol Cell.
33:627–638. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dagda RK, Cherra SJ III, Kulich SM, Tandon
A, Park D and Chu CT: Loss of PINK1 function promotes mitophagy
through effects on oxidative stress and mitochondrial fission. J
Biol Chem. 284:13843–13855. 2009. View Article : Google Scholar
|
|
50
|
Gelmetti V, De Rosa P, Torosantucci L,
Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D, Fimia GM
and Valente EM: PINK1 and BECN1 relocalize at
mitochondria-associated membranes during mitophagy and promote
ER-mitochondria tethering and autophagosome formation. Autophagy.
13:654–669. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Evans JH and Falke JJ: Ca2+
influx is an essential component of the positive-feedback loop that
maintains leading-edge structure and activity in macrophages. Proc
Natl Acad Sci USA. 104:16176–16181. 2007. View Article : Google Scholar
|
|
52
|
Gottlieb TM, Leal JF, Seger R, Taya Y and
Oren M: Cross-talk between Akt, p53 and Mdm2: Possible implications
for the regulation of apoptosis. Oncogene. 21:1299–1303. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Missiroli S, Danese A, Iannitti T,
Patergnani S, Perrone M, Previati M, Giorgi C and Pinton P:
Endoplasmic reticulum- mitochondria Ca2+ crosstalk in
the control of the tumor cell fate. Biochim Biophys Acta Mol Cell
Res. 1864:858–864. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu
Y, Guo X, Ji L, Huang Q, Zhang H, et al: MCU-dependent
mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2
pathway to promote ROS production and metastasis of HCC cells.
Oncogene. 36:5897–5909. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Betz C, Stracka D, Prescianotto-Baschong
C, Frieden M, Demaurex N and Hall MN: Feature Article: mTOR complex
2-Akt signaling at mitochondria-associated endoplasmic reticulum
membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad
Sci USA. 110:12526–12534. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rimessi A, Marchi S, Patergnani S and
Pinton P: H-Ras-driven tumoral maintenance is sustained through
caveolin-1-dependent alterations in calcium signaling. Oncogene.
33:2329–2340. 2014. View Article : Google Scholar
|
|
57
|
Matsumoto T, Uchiumi T, Monji K, Yagi M,
Setoyama D, Amamoto R, Matsushima Y, Shiota M, Eto M and Kang D:
Doxycycline induces apoptosis via ER stress selectively to cells
with a cancer stem cell-like properties: Importance of stem cell
plasticity. Oncogenesis. 6:3972017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Seervi M, Sobhan PK, Joseph J, Ann Mathew
K and Santhoshkumar TR: ERO1α-dependent endoplasmic
reticulum-mitochondrial calcium flux contributes to ER stress and
mitochondrial permeabilization by procaspase-activating compound-1
(PAC-1). Cell Death Dis. 4:e9682013. View Article : Google Scholar
|
|
59
|
Wu LF, Guo YT, Zhang QH, Xiang MQ, Deng W,
Ye YQ, Pu ZJ, Feng JL and Huang GY: Enhanced antitumor effects of
adenoviral-mediated siRNA against GRP78 gene on adenosine- induced
apoptosis in human hepatoma HepG2 cells. Int J Mol Sci. 15:525–544.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shibao K, Fiedler MJ, Nagata J, Minagawa
N, Hirata K, Nakayama Y, Iwakiri Y, Nathanson MH and Yamaguchi K:
The type III inositol 1,4,5-trisphosphate receptor is associated
with aggressiveness of colorectal carcinoma. Cell Calcium.
48:315–323. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sakakura C, Hagiwara A, Fukuda K,
Shimomura K, Takagi T, Kin S, Nakase Y, Fujiyama J, Mikoshiba K,
Okazaki Y, et al: Possible involvement of inositol
1,4,5-trisphosphate receptor type 3 (IP3R3) in the peritoneal
dissemination of gastric cancers. Anticancer Res. 23:3691–3697.
2003.PubMed/NCBI
|
|
62
|
Monaco G, Decrock E, Arbel N, van Vliet
AR, La Rovere RM, De Smedt H, Parys JB, Agostinis P, Leybaert L,
Shoshan- Barmatz V, et al: The BH4 domain of anti-apoptotic Bcl-XL,
but not that of the related Bcl-2, limits the voltage-dependent
anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic
Ca2+ signals to mitochondria. J Biol Chem.
290:9150–9161. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xu ZH, Liu CH, Hang JB, Gao BL and Hu JA:
Rituximab effectively reverses tyrosine kinase inhibitors (TKIs)
resistance through inhibiting the accumulation of rictor on
mitochondria- associated ER-membrane (MAM). Cancer Biomark.
20:581–588. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rehman J, Zhang HJ, Toth PT, Zhang Y,
Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C and Archer SL:
Inhibition of mitochondrial fission prevents cell cycle progression
in lung cancer. FASEB J. 26:2175–2186. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao J, Zhang J, Yu M, Xie Y, Huang Y,
Wolff DW, Abel PW and Tu Y: Mitochondrial dynamics regulates
migration and invasion of breast cancer cells. Oncogene.
32:4814–4824. 2013. View Article : Google Scholar
|
|
66
|
Ferreira-da-Silva A, Valacca C, Rios E,
Pópulo H, Soares P, Sobrinho-Simões M, Scorrano L, Máximo V and
Campello S: Mitochondrial dynamics protein Drp1 is overexpressed in
oncocytic thyroid tumors and regulates cancer cell migration. PLoS
One. 10:e01223082015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pan L, Zhou L, Yin W, Bai J and Liu R:
miR-125a induces apoptosis, metabolism disorder and
migrationimpairment in pancreatic cancer cells by targeting
Mfn2-related mitochondrial fission. Int J Oncol. 53:124–136.
2018.PubMed/NCBI
|
|
68
|
Huang Q, Cao H, Zhan L, Sun X, Wang G, Li
J, Guo X, Ren T, Wang Z, Lyu Y, et al: Mitochondrial fission forms
a positive feedback loop with cytosolic calcium signaling pathway
to promote autophagy in hepatocellular carcinoma cells. Cancer
Lett. 403:108–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang
P, Zhang L, Wei J, Xie H, Zhou L, et al: Mitofusin-2 triggers
mitochondria Ca2+ influx from the endoplasmic reticulum
to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett.
358:47–58. 2015. View Article : Google Scholar
|
|
70
|
Zhou X, Zhang L, Zheng B, Yan Y, Zhang Y,
Xie H, Zhou L, Zheng S and Wang W: MicroRNA-761 is upregulated in
hepatocellular carcinoma and regulates tumorigenesis by targeting
Mitofusin-2. Cancer Sci. 107:424–432. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rodrigues MA, Gomes DA, Leite MF, Grant W,
Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH:
Nucleoplasmic calcium is required for cell proliferation. J Biol
Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D,
Xiang R and Tan X: Downregulation of transcription factor Oct4
induces an epithelial-to-mesenchymal transition via enhancement of
Ca2+ influx in breast cancer cells. Biochem Biophys Res
Commun. 411:786–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cho KB, Cho MK, Lee WY and Kang KW:
Overexpression of c-myc induces epithelial mesenchymal transition
in mammary epithelial cells. Cancer Lett. 293:230–239. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang S, Zhang JJ and Huang XY: Orai1 and
STIM1 are critical for breast tumor cell migration and metastasis.
Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Prakriya M, Feske S, Gwack Y, Srikanth S,
Rao A and Hogan PG: Orai1 is an essential pore subunit of the CRAC
channel. Nature. 443:230–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Stewart TA, Azimi I, Thompson EW,
Roberts-Thomson SJ and Monteith GR: A role for calcium in the
regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3)
gene expression in a model of epidermal growth factor-mediated
breast cancer epithelial-mesenchymal transition. Biochem Biophys
Res Commun. 458:509–514. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Davis FM, Peters AA, Grice DM, Cabot PJ,
Parat MO, Roberts-Thomson SJ and Monteith GR: Non-stimulated,
agonist- stimulated and store-operated Ca2+ influx in
MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on
calcium entry. PLoS One. 7:e369232012. View Article : Google Scholar
|
|
78
|
Tajeddine N and Gailly P: TRPC1 protein
channel is major regulator of epidermal growth factor receptor
signaling. J Biol Chem. 287:16146–16157. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hou T, Jian C, Xu J, Huang AY, Xi J, Hu K,
Wei L, Cheng H and Wang X: Identification of EFHD1 as a novel
Ca(2+) sensor for mitoflash activation. Cell Calcium. 59:262–270.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li W, Sun T, Liu B, Wu D, Qi W, Wang X, Ma
Q and Cheng H: Regulation of mitoflash biogenesis and signaling by
mitochondrial dynamics. Sci Rep. 6:329332016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Rosselin M, Santo-Domingo J, Bermont F,
Giacomello M and Demaurex N: L-OPA1 regulates mitoflash biogenesis
independently from membrane fusion. EMBO Rep. 18:451–463. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ying Z, Chen K, Zheng L, Wu Y, Li L, Wang
R, Long Q, Yang L, Guo J, Yao D, et al: Transient activation of
mitoflashes modulates nanog at the early phase of somatic cell
reprogramming. Cell Metab. 23:220–226. 2016. View Article : Google Scholar
|
|
83
|
Burch TC, Rhim JS and Nyalwidhe JO:
Mitochondria biogenesis and bioenergetics gene profiles in isogenic
prostate cells with different malignant phenotypes. BioMed Res Int.
2016:17852012016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li Y, Huang S, Li Y, Zhang W, He K, Zhao
M, Lin H, Li D, Zhang H, Zheng Z, et al: Decreased expression of
LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and
EMT in colorectal cancer cells. Tumour Biol. 37:14205–14215. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tsai FC and Meyer T: Ca2+
pulses control local cycles of lamel-lipodia retraction and
adhesion along the front of migrating cells. Curr Biol. 22:837–842.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
de Lucas B, Bernal A, Pérez LM, San Martín
N and Gálvez BG: Membrane blebbing is required for mesenchymal
precursor migration. PLoS One. 11:e01500042016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sroka J, Krecioch I, Zimolag E, Lasota S,
Rak M, Kedracka-Krok S, Borowicz P, Gajek M and Madeja Z:
Lamellipodia and membrane blebs drive efficient electrotactic
migration of rat walker carcinosarcoma cells WC 256. PLoS One.
11:e01491332016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gambade A, Zreika S, Guéguinou M, Chourpa
I, Fromont G, Bouchet AM, Burlaud-Gaillard J, Potier-Cartereau M,
Roger S, Aucagne V, et al: Activation of TRPV2 and BKCa channels by
the LL-37 enantiomers stimulates calcium entry and migration of
cancer cells. Oncotarget. 7:23785–23800. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yu C, Wang Y, Peng J, Shen Q, Chen M, Tang
W, Li X, Cai C, Wang B, Cai S, et al: Mitochondrial calcium
uniporter as a target of microRNA-340 and promoter of metastasis
via enhancing the Warburg effect. Oncotarget. 8:83831–83844.
2017.PubMed/NCBI
|
|
90
|
Park JH, Kim HK, Jung H, Kim KH, Kang MS,
Hong JH, Yu BC, Park S, Seo SK, Choi IW, et al: NecroX-5 prevents
breast cancer metastasis by AKT inhibition via reducing
intracellular calcium levels. Int J Oncol. 50:185–192. 2017.
View Article : Google Scholar
|
|
91
|
Monet M, Lehen'kyi V, Gackiere F, Firlej
V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G,
Slomianny C, et al: Role of cationic channel TRPV2 in promoting
prostate cancer migration and progression to androgen resistance.
Cancer Res. 70:1225–1235. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Panahi G, Pasalar P, Zare M, Rizzuto R and
Meshkani R: MCU-knockdown attenuates high glucose-induced
inflammation through regulating MAPKs/NF-κB pathways and ROS
production in HepG2 cells. PLoS One. 13:e01965802018. View Article : Google Scholar
|
|
93
|
Corazao-Rozas P, Guerreschi P, André F,
Gabert PE, Lancel S, Dekiouk S, Fontaine D, Tardivel M, Savina A,
Quesnel B, et al: Mitochondrial oxidative phosphorylation controls
cancer cell's life and death decisions upon exposure to MAPK
inhibitors. Oncotarget. 7:39473–39485. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Patergnani S, Giorgi C, Maniero S,
Missiroli S, Maniscalco P, Bononi I, Martini F, Cavallesco G,
Tognon M and Pinton P: The endoplasmic reticulum mitochondrial
calcium cross talk is downregulated in malignant pleural
mesothelioma cells and plays a critical role in apoptosis
inhibition. Oncotarget. 6:23427–23444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ren T, Wang J, Zhang H, Yuan P, Zhu J, Wu
Y, Huang Q, Guo X, Zhang J, Ji L, et al: MCUR1-Mediated
Mitochondrial Calcium Signaling Facilitates Cell Survival of
Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53
Degradation. Antioxid Redox Signal. 28:1120–1136. 2018. View Article : Google Scholar
|
|
96
|
Lehen'kyi V, Flourakis M, Skryma R and
Prevarskaya N: TRPV6 channel controls prostate cancer cell
proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene.
26:7380–7385. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Høyer-Hansen M, Bastholm L, Szyniarowski
P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N,
Elling F, Rizzuto R, et al: Control of macroautophagy by calcium,
calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell.
25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Luyten T, Welkenhuyzen K, Roest G, Kania
E, Wang L, Bittremieux M, Yule DI, Parys JB and Bultynck G:
Resveratrol- induced autophagy is dependent on IP3Rs and on
cytosolic Ca2. Biochim Biophys Acta Mol Cell Res.
1864:947–956. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Cárdenas C, Müller M, McNeal A, Lovy A,
Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, et al:
Selective vulnerability of cancer cells by inhibition of Ca(2+)
transfer from endoplasmic reticulum to mitochondria. Cell Rep.
14:2313–2324. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Martin KR, Celano SL, Solitro AR, Gunaydin
H, Scott M, O'Hagan RC, Shumway SD, Fuller P and MacKeigan JP: A
potent and selective ULK1 inhibitor suppresses autophagy and
sensitizes cancer cells to nutrient stress. iScience. 8:74–84.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Raturi A, Gutiérrez T, Ortiz-Sandoval C,
Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, Gesson K, Ourdev D,
Lou PH, Lucchinetti E, et al: TMX1 determines cancer cell
metabolism as a thiol-based modulator of ER-mitochondria
Ca2+ flux. J Cell Biol. 214:433–444. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nutt LK, Pataer A, Pahler J, Fang B, Roth
J, McConkey DJ and Swisher SG: Bax and Bak promote apoptosis by
modulating endoplasmic reticular and mitochondrial Ca2+
stores. J Biol Chem. 277:9219–9225. 2002. View Article : Google Scholar
|
|
103
|
Scorrano L, Oakes SA, Opferman JT, Cheng
EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK
regulation of endoplasmic reticulum Ca2+: A control
point for apoptosis. Science. 300:135–139. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Echeverry N, Bachmann D, Ke F, Strasser A,
Simon HU and Kaufmann T: Intracellular localization of the BCL-2
family member BOK and functional implications. Cell Death Differ.
20:785–799. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Giorgi C, Ito K, Lin HK, Santangelo C,
Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J,
Bernardi R, et al: PML regulates apoptosis at endoplasmic reticulum
by modulating calcium release. Science. 330:1247–1251. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bononi A, Bonora M, Marchi S, Missiroli S,
Poletti F, Giorgi C, Pandolfi PP and Pinton P: Identification of
PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and
apoptosis in a protein phosphatase-dependent manner. Cell Death
Differ. 20:1631–1643. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Verfaillie T, Rubio N, Garg AD, Bultynck
G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A,
et al: PERK is required at the ER-mitochondrial contact sites to
convey apoptosis after ROS-based ER stress. Cell Death Differ.
19:1880–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Li C, Liu Q, Li N, Chen W, Wang L, Wang Y,
Yu Y and Cao X: EAPF/Phafin-2, a novel endoplasmic
reticulum-associated protein, facilitates TNF-alpha-triggered
cellular apoptosis through endoplasmic reticulum-mitochondrial
apoptotic pathway. J Mol Med (Berl). 86:471–484. 2008. View Article : Google Scholar
|
|
109
|
Iwasawa R, Mahul-Mellier AL, Datler C,
Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the
mitochondria-ER interface to establish a platform for apoptosis
induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar
|
|
110
|
Namba T, Tian F, Chu K, Hwang SY, Yoon KW,
Byun S, Hiraki M, Mandinova A and Lee SW: CDIP1-BAP31 complex
transduces apoptotic signals from endoplasmic reticulum to
mitochondria under endoplasmic reticulum stress. Cell Rep.
5:331–339. 2013. View Article : Google Scholar : PubMed/NCBI
|