Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 54 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness

  • Authors:
    • Maciej Boleslaw Olszewski
    • Magdalena Pruszko
    • Ewa Snaar‑Jagalska
    • Alicja Zylicz
    • Maciej Zylicz
  • View Affiliations / Copyright

    Affiliations: Department of Molecular Biology, International Institute of Molecular and Cell Biology, 02‑109 Warsaw, Poland, Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
    Copyright: © Olszewski et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1168-1182
    |
    Published online on: February 22, 2019
       https://doi.org/10.3892/ijo.2019.4723
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gain‑of‑function (GOF) mutations in the TP53 gene lead to acquisition of new functions by the mutated tumor suppressor p53 protein. A number of the over‑represented 'hot spot' mutations, including the ones in codons 175, 248 or 273, convey GOF phenotypes. Such phenotypes may include resistance to chemotherapeutics or changes in motility and invasiveness. Whereas the prevalent notion is that the acquisition of the p53 GOF phenotype translates into poorer prognosis for the patient, the analysis of a human somatic p53 mutations dataset demonstrated earlier tumor onset, but decreased frequency and altered location of metastases in patients with the p53‑R248Q allele. Therefore, the GOF activities of p53‑R248Q and p53‑D281G were analyzed in triple negative breast cancer MDA‑MB‑231 and lung adenocarcinoma H1299 cell lines with regard to invasive and metastatic traits. The expression of p53‑D281G increased the motility and invasiveness of the lung cancer cells, but not those of the breast cancer cells. In contrast, the expression of p53‑R248Q decreased the motility and invasiveness of the breast and lung cancer cells in a p53 transactivation‑dependent manner. The intravenous xenotransplantation of MDA‑MB‑231 cells expressing p53‑R248Q into zebrafish embryos resulted in an alteration of the distribution of cancer cells in the body of the fish. In p53‑R248Q‑expressing H1299 cells a decrease in the expression of TCF8/ZEB1 and N‑cadherin was observed, suggesting partial mesenchymal‑to‑epithelial transition. In the two cell lines expressing p53‑R248Q a decrease was noted in the expression of myosin light chain 2, a protein involved in actomyosin‑based motility. To the best of our knowledge, the present study is one of only few reports demonstrating the mutated p53 GOF activity resulting in a decrease of a malignant trait in human cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992. View Article : Google Scholar : PubMed/NCBI

2 

Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P and Olivier M: TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Halevy O, Michalovitz D and Oren M: Different tumor-derived p53 mutants exhibit distinct biological activities. Science. 250:113–116. 1990. View Article : Google Scholar : PubMed/NCBI

4 

Milner J and Medcalf EA: Cotranslation of activated mutant p53 with wild-type drives the wild-type p53 protein into the mutant conformation. Cell. 65:765–774. 1991. View Article : Google Scholar : PubMed/NCBI

5 

Chan WM, Siu WY, Lau A and Poon RY: How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol. 24:3536–3551. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Willis A, Jung EJ, Wakefield T and Chen X: Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 23:2330–2338. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C and Levine AJ: Gain of function mutations in p53. Nat Genet. 4:42–46. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Aschauer L and Muller PA: Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem Soc Trans. 44:460–466. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Shetzer Y, Molchadsky A and Rotter V: Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell formation. Cold Spring Harb Perspect Med. 6:202016. View Article : Google Scholar

12 

Shetzer Y, Solomon H, Koifman G, Molchadsky A, Horesh S and Rotter V: The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis. 35:1196–1208. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Pfister NT and Prives C: Transcriptional regulation by wild-type and cancer-related mutant forms of p53. Cold Spring Harb Perspect Med. 7:262017. View Article : Google Scholar

14 

Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK and Lozano G: High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA. 97:4174–4179. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, et al: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 119:861–872. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D and Jacks T: Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 119:847–860. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK, Multani A, Chang S and Lozano G: Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet. 36:63–68. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Song H, Hollstein M and Xu Y: p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 9:573–580. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Liu DP, Song H and Xu Y: A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene. 29:949–956. 2010. View Article : Google Scholar :

20 

Hanel W, Marchenko N, Xu S, Yu SX, Weng W and Moll U: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20:898–909. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Gaiddon C, Lokshin M, Ahn J, Zhang T and Prives C: A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 21:1874–1887. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, et al: Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 7:285–295. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M and Zylicz A: Molecular mechanism of mutant p53 stabilization: The role of HSP70 and MDM2. PLoS One. 7:e514262012. View Article : Google Scholar : PubMed/NCBI

24 

Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, et al: Mutant p53 drives invasion by promoting integrin recycling. Cell. 139:1327–1341. 2009. View Article : Google Scholar

25 

Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al: A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 137:87–98. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Weissmueller S, Manchado E, Saborowski M, Morris JP IV, Wagenblast E, Davis CA, Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T, et al: Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. 157:382–394. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Subramanian M, Francis P, Bilke S, Li XL, Hara T, Lu X, Jones MF, Walker RL, Zhu Y, Pineda M, et al: A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene. 34:1094–1104. 2015. View Article : Google Scholar :

28 

Alam SK, Yadav VK, Bajaj S, Datta A, Dutta SK, Bhattacharyya M, Bhattacharya S, Debnath S, Roy S, Boardman LA, et al: DNA damage-induced ephrin-B2 reverse signaling promotes chemo-resistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ. 23:707–722. 2016. View Article : Google Scholar

29 

Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, et al: Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat Commun. 6:73892015. View Article : Google Scholar : PubMed/NCBI

30 

Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, et al: Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest. 124:1069–1082. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF, Deb SP and Deb S: Modulation of gene expression by tumor-derived p53 mutants. Cancer Res. 64:7447–7454. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Vaughan CA, Singh S, Grossman SR, Windle B, Deb SP and Deb S: Gain-of-function p53 activates multiple signaling pathways to induce oncogenicity in lung cancer cells. Mol Oncol. 11:696–711. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, et al: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 18:271–281. 2011. View Article : Google Scholar

34 

Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP and Deb S: Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes Cancer. 3:491–502. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Cavallaro S: CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci. 14:1713–1727. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Hinton CV, Avraham S and Avraham HK: Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis. 27:97–105. 2010. View Article : Google Scholar

37 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, et al: Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis. 33:442–451. 2012. View Article : Google Scholar

39 

Moskovits N, Kalinkovich A, Bar J, Lapidot T and Oren M: p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res. 66:10671–10676. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Coradini D, Fornili M, Ambrogi F, Boracchi P and Biganzoli E: TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol. 2012.254085:2012.

41 

Cordani M, Pacchiana R, Butera G, D’Orazi G, Scarpa A and Donadelli M: Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Lett. 376:303–309. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Dong P, Tada M, Hamada J, Nakamura A, Moriuchi T and Sakuragi N: p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cells. Clin Exp Metastasis. 24:471–483. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L, Stambolsky P, Henis YI and Rotter V: Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol. 27:8228–8242. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK and Kaufman PD: A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One. 4:e65292009. View Article : Google Scholar : PubMed/NCBI

45 

Sambrook J and Russell DW: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 2001

46 

Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O and Pauwels P: Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS One. 7:e465362012. View Article : Google Scholar : PubMed/NCBI

47 

He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP and Snaar-Jagalska BE: Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 227:431–445. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, et al: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 p atients. Nat Med. 23:703–713. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Lin J, Teresky AK and Levine AJ: Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene. 10:2387–2390. 1995.PubMed/NCBI

51 

Lin J, Chen J, Elenbaas B and Levine AJ: Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246. 1994. View Article : Google Scholar : PubMed/NCBI

52 

Araki K, Ebata T, Guo AK, Tobiume K, Wolf SJ and Kawauchi K: p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell Mol Life Sci. 72:4077–4094. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D’Orazi G, Brizzi MF, Sacchi A, Soddu S, Blandino G, et al: Negative regulation of beta4 integrin transcription by home-odomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res. 69:5978–5986. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Janouskova H, Ray AM, Noulet F, Lelong-Rebel I, Choulier L, Schaffner F, Lehmann M, Martin S, Teisinger J and Dontenwill M: Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target α5 integrin in colon cancer cells. Cancer Lett. 336:307–318. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, Tanaka N, Sawada Y and Kawauchi K: Loss of p53 enhances NF-κB-dependent lamellipodia formation. J Cell Physiol. 229:696–704. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Sulzmaier FJ, Jean C and Schlaepfer DD: FAK in cancer: Mechanistic findings and clinical applications. Nat Rev Cancer. 14:598–610. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Golubovskaya V, Kaur A and Cance W: Cloning and characterization of the promoter region of human focal adhesion kinase gene: Nuclear factor kappa B and p53 binding sites. Biochim Biophys Acta. 1678:111–125. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T and Snaar-Jagalska BE: Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech. 9:141–153. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S and Klemke R: Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 123:2332–2341. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, van Dam H, Clément-Lacroix P and Ten Dijke P: Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 17:282015. View Article : Google Scholar

61 

Truong HH, Xiong J, Ghotra VP, Nirmala E, Haazen L, Le Dévédec SE, Balcioğlu HE, He S, Snaar-Jagalska BE, Vreugdenhil E, et al: β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer. Sci Signal. 7:ra152014. View Article : Google Scholar

62 

Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, et al: The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 68:537–544. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Zhang P, Sun Y and Ma L: ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J and Sakuragi N: Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 32:3286–3295. 2013. View Article : Google Scholar

66 

Jeong D, Park S, Kim H, Kim CJ, Ahn TS, Bae SB, Kim HJ, Kim TH, Im J, Lee MS, et al: RhoA is associated with invasion and poor prognosis in colorectal cancer. Int J Oncol. 48:714–722. 2016. View Article : Google Scholar

67 

O’Connor K and Chen M: Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases. 4:141–147. 2013. View Article : Google Scholar

68 

Choi DS, Stark DJ, Raphael RM, Wen J, Su J, Zhou X, Chang CC and Zu Y: SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II. Int J Cancer. 136:E219–E229. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Olszewski MB, Pruszko M, Snaar‑Jagalska E, Zylicz A and Zylicz M: Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. Int J Oncol 54: 1168-1182, 2019.
APA
Olszewski, M.B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., & Zylicz, M. (2019). Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. International Journal of Oncology, 54, 1168-1182. https://doi.org/10.3892/ijo.2019.4723
MLA
Olszewski, M. B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., Zylicz, M."Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness". International Journal of Oncology 54.4 (2019): 1168-1182.
Chicago
Olszewski, M. B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., Zylicz, M."Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness". International Journal of Oncology 54, no. 4 (2019): 1168-1182. https://doi.org/10.3892/ijo.2019.4723
Copy and paste a formatted citation
x
Spandidos Publications style
Olszewski MB, Pruszko M, Snaar‑Jagalska E, Zylicz A and Zylicz M: Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. Int J Oncol 54: 1168-1182, 2019.
APA
Olszewski, M.B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., & Zylicz, M. (2019). Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness. International Journal of Oncology, 54, 1168-1182. https://doi.org/10.3892/ijo.2019.4723
MLA
Olszewski, M. B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., Zylicz, M."Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness". International Journal of Oncology 54.4 (2019): 1168-1182.
Chicago
Olszewski, M. B., Pruszko, M., Snaar‑Jagalska, E., Zylicz, A., Zylicz, M."Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness". International Journal of Oncology 54, no. 4 (2019): 1168-1182. https://doi.org/10.3892/ijo.2019.4723
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team