Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)

  • Authors:
    • Susana Romero-Garcia
    • Heriberto Prado-Garcia
  • View Affiliations / Copyright

    Affiliations: Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases ‘Ismael Cosío Villegas’, CP 14080 Mexico City, Mexico
  • Pages: 1155-1167
    |
    Published online on: January 28, 2019
       https://doi.org/10.3892/ijo.2019.4696
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In addition to their role in providing cellular energy, mitochondria fulfill a key function in cellular calcium management. The present review provides an integrative view of cellular and mitochondrial calcium homeostasis, and discusses how calcium regulates mitochondrial dynamics and functionality, thus affecting various cellular processes. Calcium crosstalk exists in the domain created between the endoplasmic reticulum and mitochondria, which is known as the mitochondria‑associated membrane (MAM), and controls cellular homeostasis. Calcium signaling participates in numerous biochemical and cellular processes, where calcium concentration, temporality and durability are part of a regulated, finely tuned interplay in non‑transformed cells. In addition, cancer cells modify their MAMs, which consequently affects calcium homeostasis to support mesenchymal transformation, migration, invasiveness, metastasis and autophagy. Alterations in calcium homeostasis may also support resistance to apoptosis, which is a serious problem facing current chemotherapeutic treatments. Notably, mitochondrial dynamics are also affected by mitochondrial calcium concentration to promote cancer survival responses. Dysregulated levels of mitochondrial calcium, alongside other signals, promote mitoflash generation in tumor cells, and an increased frequency of mitoflashes may induce epithelial‑to‑mesenchymal transition. Therefore, cancer cells remodel their calcium balance through numerous mechanisms that support their survival and growth.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Yang S and Huang XY: Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. J Biol Chem. 280:27130–27137. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjö S and Meyer T: A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol. 16:133–144. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Xiong J, Camello PJ, Verkhratsky A and Toescu EC: Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging. 25:349–359. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, Cai G, Meng X and Zou F: Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun. 458:186–193. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Chen L, Sun Q, Zhou D, Song W, Yang Q, Ju B, Zhang L, Xie H, Zhou L, Hu Z, et al: HINT2 triggers mitochondrial Ca2+ influx by regulating the mitochondrial Ca2+ uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett. 411:106–116. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck- Weiermair M, Hallström S, Graier WF and Malli R: IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci. 127:2944–2955. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Imbert N, Cognard C, Duport G, Guillou C and Raymond G: Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro. Cell Calcium. 18:177–186. 1995. View Article : Google Scholar : PubMed/NCBI

8 

Budd SL and Nicholls DG: A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem. 66:403–411. 1996. View Article : Google Scholar : PubMed/NCBI

9 

Hartmann J and Verkhratsky A: Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J Physiol. 513:411–424. 1998. View Article : Google Scholar

10 

Hoth M, Button DC and Lewis RS: Mitochondrial control of calcium-channel gating: A mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA. 97:10607–10612. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Jouaville LS, Pinton P, Bastianutto C, Rutter GA and Rizzuto R: Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc Natl Acad Sci USA. 96:13807–13812. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP and Miller CC: The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 27:371–385. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Báthori G, Csordás G, Garcia-Perez C, Davies E and Hajnóczky G: Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion- selective channel (VDAC). J Biol Chem. 281:17347–17358. 2006. View Article : Google Scholar

15 

Tekmen M and Gleason E: Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells. J Neurophysiol. 104:1849–1866. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Hiester BG, Bourke AM, Sinnen BL, Cook SG, Gibson ES, Smith KR and Kennedy MJ: L-type voltage-gated Ca2+ channels regulate synaptic-activity-triggered recycling endosome fusion in neuronal dendrites. Cell Rep. 21:2134–2146. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Tsai CW, Wu Y, Pao PC, Phillips CB, Williams C, Miller C, Ranaghan M and Tsai MF: Proteolytic control of the mitochondrial calcium uniporter complex. Proc Natl Acad Sci USA. 114:4388–4393. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chen W, Yang J, Chen S, Xiang H, Liu H, Lin D, Zhao S, Peng H, Chen P, Chen AF, et al: Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction. Diab Vasc Dis Res. 14:494–501. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S, Carpenter AC, Kolmetzky D, Gao E, van Berlo JH, et al: The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 545:93–97. 2017. View Article : Google Scholar

21 

Roy S, Dey K, Hershfinkel M, Ohana E and Sekler I: Identification of residues that control Li+ versus Na+ dependent Ca2+ exchange at the transport site of the mitochondrial NCLX. Biochim Biophys Acta Mol Cell Res. 1864:997–1008. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Austin S, Tavakoli M, Pfeiffer C, Seifert J, Mattarei A, De Stefani D, Zoratti M and Nowikovsky K: LETM1-mediated K+ and Na+ homeostasis regulates mitochondrial Ca2+ efflux. Front Physiol. 8:8392017. View Article : Google Scholar

23 

Melchionda M, Pittman JK, Mayor R and Patel S: Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol. 212:803–813. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Shao J, Fu Z, Ji Y, Guan X, Guo S, Ding Z, Yang X, Cong Y and Shen Y: Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter. Sci Rep. 6:341742016. View Article : Google Scholar

25 

Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM and Chan DC: Structural basis of mitochondrial tethering by mitofusin complexes. Science. 305:858–862. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Ausman J, Abbade J, Ermini L, Farrell A, Tagliaferro A, Post M and Caniggia I: Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis. 9:2982018. View Article : Google Scholar : PubMed/NCBI

27 

Gutiérrez T, Parra V, Troncoso R, Pennanen C, Contreras- Ferrat A, Vasquez-Trincado C, Morales PE, Lopez-Crisosto C, Sotomayor-Flores C, Chiong M, et al: Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardio-myocytes. Cell Commun Signal. 12:682014.

28 

Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 112:1779–1784. 2015. View Article : Google Scholar

29 

Park SJ, Lee SB, Suh Y, Kim SJ, Lee N, Hong JH, Park C, Woo Y, Ishizuka K, Kim JH, et al: DISC1 modulates neuronal stress responses by gate-keeping ER-mitochondria Ca2+ transfer through the MAM. Cell Rep. 21:2748–2759. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgó J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al: Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy. 7:1472–1489. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Hur YS, Kim KD, Paek SH and Yoo SH: Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One. 5:e119732010. View Article : Google Scholar

32 

Furuichi T, Simon-Chazottes D, Fujino I, Yamada N, Hasegawa M, Miyawaki A, Yoshikawa S, Guénet JL and Mikoshiba K: Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system. Receptors Channels. 1:11–24. 1993.PubMed/NCBI

33 

Sugiyama T, Yamamoto-Hino M, Miyawaki A, Furuichi T, Mikoshiba K and Hasegawa M: Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: Dynamic aspects of their cell-type specific expression. FEBS Lett. 349:191–196. 1994. View Article : Google Scholar : PubMed/NCBI

34 

Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, et al: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell. 142:270–283. 2010. View Article : Google Scholar

35 

Kennedy ED, Rizzuto R, Theler JM, Pralong WF, Bastianutto C, Pozzan T and Wollheim CB: Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest. 98:2524–2538. 1996. View Article : Google Scholar : PubMed/NCBI

36 

Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R and Rutter GA: Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem. 274:13281–13291. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavaré JM and Denton RM: Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: Significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA. 93:5489–5494. 1996. View Article : Google Scholar

38 

Territo PR, Mootha VK, French SA and Balaban RS: Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 278:C423–C435. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Gizak A, Pirog M and Rakus D: Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinase-3 inhibition or elevation of cellular Ca2+ level. FEBS Lett. 586:13–19. 2012. View Article : Google Scholar

40 

Wiśniewski J, Piróg M, Hołubowicz R, Dobryszycki P, McCubrey JA, Rakus D and Gizak A: Dimeric and tetrameric forms of muscle fructose-1,6-bisphosphatase play different roles in the cell. Oncotarget. 8:115420–115433. 2017. View Article : Google Scholar

41 

Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H and Matsushita M: CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol. 182:573–585. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Ji WK, Hatch AL, Merrill RA, Strack S and Higgs HN: Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife. 4:e115532015. View Article : Google Scholar : PubMed/NCBI

43 

Xu S, Pi H, Chen Y, Zhang N, Guo P, Lu Y, He M, Xie J, Zhong M, Zhang Y, et al: Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis. 4:e5402013. View Article : Google Scholar : PubMed/NCBI

44 

Pennanen C, Parra V, López-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejías P, Kuzmicic J, Chiong M, Zorzano A, et al: Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 127:2659–2671. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Ohshima Y, Takata N, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y and Suzuki-Karasaki Y: Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities. Int J Oncol. 51:1146–1158. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Wang X and Schwarz TL: The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell. 136:163–174. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Kremneva E, Kislin M, Kang X and Khiroug L: Motility of astrocytic mitochondria is arrested by Ca2+-dependent interaction between mitochondria and actin filaments. Cell Calcium. 53:85–93. 2013. View Article : Google Scholar

48 

Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, et al: PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 33:627–638. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D and Chu CT: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 284:13843–13855. 2009. View Article : Google Scholar

50 

Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D, Fimia GM and Valente EM: PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 13:654–669. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Evans JH and Falke JJ: Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci USA. 104:16176–16181. 2007. View Article : Google Scholar

52 

Gottlieb TM, Leal JF, Seger R, Taya Y and Oren M: Cross-talk between Akt, p53 and Mdm2: Possible implications for the regulation of apoptosis. Oncogene. 21:1299–1303. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C and Pinton P: Endoplasmic reticulum- mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochim Biophys Acta Mol Cell Res. 1864:858–864. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, Guo X, Ji L, Huang Q, Zhang H, et al: MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene. 36:5897–5909. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N and Hall MN: Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA. 110:12526–12534. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Rimessi A, Marchi S, Patergnani S and Pinton P: H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene. 33:2329–2340. 2014. View Article : Google Scholar

57 

Matsumoto T, Uchiumi T, Monji K, Yagi M, Setoyama D, Amamoto R, Matsushima Y, Shiota M, Eto M and Kang D: Doxycycline induces apoptosis via ER stress selectively to cells with a cancer stem cell-like properties: Importance of stem cell plasticity. Oncogenesis. 6:3972017. View Article : Google Scholar : PubMed/NCBI

58 

Seervi M, Sobhan PK, Joseph J, Ann Mathew K and Santhoshkumar TR: ERO1α-dependent endoplasmic reticulum-mitochondrial calcium flux contributes to ER stress and mitochondrial permeabilization by procaspase-activating compound-1 (PAC-1). Cell Death Dis. 4:e9682013. View Article : Google Scholar

59 

Wu LF, Guo YT, Zhang QH, Xiang MQ, Deng W, Ye YQ, Pu ZJ, Feng JL and Huang GY: Enhanced antitumor effects of adenoviral-mediated siRNA against GRP78 gene on adenosine- induced apoptosis in human hepatoma HepG2 cells. Int J Mol Sci. 15:525–544. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Shibao K, Fiedler MJ, Nagata J, Minagawa N, Hirata K, Nakayama Y, Iwakiri Y, Nathanson MH and Yamaguchi K: The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma. Cell Calcium. 48:315–323. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Sakakura C, Hagiwara A, Fukuda K, Shimomura K, Takagi T, Kin S, Nakase Y, Fujiyama J, Mikoshiba K, Okazaki Y, et al: Possible involvement of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers. Anticancer Res. 23:3691–3697. 2003.PubMed/NCBI

62 

Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H, Parys JB, Agostinis P, Leybaert L, Shoshan- Barmatz V, et al: The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem. 290:9150–9161. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Xu ZH, Liu CH, Hang JB, Gao BL and Hu JA: Rituximab effectively reverses tyrosine kinase inhibitors (TKIs) resistance through inhibiting the accumulation of rictor on mitochondria- associated ER-membrane (MAM). Cancer Biomark. 20:581–588. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C and Archer SL: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26:2175–2186. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW and Tu Y: Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 32:4814–4824. 2013. View Article : Google Scholar

66 

Ferreira-da-Silva A, Valacca C, Rios E, Pópulo H, Soares P, Sobrinho-Simões M, Scorrano L, Máximo V and Campello S: Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One. 10:e01223082015. View Article : Google Scholar : PubMed/NCBI

67 

Pan L, Zhou L, Yin W, Bai J and Liu R: miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission. Int J Oncol. 53:124–136. 2018.PubMed/NCBI

68 

Huang Q, Cao H, Zhan L, Sun X, Wang G, Li J, Guo X, Ren T, Wang Z, Lyu Y, et al: Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells. Cancer Lett. 403:108–118. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, Zhang L, Wei J, Xie H, Zhou L, et al: Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett. 358:47–58. 2015. View Article : Google Scholar

70 

Zhou X, Zhang L, Zheng B, Yan Y, Zhang Y, Xie H, Zhou L, Zheng S and Wang W: MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107:424–432. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH: Nucleoplasmic calcium is required for cell proliferation. J Biol Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R and Tan X: Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun. 411:786–791. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Cho KB, Cho MK, Lee WY and Kang KW: Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett. 293:230–239. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Yang S, Zhang JJ and Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 15:124–134. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG: Orai1 is an essential pore subunit of the CRAC channel. Nature. 443:230–233. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Stewart TA, Azimi I, Thompson EW, Roberts-Thomson SJ and Monteith GR: A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun. 458:509–514. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ and Monteith GR: Non-stimulated, agonist- stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One. 7:e369232012. View Article : Google Scholar

78 

Tajeddine N and Gailly P: TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem. 287:16146–16157. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Hou T, Jian C, Xu J, Huang AY, Xi J, Hu K, Wei L, Cheng H and Wang X: Identification of EFHD1 as a novel Ca(2+) sensor for mitoflash activation. Cell Calcium. 59:262–270. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Li W, Sun T, Liu B, Wu D, Qi W, Wang X, Ma Q and Cheng H: Regulation of mitoflash biogenesis and signaling by mitochondrial dynamics. Sci Rep. 6:329332016. View Article : Google Scholar : PubMed/NCBI

81 

Rosselin M, Santo-Domingo J, Bermont F, Giacomello M and Demaurex N: L-OPA1 regulates mitoflash biogenesis independently from membrane fusion. EMBO Rep. 18:451–463. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ying Z, Chen K, Zheng L, Wu Y, Li L, Wang R, Long Q, Yang L, Guo J, Yao D, et al: Transient activation of mitoflashes modulates nanog at the early phase of somatic cell reprogramming. Cell Metab. 23:220–226. 2016. View Article : Google Scholar

83 

Burch TC, Rhim JS and Nyalwidhe JO: Mitochondria biogenesis and bioenergetics gene profiles in isogenic prostate cells with different malignant phenotypes. BioMed Res Int. 2016:17852012016. View Article : Google Scholar : PubMed/NCBI

84 

Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, et al: Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol. 37:14205–14215. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Tsai FC and Meyer T: Ca2+ pulses control local cycles of lamel-lipodia retraction and adhesion along the front of migrating cells. Curr Biol. 22:837–842. 2012. View Article : Google Scholar : PubMed/NCBI

86 

de Lucas B, Bernal A, Pérez LM, San Martín N and Gálvez BG: Membrane blebbing is required for mesenchymal precursor migration. PLoS One. 11:e01500042016. View Article : Google Scholar : PubMed/NCBI

87 

Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M and Madeja Z: Lamellipodia and membrane blebs drive efficient electrotactic migration of rat walker carcinosarcoma cells WC 256. PLoS One. 11:e01491332016. View Article : Google Scholar : PubMed/NCBI

88 

Gambade A, Zreika S, Guéguinou M, Chourpa I, Fromont G, Bouchet AM, Burlaud-Gaillard J, Potier-Cartereau M, Roger S, Aucagne V, et al: Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget. 7:23785–23800. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Yu C, Wang Y, Peng J, Shen Q, Chen M, Tang W, Li X, Cai C, Wang B, Cai S, et al: Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect. Oncotarget. 8:83831–83844. 2017.PubMed/NCBI

90 

Park JH, Kim HK, Jung H, Kim KH, Kang MS, Hong JH, Yu BC, Park S, Seo SK, Choi IW, et al: NecroX-5 prevents breast cancer metastasis by AKT inhibition via reducing intracellular calcium levels. Int J Oncol. 50:185–192. 2017. View Article : Google Scholar

91 

Monet M, Lehen'kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, et al: Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 70:1225–1235. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Panahi G, Pasalar P, Zare M, Rizzuto R and Meshkani R: MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PLoS One. 13:e01965802018. View Article : Google Scholar

93 

Corazao-Rozas P, Guerreschi P, André F, Gabert PE, Lancel S, Dekiouk S, Fontaine D, Tardivel M, Savina A, Quesnel B, et al: Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors. Oncotarget. 7:39473–39485. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, Martini F, Cavallesco G, Tognon M and Pinton P: The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 6:23427–23444. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Ren T, Wang J, Zhang H, Yuan P, Zhu J, Wu Y, Huang Q, Guo X, Zhang J, Ji L, et al: MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53 Degradation. Antioxid Redox Signal. 28:1120–1136. 2018. View Article : Google Scholar

96 

Lehen'kyi V, Flourakis M, Skryma R and Prevarskaya N: TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene. 26:7380–7385. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB and Bultynck G: Resveratrol- induced autophagy is dependent on IP3Rs and on cytosolic Ca2. Biochim Biophys Acta Mol Cell Res. 1864:947–956. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, et al: Selective vulnerability of cancer cells by inhibition of Ca(2+) transfer from endoplasmic reticulum to mitochondria. Cell Rep. 14:2313–2324. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Martin KR, Celano SL, Solitro AR, Gunaydin H, Scott M, O'Hagan RC, Shumway SD, Fuller P and MacKeigan JP: A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience. 8:74–84. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Raturi A, Gutiérrez T, Ortiz-Sandoval C, Ruangkittisakul A, Herrera-Cruz MS, Rockley JP, Gesson K, Ourdev D, Lou PH, Lucchinetti E, et al: TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J Cell Biol. 214:433–444. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ and Swisher SG: Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem. 277:9219–9225. 2002. View Article : Google Scholar

103 

Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ: BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science. 300:135–139. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU and Kaufmann T: Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20:785–799. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, et al: PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 330:1247–1251. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP and Pinton P: Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20:1631–1643. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, et al: PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19:1880–1891. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Li C, Liu Q, Li N, Chen W, Wang L, Wang Y, Yu Y and Cao X: EAPF/Phafin-2, a novel endoplasmic reticulum-associated protein, facilitates TNF-alpha-triggered cellular apoptosis through endoplasmic reticulum-mitochondrial apoptotic pathway. J Mol Med (Berl). 86:471–484. 2008. View Article : Google Scholar

109 

Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar

110 

Namba T, Tian F, Chu K, Hwang SY, Yoon KW, Byun S, Hiraki M, Mandinova A and Lee SW: CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep. 5:331–339. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Romero-Garcia S and Prado-Garcia H: Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol 54: 1155-1167, 2019.
APA
Romero-Garcia, S., & Prado-Garcia, H. (2019). Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). International Journal of Oncology, 54, 1155-1167. https://doi.org/10.3892/ijo.2019.4696
MLA
Romero-Garcia, S., Prado-Garcia, H."Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)". International Journal of Oncology 54.4 (2019): 1155-1167.
Chicago
Romero-Garcia, S., Prado-Garcia, H."Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)". International Journal of Oncology 54, no. 4 (2019): 1155-1167. https://doi.org/10.3892/ijo.2019.4696
Copy and paste a formatted citation
x
Spandidos Publications style
Romero-Garcia S and Prado-Garcia H: Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol 54: 1155-1167, 2019.
APA
Romero-Garcia, S., & Prado-Garcia, H. (2019). Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). International Journal of Oncology, 54, 1155-1167. https://doi.org/10.3892/ijo.2019.4696
MLA
Romero-Garcia, S., Prado-Garcia, H."Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)". International Journal of Oncology 54.4 (2019): 1155-1167.
Chicago
Romero-Garcia, S., Prado-Garcia, H."Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review)". International Journal of Oncology 54, no. 4 (2019): 1155-1167. https://doi.org/10.3892/ijo.2019.4696
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team