|
1
|
Kunz BA, Kohalmi SE, Kunkel TA, Mathews
CK, McIntosh EM and Reidy JA: International commission for
protection against environmental mutagens and carcinogens.
Deoxyribonucleoside triphosphate levels: A critical factor in the
maintenance of genetic stability. Mutat Res. 318:1–64. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Reichard P: Interactions between
deoxyribonucleotide and DNA synthesis. Annu Rev Biochem.
57:349–374. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lee EJ, Seo JH, Park JH, Vo TTL, An S, Bae
SJ, Le H, Lee HS, Wee HJ, Lee D, et al: SAMHD1 acetylation enhances
its deoxy-nucleotide triphosphohydrolase activity and promotes
cancer cell proliferation. Oncotarget. 8:68517–68529.
2017.PubMed/NCBI
|
|
4
|
Koharudin LM, Wu Y, DeLucia M, Mehrens J,
Gronenborn AM and Ahn J: Structural basis of allosteric activation
of sterile α motif and histidine-aspartate domain-containing
protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem.
289:32617–32627. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Welbourn S, Dutta SM, Semmes OJ and
Strebel K: Restriction of virus infection but not catalytic dNTPase
activity is regulated by phosphorylation of SAMHD1. J Virol.
87:11516–11524. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
White TE, Brandariz-Nunez A, Valle-Casuso
JC, Amie S, Nguyen LA, Kim B, Tuzova M and Diaz-Griffero F: The
retroviral restriction ability of SAMHD1, but not its
deoxynucleotide triphosphohydrolase activity, is regulated by
phosphorylation. Cell Host Microbe. 13:441–451. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
St Gelais C, de Silva S, Hach JC, White
TE, Diaz-Griffero F, Yount JS and Wu L: Identification of cellular
proteins interacting with the retroviral restriction factor SAMHD1.
J Virol. 88:5834–5844. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ji X, Tang C, Zhao Q, Wang W and Xiong Y:
Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl
Acad Sci USA. 111:E4305–E4314. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang K, Lv DW and Li R: Conserved
herpesvirus protein kinases target SAMHD1 to facilitate virus
replication. Cell Rep. 28:449–459 e445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kim ET, Roche KL, Kulej K, Spruce LA,
Seeholzer SH, Coen DM, Diaz-Griffero F, Murphy EA and Weitzman MD:
SAMHD1 modulates early steps during human cytomegalovirus infection
by limiting NF-kB activation. Cell Rep. 28:434–448 e436. 2019.
View Article : Google Scholar
|
|
11
|
de Silva S, Hoy H, Hake TS, Wong HK, Porcu
P and Wu L: Promoter methylation regulates SAMHD1 gene expression
in human CD4+ T cells. J Biol Chem. 288:9284–9292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
de Silva S, Wang F, Hake TS, Porcu P, Wong
HK and Wu L: Downregulation of SAMHD1 expression correlates with
promoter DNA methylation in Sezary syndrome patients. J Invest
Dermatol. 134:562–565. 2014. View Article : Google Scholar
|
|
13
|
Wang JL, Lu FZ, Shen XY, Wu Y and Zhao LT:
SAMHD1 is down regulated in lung cancer by methylation and inhibits
tumor cell proliferation. Biochem Biophys Res Commun. 455:229–233.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Laguette N, Sobhian B, Casartelli N,
Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S,
Schwartz O and Benkirane M: SAMHD1 is the dendritic- and
myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx.
Nature. 474:654–657. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hrecka K, Hao C, Gierszewska M, Swanson
SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP and
Skowronski J: Vpx relieves inhibition of HIV-1 infection of
macrophages mediated by the SAMHD1 protein. Nature. 474:658–661.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Berger A, Sommer AF, Zwarg J, Hamdorf M,
Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, et al:
SAMHD1-deficient CD14+ cells from individuals with aicardigoutieres
syndrome are highly susceptible to HIV-1 infection. PLoS Pathog.
7:e10024252011. View Article : Google Scholar
|
|
17
|
Ahn J, Hao C, Yan J, DeLucia M, Mehrens J,
Wang C, Gronenborn AM and Skowronski J: HIV/simian immunodeficiency
virus (SIV) accessory virulence factor Vpx loads the host cell
restriction factor SAMHD1 onto the E3 ubiquitin ligase complex
CRL4DCAF1. J Biol Chem. 287:12550–12558. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li N, Zhang W and Cao X: Identification of
human homologue of mouse IFN-gamma induced protein from human
dendritic cells. Immunol Lett. 74:221–224. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kueck T, Cassella E, Holler J, Kim B and
Bieniasz PD: The aryl hydrocarbon receptor and interferon gamma
generate antiviral states via transcriptional repression. Elife.
7:e388672018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Goldstone DC, Ennis-Adeniran V, Hedden JJ,
Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF,
Yap MW, et al: HIV-1 restriction factor SAMHD1 is a deoxynucleoside
triphosphate triphosphohydrolase. Nature. 480:379–382. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Leshinsky-Silver E, Malinger G, Ben-Sira
L, Kidron D, Cohen S, Inbar S, Bezaleli T, Levine A, Vinkler C, Lev
D and Lerman-Sagie T: A large homozygous deletion in the SAMHD1
gene causes atypical aicardi-goutieres syndrome associated with
mtDNA deletions. Eur J Hum Genet. 19:287–292. 2011. View Article : Google Scholar
|
|
22
|
Rice GI, Bond J, Asipu A, Brunette RL,
Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, et
al: Mutations involved in aicardi-goutieres syndrome implicate
SAMHD1 as regulator of the innate immune response. Nat Genet.
41:829–832. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
23
|
Thiele H, du Moulin M, Barczyk K, George
C, Schwindt W, Nürnberg G, Frosch M, Kurlemann G, Roth J, Nürnberg
P and Rutsch F: Cerebral arterial stenoses and stroke: Novel
features of Aicardi-Goutieres syndrome caused by the arg164X
mutation in SAMHD1 are associated with altered cytokine expression.
Hum Mutat. 31:E1836–E1850. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dale RC, Gornall H, Singh-Grewal D,
Alcausin M, Rice GI and Crow YJ: Familial aicardi-goutieres
syndrome due to SAMHD1 mutations is associated with chronic
arthropathy and contractures. Am J Med Genet A. 152A:938–942. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Brandariz-Nunez A, Valle-Casuso JC, White
TE, Laguette N, Benkirane M, Brojatsch J and Diaz-Griffero F: Role
of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac.
Retrovirology. 9:492012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hofmann H, Logue EC, Bloch N, Daddacha W,
Polsky SB, Schultz ML, Kim B and Landau NR: The Vpx lentiviral
accessory protein targets SAMHD1 for degradation in the nucleus. J
Virol. 86:12552–12560. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
DeLucia M, Mehrens J, Wu Y and Ahn J:
HIV-2 and SIVmac accessory virulence factor Vpx down-regulates
SAMHD1 enzyme catalysis prior to proteasome-dependent degradation.
J Biol Chem. 288:19116–19126. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim CA and Bowie JU: SAM domains: Uniform
structure, diversity of function. Trends Biochem Sci. 28:625–628.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Laguette N and Benkirane M: How SAMHD1
changes our view of viral restriction. Trends Immunol. 33:26–33.
2012. View Article : Google Scholar
|
|
30
|
Antonucci JM, St Gelais C, de Silva S,
Yount JS, Tang C, Ji X, Shepard C, Xiong Y, Kim B and Wu L:
SAMHD1-mediated HIV-1 restriction in cells does not involve
ribonuclease activity. Nat Med. 22:1072–1074. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim
SY, Seo D, Kim J, White TE, Brandariz-Nuñez A, et al: The
ribonuclease activity of SAMHD1 is required for HIV-1 restriction.
Nat Med. 20:936–941. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhu CF, Wei W, Peng X, Dong YH, Gong Y and
Yu XF: The mechanism of substrate-controlled allosteric regulation
of SAMHD1 activated by GTP. Acta Crystallogr D Biol Crystallogr.
71:516–524. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li Y, Kong J, Peng X, Hou W, Qin X and Yu
XF: Structural insights into the high-efficiency catalytic
mechanism of the sterile α-motif/histidine-aspartate
domain-containing protein. J Biol Chem. 290:29428–29437. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Patra KK, Bhattacharya A and Bhattacharya
S: Allosteric signal transduction in HIV-1 restriction factor
SAMHD1 proceeds via reciprocal handshake across monomers. J Chem
Inf Model. 57:2523–2538. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yan J, Kaur S, DeLucia M, Hao C, Mehrens
J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J and
Skowronski J: Tetramerization of SAMHD1 is required for biological
activity and inhibition of HIV infection. J Biol Chem.
288:10406–10417. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mauney CH, Rogers LC, Harris RS, Daniel
LW, Devarie-Baez NO, Wu H, Furdui CM, Poole LB, Perrino FW and
Hollis T: The SAMHD1 dNTP triphosphohydrolase is controlled by a
redox switch. Antioxid Redox Signal. 27:1317–1331. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mauney CH and Hollis T: SAMHD1: Recurring
roles in cell cycle, viral restriction, cancer, and innate
immunity. Autoimmunity. 51:96–110. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tramentozzi E, Ferraro P, Hossain M,
Stillman B, Bianchi V and Pontarin G: The dNTP triphosphohydrolase
activity of SAMHD1 persists during S-phase when the enzyme is
phosphorylated at T592. Cell Cycle. 17:1102–1114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Arnold LH, Groom HC, Kunzelmann S,
Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S,
Goldstone DC, Pennell S, et al: Phospho-dependent regulation of
SAMHD1 oligomerisation couples catalysis and restriction. PLoS
Pathog. 11:e10051942015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ji X, Wu Y, Yan J, Mehrens J, Yang H,
DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J and Xiong Y:
Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct
Mol Biol. 20:1304–1309. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Badia R, Angulo G, Riveira-Munoz E,
Pujantell M, Puig T, Ramirez C, Torres-Torronteras J, Martí R,
Pauls E, Clotet B, et al: Inhibition of herpes simplex virus type 1
by the CDK6 inhibitor PD-0332991 (palbociclib) through the control
of SAMHD1. J Antimicrob Chemother. 71:387–394. 2016. View Article : Google Scholar :
|
|
42
|
Kim ET, White TE, Brandariz-Nunez A,
Diaz-Griffero F and Weitzman MD: SAMHD1 restricts herpes simplex
virus 1 in macrophages by limiting DNA replication. J Virol.
87:12949–12956. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hu J, Qiao M, Chen Y, Tang H, Zhang W,
Tang D, Pi S, Dai J, Tang N, Huang A and Hu Y: Cyclin E2-CDK2
mediates SAMHD1 phosphorylation to abrogate its restriction of HBV
replication in hepatoma cells. FEBS Lett. 592:1893–1904. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sommer AF, Riviere L, Qu B, Schott K,
Riess M, Ni Y, Shepard C, Schnellbächer E, Finkernagel M,
Himmelsbach K, et al: Restrictive influence of SAMHD1 on Hepatitis
B Virus life cycle. Sci Rep. 6:266162016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li M, Zhang D, Zhu M, Shen Y, Wei W, Ying
S, Korner H and Li J: Roles of SAMHD1 in antiviral defense,
autoimmunity and cancer. Rev Med Virol. 27:2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cribier A, Descours B, Valadao AL,
Laguette N and Benkirane M: Phosphorylation of SAMHD1 by Cyclin
A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep.
3:1036–1043. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pauls E, Ruiz A, Badia R, Permanyer M,
Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe
B, Brander C, et al: Cell cycle control and HIV-1 susceptibility
are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in
myeloid and lymphoid cells. J Immunol. 193:1988–1997. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Valle-Casuso JC, Allouch A, David A, Lenzi
GM, Studdard L, Barré-Sinoussi F, Müller-Trutwin M, Kim B, Pancino
G and Sáez-Cirión A: p21 Restricts HIV-1 in monocyte-derived
dendritic cells through the reduction of deoxynucleoside
triphos-phate biosynthesis and regulation of SAMHD1 antiviral
activity. J Virol. 91:e01324–e01317. 2017. View Article : Google Scholar :
|
|
49
|
Bloch N, O'Brien M, Norton TD, Polsky SB,
Bhardwaj N and Landau NR: HIV type 1 infection of plasmacytoid and
myeloid dendritic cells is restricted by high levels of SAMHD1 and
cannot be counteracted by Vpx. AIDS Res Hum Retroviruses.
30:195–203. 2014. View Article : Google Scholar :
|
|
50
|
Dragin L, Nguyen LA, Lahouassa H, Sourisce
A, Kim B, Ramirez BC and Margottin-Goguet F: Interferon block to
HIV-1 transduction in macrophages despite SAMHD1 degradation and
high deoxynucleoside triphosphates supply. Retrovirology.
10:302013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lafuse WP, Brown D, Castle L and Zwilling
BS: Cloning and characterization of a novel cDNA that is
IFN-gamma-induced in mouse peritoneal macrophages and encodes a
putative GTP-binding protein. J Leukoc Biol. 57:477–483. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Taylor GA, Jeffers M, Largaespada DA,
Jenkins NA, Copeland NG and Vande Woude GF: Identification of a
novel GTPase, the inducibly expressed GTPase, that accumulates in
response to interferon gamma. J Biol Chem. 271:20399–20405. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Szaniawski MA, Spivak AM, Cox JE, Catrow
JL, Hanley T, Williams ESCP, Tremblay MJ, Bosque A and Planelles V:
SAMHD1 phosphorylation coordinates the Anti-HIV-1 response by
diverse interferons and tyrosine kinase inhibition. Mbio.
9:e00819–e00818. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tang C, Ji X, Wu L and Xiong Y: Impaired
dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J
Biol Chem. 290:26352–26359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schott K, Fuchs NV, Derua R, Mahboubi B,
Schnellbächer E, Seifr ied J, Tondera C, Schm itz H, Shepa rd C,
Brandariz-Nuñez A, et al: Dephosphorylation of the HIV-1
restriction factor SAMHD1 is mediated by PP2A-B55 α holoenzymes
during mitotic exit. Nat Commun. 9:22272018. View Article : Google Scholar
|
|
56
|
Franzolin E, Pontarin G, Rampazzo C,
Miazzi C, Ferraro P, Palumbo E, Reichard P and Bianchi V: The
deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of
DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA.
110:14272–14277. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kretschmer S, Wolf C, Konig N, Staroske W,
Guck J, Häusler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, et
al: SAMHD1 prevents autoimmunity by maintaining genome stability.
Ann Rheum Dis. 74:e172015. View Article : Google Scholar :
|
|
58
|
Mathews CK: DNA precursor metabolism and
genomic stability. FASEB J. 20:1300–1314. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Poli J, Tsaponina O, Crabbe L, Keszthelyi
A, Pantesco V, Chabes A, Lengronne A and Pasero P: dNTP pools
determine fork progression and origin usage under replication
stress. EMBO J. 31:883–894. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Coquel F, Silva MJ, Techer H, Zadorozhny
K, Sharma S, Nieminuszczy J, Mettling C, Dardillac E, Barthe A,
Schmitz AL, et al: SAMHD1 acts at stalled replication forks to
prevent interferon induction. Nature. 557:57–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Seo YR, Sweeney C and Smith ML:
Selenomethionine induction of DNA repair response in human
fibroblasts. Oncogene. 21:3663–3669. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lin Y, Ha A and Yan S: Methods for
studying DNA single-strand break repair and signaling in xenopus
laevis egg extracts. Methods Mol Biol. 1999:161–172. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hanawalt PC: Historical perspective on the
DNA damage response. DNA Repair (Amst). 36:2–7. 2015. View Article : Google Scholar
|
|
64
|
Chu G: Double strand break repair. J Biol
Chem. 272:24097–24100. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rooney S, Chaudhuri J and Alt FW: The role
of the non-homologous end-joining pathway in lymphocyte
development. Immunol Rev. 200:115–131. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Figueroa-Gonzalez G and Perez-Plasencia C:
Strategies for the evaluation of DNA damage and repair mechanisms
in cancer. Oncol Lett. 13:3982–3988. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Morio T: Recent advances in the study of
immunodeficiency and DNA damage response. Int J Hematol.
106:357–365. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Barzilai A: DNA damage, neuronal and glial
cell death and neurodegeneration. Apoptosis. 15:1371–1381. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Brown JS and Jackson SP: Ubiquitylation,
neddylation and the DNA damage response. Open Biol. 5:1500182015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Medeiros AC, Soares CS, Coelho PO, Vieira
NA, Baqui MMA, Teixeira FR and Gomes MD: DNA damage response
signaling does not trigger redistribution of SAMHD1 to nuclear
foci. Biochem Biophys Res Commun. 499:790–796. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cabello-Lobato MJ, Wang S and Schmidt CK:
SAMHD1 sheds moonlight on DNA double-strand break repair. Trends
Genet. 33:895–897. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Clifford R, Louis T, Robbe P, Ackroyd S,
Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, et
al: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia
and is involved in response to DNA damage. Blood. 123:1021–1031.
2014. View Article : Google Scholar :
|
|
73
|
Oh C, Ryoo J, Park K, Kim B, Daly MB, Cho
D and Ahn K: A central role for PI3K-AKT signaling pathway in
linking SAMHD1-deficiency to the type I interferon signature. Sci
Rep. 8:842018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Martinez-Lopez A, Martin-Fernandez M, Buta
S, Kim B, Bogunovic D and Diaz-Griffero F: SAMHD1 deficient human
monocytes autonomously trigger type I interferon. Mol Immunol.
101:450–460. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ramantani G, Kohlhase J, Hertzberg C,
Innes AM, Engel K, Hunger S, Borozdin W, Mah JK, Ungerath K,
Walkenhorst H, et al: Expanding the phenotypic spectrum of lupus
erythematosus in aicardi-goutieres syndrome. Arthritis Rheum.
62:1469–1477. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aicardi J and Goutieres F: A progressive
familial encephalopathy in infancy with calcifications of the basal
ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol.
15:49–54. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pendergraft WF III and Means TK: AGS, SLE,
and RNASEH2 mutations: Translating insights into therapeutic
advances. J Clin Invest. 125:102–104. 2015. View Article : Google Scholar :
|
|
78
|
Ramantani G, Hausler M, Niggemann P,
Wessling B, Guttmann H, Mull M, Tenbrock K and Lee-Kirsch MA:
Aicardi-Goutieres syndrome and systemic lupus erythematosus (SLE)
in a 12-year-old boy with SAMHD1 mutations. J Child Neurol.
26:1425–1428. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hu WS and Hughes SH: HIV-1 reverse
transcription. Cold Spring Harb Perspect Med. 2:a0068822012.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sarafianos SG, Marchand B, Das K, Himmel
DM, Parniak MA, Hughes SH and Arnold E: Structure and function of
HIV-1 reverse transcriptase: Molecular mechanisms of polymerization
and inhibition. J Mol Biol. 385:693–713. 2009. View Article : Google Scholar
|
|
81
|
Amie SM, Noble E and Kim B: Intracellular
nucleotide levels and the control of retroviral infections.
Virology. 436:247–254. 2013. View Article : Google Scholar :
|
|
82
|
Traut TW: Physiological concentrations of
purines and pyrimidines. Mol Cell Biochem. 140:1–22. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kennedy EM, Amie SM, Bambara RA and Kim B:
Frequent incorporation of ribonucleotides during HIV-1 reverse
transcription and their attenuated repair in macrophages. J Biol
Chem. 287:14280–14288. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kennedy EM, Gavegnano C, Nguyen L, Slater
R, Lucas A, Fromentin E, Schinazi RF and Kim B: Ribonucleoside
triphosphates as substrate of human immunodeficiency virus type 1
reverse transcriptase in human macrophages. J Biol Chem.
285:39380–39391. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Antonucci JM, Kim SH, St Gelais C,
Bonifati S, Li TW, Buzovetsky O, Knecht KM, Duchon AA, Xiong Y,
Musier-Forsyth K and Wu L: SAMHD1 impairs HIV-1 gene expression and
negatively modulates reactivation of viral latency in CD4(+) T
cells. J Virol. 92:e00292–e00218. 2018. View Article : Google Scholar :
|
|
86
|
Gao W, Li G, Bian X, Rui Y, Zhai C, Liu P,
Su J, Wang H, Zhu C, Du Y, et al: Defective modulation of LINE-1
retrotransposition by cancer-associated SAMHD1 mutants. Biochem
Biophys Res Commun. 519:213–219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Maelfait J, Bridgeman A, Benlahrech A,
Cursi C and Rehwinkel J: Restriction by SAMHD1 limits
cGAS/STING-dependent innate and adaptive immune responses to HIV-1.
Cell Rep. 16:1492–1501. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Baldauf HM, Stegmann L, Schwarz SM, Ambiel
I, Trotard M, Martin M, Burggraf M, Lenzi GM, Lejk H, Pan X, et al:
Vpx overcomes a SAMHD1-independent block to HIV reverse
transcription that is specific to resting CD4 T cells. Proc Natl
Acad Sci USA. 114:2729–2734. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Miyakawa K, Matsunaga S, Yokoyama M,
Nomaguchi M, Kimura Y, Nishi M, Kimura H, Sato H, Hirano H, Tamura
T, et al: PIM kinases facilitate lentiviral evasion from SAMHD1
restriction via Vpx phosphorylation. Nat Commun. 10:18442019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yurkovetskiy L, Guney MH, Kim K, Goh SL,
McCauley S, Dauphin A, Diehl WE and Luban J: Primate
immunodeficiency virus proteins Vpx and Vpr counteract
transcriptional repression of proviruses by the HUSH complex. Nat
Microbiol. 3:1354–1361. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Reinhard C, Bottinelli D, Kim B and Luban
J: Vpx rescue of HIV-1 from the antiviral state in mature dendritic
cells is independent of the intracellular deoxynucleotide
concentration. Retrovirology. 11:122014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
White TE, Brandariz-Nunez A, Valle-Casuso
JC, Amie S, Nguyen L, Kim B, Brojatsch J and Diaz-Griffero F:
Contribution of SAM and HD domains to retroviral restriction
mediated by human SAMHD1. Virology. 436:81–90. 2013. View Article : Google Scholar :
|
|
93
|
Rossi D: SAMHD1: A new gene for CLL.
Blood. 123:951–952. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rentoft M, Lindell K, Tran P, Chabes AL,
Buckland RJ, Watt DL, Marjavaara L, Nilsson AK, Melin B, Trygg J,
et al: Heterozygous colon cancer-associated mutations of SAMHD1
have functional significance. Proc Natl Acad Sci USA.
113:4723–4728. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kodigepalli KM, Li MH, Liu SL and Wu L:
Exogenous expression of SAMHD1 inhibits proliferation and induces
apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell
Cycle. 16:179–188. 2017. View Article : Google Scholar :
|
|
96
|
Contassot E, Kerl K, Roques S, Shane R,
Gaide O, Dupuis M, Rook AH and French LE: Resistance to FasL and
tumor necrosis factor-related apoptosis-inducing ligand-mediated
apoptosis in Sezary syndrome T-cells associated with impaired death
receptor and FLICE-inhibitory protein expression. Blood.
111:4780–4787. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang CL, Kamarashev J, Qin JZ, Burg G,
Dummer R and Dobbeling U: Expression of apoptosis regulators in
cutaneous T-cell lymphoma (CTCL) cells. J Pathol. 200:249–254.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Forbes SA, Beare D, Boutselakis H, Bamford
S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al:
COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids
Res. 45:D777–D783. 2017. View Article : Google Scholar :
|
|
99
|
Sjoblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:
The consensus coding sequences of human breast and colorectal
cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kohnken R, Kodigepalli KM, Mishra A, Porcu
P and Wu L: MicroRNA-181 contributes to downregulation of SAMHD1
expression in CD4+T-cells derived from Sezary syndrome patients.
Leuk Res. 52:58–66. 2017. View Article : Google Scholar
|
|
101
|
Liu J, Lee W, Jiang Z, Chen Z,
Jhunjhunwala S, Haverty PM, Gnad F, Guan Y, Gilbert HN, Stinson J,
et al: Genome and transcriptome sequencing of lung cancers reveal
diverse mutational and splicing events. Genome Res. 22:2315–2327.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shang Z, Qian L, Liu S, Niu X, Qiao Z, Sun
Y, Zhang Y, Fan LY, Guan X, Cao CX and Xiao H: Graphene
oxide-facilitated comprehensive analysis of cellular nucleic acid
binding proteins for lung cancer. Acs Appl Mater Interfaces.
10:17756–17770. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang CA, Huang HY, Chang YS, Lin CL, Lai
IL and Chang JG: DNA-sensing and nuclease gene expressions as
markers for colorectal cancer progression. Oncology. 92:115–124.
2017. View Article : Google Scholar
|
|
104
|
Herrmann A, Wittmann S, Thomas D, Shepard
CN, Kim B, Ferreirós N and Gramberg T: The SAMHD1-mediated block of
LINE-1 retroelements is regulated by phosphorylation. Mob DNA.
9:112018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kohnken R, Kodigepalli KM and Wu L:
Regulation of deoxy-nucleotide metabolism in cancer: Novel
mechanisms and therapeutic implications. Mol Cancer. 14:1762015.
View Article : Google Scholar
|
|
106
|
Herold N, Rudd SG, Sanjiv K, Kutzner J,
Bladh J, Paulin CBJ, Helleday T, Henter JI and Schaller T: SAMHD1
protects cancer cells from various nucleoside-based
antimetabolites. Cell Cycle. 16:1029–1038. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rudd SG, Schaller T and Herold N: SAMHD1
is a barrier to antimetabolite-based cancer therapies. Mol Cell
Oncol. 4:e12875542017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhu KW, Chen P, Zhang DY, Yan H, Liu H,
Cen LN, Liu YL, Cao S, Zhou G, Zeng H, et al: Association of
genetic polymorphisms in genes involved in Ara-C and dNTP
metabolism pathway with chemosensitivity and prognosis of adult
acute myeloid leukemia (AML). J Transl Med. 16:902018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Schneider C, Oellerich T, Baldauf HM,
Schwarz SM, Thomas D, Flick R, Bohnenberger H, Kaderali L, Stegmann
L, Cremer A, et al: SAMHD1 is a biomarker for cytarabine response
and a therapeutic target in acute myeloid leukemia. Nat Med.
23:250–255. 2017. View Article : Google Scholar
|
|
110
|
Ossenkoppele G and Lowenberg B: How I
treat the older patient with acute myeloid leukemia. Blood.
125:767–774. 2015. View Article : Google Scholar
|
|
111
|
Arnold LH, Kunzelmann S, Webb MR and
Taylor IA: A continuous enzyme-coupled assay for
triphosphohydrolase activity of HIV-1 restriction factor SAMHD1.
Antimicrob Agents Chemother. 59:186–192. 2015. View Article : Google Scholar :
|
|
112
|
Seamon KJ and Stivers JT: A
high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol
Screen. 20:801–809. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Baldauf HM, Pan X, Erikson E, Schmidt S,
Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg
T, et al: SAMHD1 restricts HIV-1 infection in resting CD4(+) T
cells. Nat Med. 18:1682–1687. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Descours B, Cribier A, Chable-Bessia C,
Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N and
Benkirane M: SAMHD1 restricts HIV-1 reverse transcription in
quiescent CD4(+) T-cells. Retrovirology. 9:872012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Lahouassa H, Daddacha W, Hofmann H, Ayinde
D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T,
et al: SAMHD1 restricts the replication of human immunodeficiency
virus type 1 by depleting the intracellular pool of
deoxynucleo-side triphosphates. Nat Immunol. 13:223–228. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sakai Y, Doi N, Miyazaki Y, Adachi A and
Nomaguchi M: Phylogenetic insights into the functional relationship
between primate lentiviral reverse transcriptase and accessory
proteins vpx/vpr. Front Microbiol. 7:16552016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Plitnik T, Sharkey ME, Mahboubi B, Kim B
and Stevenson M: Incomplete suppression of hiv-1 by samhd1 permits
efficient macrophage infection. Pathog Immun. 3:197–223. 2018.
View Article : Google Scholar
|
|
118
|
Mereby SA, Maehigashi T, Holler JM, Kim
DH, Schinazi RF and Kim B: Interplay of ancestral non-primate
lentiviruses with the virus-restricting SAMHD1 proteins of their
hosts. J Biol Chem. 293:16402–16412. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang Z, Bhattacharya A, Villacorta J,
Diaz-Griffero F and Ivanov DN: Allosteric activation of SAMHD1
protein by deoxynucleotide triphosphate (dNTP)-dependent
tetramerization requires dNTP concentrations that are similar to
dNTP concentrations observed in cycling T cells. J Biol Chem.
291:21407–21413. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Bonifati S, Daly MB, St Gelais C, Kim SH,
Hollenbaugh JA, Shepard C, Kennedy EM, Kim DH, Schinazi RF, Kim B
and Wu L: SAMHD1 controls cell cycle status, apoptosis and HIV-1
infection in monocytic THP-1 cells. Virology. 495:92–100. 2016.
View Article : Google Scholar : PubMed/NCBI
|