Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Iron metabolism and its contribution to cancer (Review)

  • Authors:
    • Ying Chen
    • Zhimin Fan
    • Ye Yang
    • Chunyan Gu
  • View Affiliations / Copyright

    Affiliations: National Medical Centre of Colorectal Disease, The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
  • Pages: 1143-1154
    |
    Published online on: February 20, 2019
       https://doi.org/10.3892/ijo.2019.4720
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Iron is an essential element for biological processes. Iron homeostasis is regulated through several mechanisms, from absorption by enterocytes to recycling by macrophages and storage in hepatocytes. Iron has dual properties, which may facilitate tumor growth or cell death. Cancer cells exhibit an increased dependence on iron compared with normal cells. Macrophages potentially deliver iron to cancer cells, resulting in tumor promotion. Mitochondria utilize cellular iron to synthesize cofactors, including heme and iron sulfur clusters. The latter is composed of essential enzymes involved in DNA synthesis and repair, oxidation‑reduction reactions, and other cellular processes. However, highly increased iron concentrations result in cell death through membrane lipid peroxidation, termed ferroptosis. Ferroptosis, an emerging pathway for cancer treatment, is similar to pyroptosis, apoptosis and necroptosis. In the present review, previous studies on the physiology of iron metabolism and its role in cancer are summarized. Additionally, the significance of iron regulation, and the association between iron homeostasis and carcinogenic mechanisms are discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Kerins MJ and Ooi A: The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal. 29:1756–1773. 2018. View Article : Google Scholar :

2 

Andrews NC: Forging a field: The golden age of iron biology. Blood. 112:219–230. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Dielschneider RF, Henson ES and Gibson SB: Lysosomes as oxidative targets for cancer therapy. Oxid Med Cell Longev. 2017:37491572017. View Article : Google Scholar : PubMed/NCBI

4 

Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, et al: Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 88:181–195. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann NY Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Fonseca-Nunes A, Jakszyn P and Agudo A: Iron and cancer risk - a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 23:12–31. 2014. View Article : Google Scholar

7 

Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Leftin A, Ben-Chetrit N, Klemm F, Joyce JA and Koutcher JA: Iron imaging reveals tumor and metastasis macrophage hemosiderin deposits in breast cancer. PLoS One. 12:e01847652017. View Article : Google Scholar : PubMed/NCBI

9 

Rouault TA and Maio N: Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem. 292:12744–12753. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Fuss JO, Tsai CL, Ishida JP and Tainer JA: Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim Biophys Acta. 1853:1253–1271. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Imlay JA and Linn S: DNA damage and oxygen radical toxicity. Science. 240:1302–1309. 1988. View Article : Google Scholar : PubMed/NCBI

12 

Brandt KE, Falls KC, Schoenfeld JD, Rodman SN, Gu Z, Zhan F, Cullen JJ, Wagner BA, Buettner GR, Allen BG, et al: Augmentation of intracellular iron using iron sucrose enhances the toxicity of pharmacological ascorbate in colon cancer cells. Redox Biol. 14:82–87. 2018. View Article : Google Scholar

13 

Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, Wang PH, Agarwal S, Tamouza H, Paubelle E, et al: Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med. 207:731–750. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Heath JL, Weiss JM, Lavau CP and Wechsler DS: Iron deprivation in cancer - potential therapeutic implications. Nutrients. 5:2836–2859. 2013. View Article : Google Scholar : PubMed/NCBI

15 

González A, Gálvez N, Martín J, Reyes F, Pérez-Victoria I and Dominguez-Vera JM: Identification of the key excreted molecule by Lactobacillus fermentum related to host iron absorption. Food Chem. 228:374–380. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Staroń R, Lipiński P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E, Krzeptowski W, Pieszka M, Korolonek T, Hamza I, et al: Dietary hemoglobin rescues young piglets from severe iron defi-ciency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLoS One. 12:e01811172017. View Article : Google Scholar

17 

Li Y, Jiang H and Huang G: Protein hydrolysates as promoters of non-haem iron absorption. Nutrients. 9:92017. View Article : Google Scholar

18 

Martínez-Torres C and Layrisse M: Iron absorption from veal muscle. Am J Clin Nutr. 24:531–540. 1971. View Article : Google Scholar : PubMed/NCBI

19 

Ascenzi P, Leboffe L and Polticelli F: Cyanide binding to human plasma heme-hemopexin: A comparative study. Biochem Biophys Res Commun. 428:239–244. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Colins A, Gerdtzen ZP, Nuñez MT and Salgado JC: Mathematical modeling of intestinal iron absorption using genetic programming. PLoS One. 12:e01696012017. View Article : Google Scholar : PubMed/NCBI

21 

Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S and Andrews NC: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1:191–200. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Sokolov AV, Voynova IV, Kostevich VA, Vlasenko AY, Zakharova ET and Vasilyev VB: Comparison of interaction between ceruloplasmin and lactoferrin/transferrin: To bind or not to bind. Biochemistry (Mosc). 82:1073–1078. 2017. View Article : Google Scholar

23 

Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T and Kaplan J: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 306:2090–2093. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Lane DJ, Bae DH, Merlot AM, Sahni S and Richardson DR: Duodenal cytochrome b (DCYTB) in iron metabolism: An update on function and regulation. Nutrients. 7:2274–2296. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Skjørringe T, Burkhart A, Johnsen KB and Moos T: Divalent metal transporter 1 (DMT1) in the brain: Implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 8:192015.PubMed/NCBI

26 

Harrison PM and Arosio P: The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1275:161–203. 1996. View Article : Google Scholar : PubMed/NCBI

27 

McKie AT and Barlow DJ: The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447:801–806. 2004. View Article : Google Scholar

28 

Park CH, Valore EV, Waring AJ and Ganz T: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 276:7806–7810. 2001. View Article : Google Scholar

29 

Liuzzi JP, Aydemir F, Nam H, Knutson MD and Cousins RJ: Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA. 103:13612–13617. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Lin W, Vann DR, Doulias P-T, Wang T, Landesberg G, Li X, Ricciotti E, Scalia R, He M, Hand NJ, et al: Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Invest. 127:2407–2417. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Mwanjewe J and Grover AK: Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J. 378:975–982. 2004. View Article : Google Scholar

32 

Knutson MD: Non-transferrin-bound iron transporters. Free Radic Biol Med. 133:101–111. 2019. View Article : Google Scholar

33 

Yoshizaki T, Uematsu M, Obata JE, Nakamura T, Fujioka D, Watanabe K, Nakamura K and Kugiyama K: Angiotensin II receptor blockers suppress the release of stromal cell-derived factor-1alpha from infarcted myocardium in patients with acute myocardial infarction. J Cardiol. 71:367–374. 2018. View Article : Google Scholar

34 

Recuenco MC, Rahman MM, Takeuchi F, Kobayashi K and Tsubaki M: Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical. Biochemistry. 52:3660–3668. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Lane DJ and Lawen A: Ascorbate and plasma membrane electron transport - enzymes vs efflux. Free Radic Biol Med. 47:485–495. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, et al: The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17:282–290. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Coates TD: Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med. 72:23–40. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC and Hediger MA: Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 509:309–316. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Anderson CP, Shen M, Eisenstein RS and Leibold EA: Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 1823:1468–1483. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL and Yariv J: Ferritin: Design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 304:551–565. 1984. View Article : Google Scholar : PubMed/NCBI

41 

Carmona U, Li L, Zhang L and Knez M: Ferritin light-chain subunits: Key elements for the electron transfer across the protein cage. Chem Commun (Camb). 50:15358–15361. 2014. View Article : Google Scholar

42 

Kukulj S, Jaganjac M, Boranic M, Krizanac S, Santic Z and Poljak-Blazi M: Altered iron metabolism, inflammation, trans-ferrin receptors, and ferritin expression in non-small-cell lung cancer. Med Oncol. 27:268–277. 2010. View Article : Google Scholar

43 

Ganz T and Nemeth E: Iron metabolism: Interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2:a0116682012. View Article : Google Scholar : PubMed/NCBI

44 

Cianetti L, Gabbianelli M and Sposi NM: Ferroportin and erythroid cells: an update. Adv Hematol. 2010:4041732010. View Article : Google Scholar : PubMed/NCBI

45 

Wallace DF, McDonald CJ, Ostini L, Iser D, Tuckfield A and Subramaniam VN: The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation. Am J Hematol. 92:1052–1061. 2017. View Article : Google Scholar : PubMed/NCBI

46 

El Hage Chahine JM, Hémadi M and Ha-Duong NT: Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta. 1820:334–347. 2012. View Article : Google Scholar

47 

Frazer DM and Anderson GJ: The regulation of iron transport. Biofactors. 40:206–214. 2014. View Article : Google Scholar

48 

Addo L, Ikuta K, Tanaka H, Toki Y, Hatayama M, Yamamoto M, Ito S, Shindo M, Sasaki Y, Shimonaka Y, et al: The three isoforms of hepcidin in human serum and their processing determined by liquid chromatography-tandem mass spectrometry (LC-tandem MS). Int J Hematol. 103:34–43. 2016. View Article : Google Scholar

49 

Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T and Nemeth E: Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15:918–924. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Ramos E, Kautz L, Rodriguez R, Hansen M, Gabayan V, Ginzburg Y, Roth MP, Nemeth E and Ganz T: Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology. 53:1333–1341. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Coffey R and Ganz T: Iron homeostasis: An anthropocentric perspective. J Biol Chem. 292:12727–12734. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, Ernst M, Klein C and Trautwein C: STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 132:294–300. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Palis J: Primitive and definitive erythropoiesis in mammals. Front Physiol. 5:32014. View Article : Google Scholar : PubMed/NCBI

54 

Papanikolaou G and Pantopoulos K: Systemic iron homeostasis and erythropoiesis. IUBMB Life. 69:399–413. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, et al: Mitoferrin is essential for erythroid iron assimilation. Nature. 440:96–100. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Beaumont C and Canonne-Hergaux F: Erythrophagocytosis and recycling of heme iron in normal and pathological conditions; regulation by hepcidin. Transfus Clin Biol. 12:123–130. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, He S, Gerhardt LM, Holderried TA, Seifert M, et al: On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 22:945–951. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Soe-Lin S, Apte SS, Mikhael MR, Kayembe LK, Nie G and Ponka P: Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol. 38:609–617. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Poss KD and Tonegawa S: Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA. 94:10919–10924. 1997. View Article : Google Scholar : PubMed/NCBI

60 

Qian ZM and Tang PL: Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta. 1269:205–214. 1995. View Article : Google Scholar : PubMed/NCBI

61 

Morgan EH: Chelator-mediated iron efflux from reticulocytes. Biochim Biophys Acta. 733:39–50. 1983. View Article : Google Scholar : PubMed/NCBI

62 

Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B and Knutson MD: ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem. 287:34032–34043. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, Liuzzi JP, Cousins RJ, Knutson MD and Mackenzie B: Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 301:C862–C871. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP and Backx PH: Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: Possible implications in iron overload. Circ Res. 84:1302–1309. 1999. View Article : Google Scholar : PubMed/NCBI

65 

Brittenham GM, Andersson M, Egli I, Foman JT, Zeder C, Westerman ME and Hurrell RF: Circulating non-trans-ferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: A randomized study. Am J Clin Nutr. 100:813–820. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Pinto JP, Arezes J, Dias V, Oliveira S, Vieira I, Costa M, Vos M, Carlsson A, Rikers Y, Rangel M, et al: Physiological implications of NTBI uptake by T lymphocytes. Front Pharmacol. 5:242014. View Article : Google Scholar : PubMed/NCBI

67 

Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G and Vaulont S: Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica. 95:501–504. 2010. View Article : Google Scholar :

68 

Iancu TC, Ward RJ and Peters TJ: Ultrastructural changes in the pancreas of carbonyl iron-fed rats. J Pediatr Gastroenterol Nutr. 10:95–101. 1990. View Article : Google Scholar : PubMed/NCBI

69 

Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P and Barasch J: NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 1823:1451–1458. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Martines AM, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JF and Swinkels DW: Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat Rev Nephrol. 9:385–398. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Lakhal-Littleton S, Wolna M, Carr CA, Miller JJ, Christian HC, Ball V, Santos A, Diaz R, Biggs D, Stillion R, et al: Cardiac ferro-portin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci USA. 112:3164–3169. 2015. View Article : Google Scholar

72 

Richmond HG: Induction of sarcoma in the rat by iron-dextran complex. BMJ. 1:947–949. 1959. View Article : Google Scholar : PubMed/NCBI

73 

Xue X and Shah YM: Intestinal iron homeostasis and colon tumorigenesis. Nutrients. 5:2333–2351. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Kew MC: Hepatic iron overload and hepatocellular carcinoma. Liver Cancer. 3:31–40. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Stevens RG, Cologne JB, Nakachi K, Grant EJ and Neriishi K: Body iron stores and breast cancer risk in female atomic bomb survivors. Cancer Sci. 102:2236–2240. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Huang X: Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutat Res. 533:153–171. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

79 

Haggar FA and Boushey RP: Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 22:191–197. 2009. View Article : Google Scholar :

80 

Chua ACG, Klopcic B, Lawrance IC, Olynyk JK and Trinder D: Iron: An emerging factor in colorectal carcinogenesis. World J Gastroenterol. 16:663–672. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Akhmedkhanov A and Riboli E: Iron intake, body iron stores and colorectal cancer risk in women: A nested case-control study. Int J Cancer. 80:693–698. 1999. View Article : Google Scholar : PubMed/NCBI

82 

Wilson MJ, Dekker JWT, Harlaar JJ, Jeekel J, Schipperus M and Zwaginga JJ: The role of preoperative iron deficiency in colorectal cancer patients: Prevalence and treatment. Int J Colorectal Dis. 32:1617–1624. 2017. View Article : Google Scholar : PubMed/NCBI

83 

de Juan D, Reta A, Castiella A, Pozueta J, Prada A and Cuadrado E: HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. Eur J Hum Genet. 9:961–964. 2001. View Article : Google Scholar

84 

Castiella A, Múgica F, Zapata E, Zubiaurre L, Iribarren A, de Juan MD, Alzate L, Gil I, Urdapilleta G, Otazua P, et al: Gender and plasma iron biomarkers, but not HFE gene mutations, increase the risk of colorectal cancer and polyps. Tumour Biol. 36:6959–6963. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Asberg A, Thorstensen K, Irgens WO, Romundstad PR and Hveem K: Cancer risk in HFE C282Y homozygotes: Results from the HUNT 2 study. Scand J Gastroenterol. 48:189–195. 2013. View Article : Google Scholar

86 

Ludwig H, Müldür E, Endler G and Hübl W: Prevalence of iron deficiency across different tumors and its association with poor performance status, disease status and anemia. Ann Oncol. 24:1886–1892. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Nelson RL: Dietary iron and colorectal cancer risk. Free Radic Biol Med. 12:161–168. 1992. View Article : Google Scholar : PubMed/NCBI

88 

Wilson MJ, Harlaar JJ, Jeekel J, Schipperus M and Zwaginga JJ: Iron therapy as treatment of anemia: A potentially detrimental and hazardous strategy in colorectal cancer patients. Med Hypotheses. 110:110–113. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Joosten E, Meeuwissen J, Vandewinckele H and Hiele M: Iron status and colorectal cancer in symptomatic elderly patients. Am J Med. 121:1072–1077. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Wilson MJ, Dekker JW, Bruns E, Borstlap W, Jeekel J, Zwaginga JJ and Schipperus M: Short-term effect of preoperative intravenous iron therapy in colorectal cancer patients with anemia: Results of a cohort study. Transfusion. 58:795–803. 2018. View Article : Google Scholar

91 

Laso-Morales M, Jericó C, Gómez-Ramírez S, Castellví J, Viso L, Roig-Martínez I, Pontes C and Muñoz M: Preoperative management of colorectal cancer-induced iron deficiency anemia in clinical practice: Data from a large observational cohort. Transfusion. 57:3040–3048. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Baecker A, Liu X, La Vecchia C and Zhang ZF: Worldwide incidence of hepatocellular carcinoma cases attributable to major risk factors. Eur J Cancer Prev. 27:205–212. 2018.PubMed/NCBI

93 

Sun B and Karin M: Obesity, inflammation, and liver cancer. J Hepatol. 56:704–713. 2012. View Article : Google Scholar

94 

Bardou-Jacquet E, Morcet J, Manet G, Lainé F, Perrin M, Jouanolle AM, Guyader D, Moirand R, Viel JF and Deugnier Y: Decreased cardiovascular and extrahepatic cancer-related mortality in treated patients with mild HFE hemochromatosis. J Hepatol. 62:682–689. 2015. View Article : Google Scholar

95 

Grosse SD, Rogowski WH, Ross LF, Cornel MC, Dondorp WJ and Khoury MJ: Population screening for genetic disorders in the 21st century: Evidence, economics, and ethics. Public Health Genomics. 13:106–115. 2010. View Article : Google Scholar

96 

Da Costa GG, Gomig TH, Kaviski R, Santos Sousa K, Kukolj C, De Lima RS, De Andrade Urban C, Cavalli IJ and Ribeiro EM: Comparative proteomics of tumor and paired normal breast tissue highlights potential biomarkers in breast cancer. Cancer Genomics Proteomics. 12:251–261. 2015.PubMed/NCBI

97 

Nunes-Xavier CE, Martín-Pérez J, Elson A and Pulido R: Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta. 1836:211–226. 2013.PubMed/NCBI

98 

Tonks NK: Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833–846. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Kuban-Jankowska A, Sahu KK, Gorska-Ponikowska M, Tuszynski JA and Wozniak M: Inhibitory activity of iron chelators ATA and DFO on MCF-7 breast cancer cells and phos-phatases PTP1B and SHP2. Anticancer Res. 37:4799–4806. 2017.PubMed/NCBI

100 

Wang YF, Zhang J, Su Y, Shen YY, Jiang DX, Hou YY, Geng MY, Ding J and Chen Y: G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 8:2742017. View Article : Google Scholar : PubMed/NCBI

101 

Lemler DJ, Lynch ML, Tesfay L, Deng Z, Paul BT, Wang X, Hegde P, Manz DH, Torti SV and Torti FM: DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 19:252017. View Article : Google Scholar : PubMed/NCBI

102 

Zheng J, Ren W, Chen T, Yinhua J, Li A, Yan K, Wu Y and Wu A: Recent advances in superparamagnetic iron oxide based nano-probes as multifunctional theranostic agents for breast cancer imaging and therapy. Curr Med Chem. 25:3001–3016. 2018. View Article : Google Scholar

103 

Ridge CA, McErlean AM and Ginsberg MS: Epidemiology of lung cancer. Semin Intervent Radiol. 30:93–98. 2013. View Article : Google Scholar :

104 

Wild P, Bourgkard E and Paris C: Lung cancer and exposure to metals: The epidemiological evidence. Methods Mol Biol. 472:139–167. 2009. View Article : Google Scholar

105 

Brookes MJ, Boult J, Roberts K, Cooper BT, Hotchin NA, Matthews G, Iqbal T and Tselepis C: A role for iron in Wnt signalling. Oncogene. 27:966–975. 2008. View Article : Google Scholar

106 

Wu KJ, Polack A and Dalla-Favera R: Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 283:676–679. 1999. View Article : Google Scholar : PubMed/NCBI

107 

Chanvorachote P and Luanpitpong S: Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol. 310:C728–C739. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Lee BJ, Kim B and Lee K: Air pollution exposure and cardiovascular disease. Toxicol Res. 30:71–75. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Lovera-Leroux M, Crobeddu B, Kassis N, Petit PX, Janel N, Baeza-Squiban A and Andreau K: The iron component of particulate matter is antiapoptotic: A clue to the development of lung cancer after exposure to atmospheric pollutants? Biochimie. 118:195–206. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Bidoli E, Barbone F, Collarile P, Valent F, Zanier L, Daris F, Gini A, Birri S and Serraino D: Residence in proximity of an iron foundry and risk of lung cancer in the municipality of trieste, Italy, 1995-2009. Int J Environ Res Public Health. 12:9025–9035. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Song MK, Chung JS, Seol YM, Shin HJ, Choi YJ and Cho GJ: Elevation of serum ferritin is associated with the outcome of patients with newly diagnosed multiple myeloma. Korean Korean J Intern Med. 24:368–373. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Strasser-Weippl K and Ludwig H: Ferritin as prognostic marker in multiple myeloma patients undergoing autologous transplantation. Leuk Lymphoma. 55:2520–2524. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Gu Z, Wang H, Xia J, Yang Y, Jin Z, Xu H, Shi J, De Domenico I, Tricot G and Zhan F: Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 75:2211–2221. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Kim JL, Lee D-H, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, Joung SY, Lee S-Y, Oh SC, et al: Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol. 37:9709–9719. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Timofeeva OA, Palechor-Ceron N, Li G, Yuan H, Krawczyk E, Zhong X, Liu G, Upadhyay G, Dakic A, Yu S, et al: Conditionally reprogrammed normal and primary tumor prostate epithelial cells: A novel patient-derived cell model for studies of human prostate cancer. Oncotarget. 8:22741–22758. 2017. View Article : Google Scholar :

116 

Wachowius F, Attwater J and Holliger P: Nucleic acids: Function and potential for abiogenesis. Q Rev Biophys. 50:e42017. View Article : Google Scholar : PubMed/NCBI

117 

Puig S, Ramos-Alonso L, Romero AM and Martínez-Pastor MT: The elemental role of iron in DNA synthesis and repair. Metallomics. 9:1483–1500. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Friedman JR and Nunnari J: Mitochondrial form and function. Nature. 505:335–343. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z and Sukhatme VP: Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway. Sci Rep. 7:45372017. View Article : Google Scholar : PubMed/NCBI

120 

Dutkiewicz R and Nowak M: Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis. J Biol Inorg Chem. 23:569–579. 2018. View Article : Google Scholar

121 

Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D'Agostino R Jr, Torti SV and Torti FM: An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 71:6728–6737. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Mettert EL and Kiley PJ: Fe-S proteins that regulate gene expression. Biochim Biophys Acta. 1853:1284–1293. 2015. View Article : Google Scholar :

123 

Zhang L, Reyes A and Wang X: The role of DNA repair in maintaining mitochondrial DNA stability. Adv Exp Med Biol. 1038:85–105. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Chen YR and Zweier JL: Cardiac mitochondria and reactive oxygen species generation. Circ Res. 114:524–537. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Urra FA, Muñoz F, Lovy A and Cárdenas C: The mitochondrial complex(I)ty of cancer. Front Oncol. 7:1182017. View Article : Google Scholar : PubMed/NCBI

126 

Bastian A, Matsuzaki S, Humphries KM, Pharaoh GA, Doshi A, Zaware N, Gangjee A and Ihnat MA: AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Lett. 388:149–157. 2017. View Article : Google Scholar

127 

Bridges HR, Jones AJ, Pollak MN and Hirst J: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 462:475–487. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Esser L, Zhou F, Zhou Y, Xiao Y, Tang WK, Yu CA, Qin Z and Xia D: Hydrogen bonding to the substrate is not required for rieskeiron-sulfur protein docking to the quinol oxidation site of complex III. J Biol Chem. 291:25019–25031. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Wang F, Zhang R, Xia T, Hsu E, Cai Y, Gu Z and Hankinson O: Inhibitory effects of nitric oxide on invasion of human cancer cells. Cancer Lett. 257:274–282. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 7:34084–34099. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Oyedotun KS and Lemire BD: The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem. 279:9424–9431. 2004. View Article : Google Scholar

132 

Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M and Rao Z: Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 121:1043–1057. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Guo L, Shestov AA, Worth AJ, Nath K, Nelson DS, Leeper DB, Glickson JD and Blair IA: Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem. 291:42–57. 2016. View Article : Google Scholar :

134 

Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L and Neuzil J: Mitochondrial complex II, a novel target for anti-cancer agents. Biochim Biophys Acta. 1827:552–564. 2013. View Article : Google Scholar

135 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E and Joyce JA: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25:2465–2479. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar

139 

Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun Y, Pan Z, Qian H and Xu W: Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biol. 37:12169–12180. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Torti SV and Torti FM: Cellular iron metabolism in prognosis and therapy of breast cancer. Crit Rev Oncog. 18:435–448. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Duan X, He K, Li J, Cheng M, Song H, Liu J and Liu P: Tumor associated macrophages deliver iron to tumor cells via Lcn2. Int J Physiol Pathophysiol Pharmacol. 10:105–114. 2018.PubMed/NCBI

142 

Mertens C, Mora J, Ören B, Grein S, Winslow S, Scholich K, Weigert A, Malmström P, Forsare C, Fernö M, et al: Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. OncoImmunology. 7:e14087512017. View Article : Google Scholar

143 

Flower DR: The lipocalin protein family: A role in cell regulation. FEBS Lett. 354:7–11. 1994. View Article : Google Scholar : PubMed/NCBI

144 

Laskar A, Eilertsen J, Li W and Yuan XM: SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem Biophys Res Commun. 441:737–742. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Fearnhead HO, Vandenabeele P and Vanden Berghe T: How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 24:1991–1998. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Sheng X, Shan C, Liu J, Yang J, Sun B and Chen D: Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys Chem Chem Phys. 19:13153–13159. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Fanzani A and Poli M: Iron, oxidative damage and ferroptosis in rhabdomyosarcoma. Int J Mol Sci. 18:182017.

149 

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017.PubMed/NCBI

150 

Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar :

152 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI

153 

Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI

154 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Ishii T, Sugita Y and Bannai S: Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol. 133:330–336. 1987. View Article : Google Scholar : PubMed/NCBI

156 

Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J and Lv J: Sulfur protects Pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci. 18:182017. View Article : Google Scholar

157 

Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003. View Article : Google Scholar : PubMed/NCBI

158 

Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W, et al: Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8:237–248. 2008. View Article : Google Scholar : PubMed/NCBI

159 

Ursini F and Bindoli A: The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 44:255–276. 1987. View Article : Google Scholar : PubMed/NCBI

160 

Chu FF: The human glutathione peroxidase genes GPX2, GPX3, and GPX4 map to chromosomes 14, 5, and 19, respectively. Cytogenet Cell Genet. 66:96–98. 1994. View Article : Google Scholar : PubMed/NCBI

161 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, et al: Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 12:11355–11365. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z, Li D, Wu Y, Shang Y, Kong X, et al: Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 7:180–193. 2014. View Article : Google Scholar : PubMed/NCBI

164 

Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD and Dixon SJ: p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22:569–575. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Fan Z, Yang Y and Gu C: Iron metabolism and its contribution to cancer (Review). Int J Oncol 54: 1143-1154, 2019.
APA
Chen, Y., Fan, Z., Yang, Y., & Gu, C. (2019). Iron metabolism and its contribution to cancer (Review). International Journal of Oncology, 54, 1143-1154. https://doi.org/10.3892/ijo.2019.4720
MLA
Chen, Y., Fan, Z., Yang, Y., Gu, C."Iron metabolism and its contribution to cancer (Review)". International Journal of Oncology 54.4 (2019): 1143-1154.
Chicago
Chen, Y., Fan, Z., Yang, Y., Gu, C."Iron metabolism and its contribution to cancer (Review)". International Journal of Oncology 54, no. 4 (2019): 1143-1154. https://doi.org/10.3892/ijo.2019.4720
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Fan Z, Yang Y and Gu C: Iron metabolism and its contribution to cancer (Review). Int J Oncol 54: 1143-1154, 2019.
APA
Chen, Y., Fan, Z., Yang, Y., & Gu, C. (2019). Iron metabolism and its contribution to cancer (Review). International Journal of Oncology, 54, 1143-1154. https://doi.org/10.3892/ijo.2019.4720
MLA
Chen, Y., Fan, Z., Yang, Y., Gu, C."Iron metabolism and its contribution to cancer (Review)". International Journal of Oncology 54.4 (2019): 1143-1154.
Chicago
Chen, Y., Fan, Z., Yang, Y., Gu, C."Iron metabolism and its contribution to cancer (Review)". International Journal of Oncology 54, no. 4 (2019): 1143-1154. https://doi.org/10.3892/ijo.2019.4720
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team