Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)

  • Authors:
    • Ondřej Kodet
    • Jan Kučera
    • Karolína Strnadová
    • Barbora  Dvořánková
    • Jiří Štork
    • Lukáš Lacina
    • Karel Smetana
  • View Affiliations / Copyright

    Affiliations: Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2, Czech Republic, Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2, Czech Republic, Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
    Copyright: © Kodet et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 619-630
    |
    Published online on: June 26, 2020
       https://doi.org/10.3892/ijo.2020.5090
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
View Figures

Figure 1

Figure 2

View References

1 

Sacchetto L, Zanetti R, Comber H, Bouchardy C, Brewster DH, Broganelli P, Chirlaque MD, Coza D, Galceran J, Gavin A, et al: Trends in incidence of thick, thin and in situ melanoma in Europe. Eur J Cancer. 92:108–118. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Rabbie R, Ferguson P, Molina-Aguilar C, Adams DJ and Robles-Espinoza CD: Melanoma subtypes: Genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol. 247:539–551. 2019. View Article : Google Scholar :

3 

Lorentzen HF: Targeted therapy for malignant melanoma. Curr Opin Pharmacol. 46:116–121. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 133:571–573. 1889. View Article : Google Scholar

5 

Faries MB, Thompson JF, Cochran AJ, Andtbacka RH, Mozzillo N, Zager JS, Jahkola T, Bowles TL, Testori A, Beitsch PD, et al: Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 376:2211–2222. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Nathanson SD: Insights into the mechanisms of lymph node metastasis. Cancer. 98:413–423. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Barth A, Wanek LA and Morton DL: Prognostic factors in 1,521 melanoma patients with distant metastases. J Am Coll Surg. 181:193–201. 1995.PubMed/NCBI

8 

Damsky WE Jr and Bosenberg M: Mouse melanoma models and cell lines. Pigment Cell Melanoma Res. 23:853–859. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Abdel-Ghany M, Cheng HC, Elble RC and Pauli BU: The breast cancer ß 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem. 276:25438–25446. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Tawbi HA, Boutros C, Kok D, Robert C and McArthur G: New era in the management of melanoma brain metastases. Am Soc Clin Oncol Educ Book. 38:741–750. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Menter DG, Herrmann JL and Nicolson GL: The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clin Exp Metastasis. 13:67–88. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Balch CM, Houghton AN, Sober AJ and Soong S: Cutaneous Melanoma, 4th Edition. Dermatologic Surg. 31:1715. 2005. View Article : Google Scholar

13 

Murakami T, Cardones AR and Hwang ST: Chemokine receptors and melanoma metastasis. J Dermatol Sci. 36:71–78. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Martinez-Rodriguez M, Thompson AK and Monteagudo C: High CCL27 immunoreactivity in 'supratumoral' epidermis correlates with better prognosis in patients with cutaneous malignant melanoma. J Clin Pathol. 70:15–19. 2017. View Article : Google Scholar

15 

Ben-Baruch A: Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clin Exp Metastasis. 25:345–356. 2008. View Article : Google Scholar

16 

Marcoval J, Ferreres JR, Martrn C, Gomez S, Penrn RM, Ochoa de Olza M and Fabra À: Patterns of Visceral Metastasis in Cutaneous Melanoma: A Descriptive Study. Actas Dermosifiliog. 104:593–597. 2013. View Article : Google Scholar

17 

Adler NR, Wolfe R, Kelly JW, Haydon A, McArthur GA, McLean CA and Mar VJ: Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 117:1026–1035. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Holt JB, Sangueza OP, Levine EA, Shen P, Bergman S, Geisinger KR and Creager AJ: Nodal melanocytic nevi in sentinel lymph nodes. Correlation with melanoma-associated cutaneous nevi. Am J Clin Pathol. 121:58–63. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Ji Y, Hao H, Reynolds K, McMahon M and Zhou CJ: Wnt signaling in neural crest ontogenesis and oncogenesis. Cells. 8:11732019. View Article : Google Scholar :

20 

Lim J, Thiery JP, Kassem Y, Kalcheim C, Moens CB, Burden SJ and Granato M: Epithelial-mesenchymal transitions: Insights from development. Development. 139:3471–3486. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Mayor R and Theveneau E: The neural crest. Development. 140:2247–2251. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Hall BK: The neural crest and neural crest cells: Discovery and significance for theories of embryonic organization. J Biosci. 33:781–793. 2008. View Article : Google Scholar

23 

Mort RL, Jackson IJ and Patton EE: The melanocyte lineage in development and disease. Development. 142:620–632. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Duband JL, Monier F, Delannet M and Newgreen D: Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel). 154:63–78. 1995. View Article : Google Scholar

25 

Vega-Lopez GA, Cerrizuela S and Aybar MJ: Trunk neural crest cells: Formation, migration and beyond. Int J Dev Biol. 61:5–15. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Larribère L and Utikal J: Stem cell-derived models of neural crest are essential to understand melanoma progression and therapy resistance. Front Mol Neurosci. 12:1112019. View Article : Google Scholar : PubMed/NCBI

27 

Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A and Saxena A: Neural crest and cancer: Divergent travelers on similar paths. Mech Dev. 148:89–99. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Sieber-Blum M and Grim M: The adult hair follicle: Cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today. 72:162–172. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Person F, Wilczak W, Hube-Magg C, Burdelski C, Moller-Koop C, Simon R, Noriega M, Sauter G, Steurer S, Burdak-Rothkamm S, et al: Prevalence of pIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumour Biol. 39:10104283177121662017. View Article : Google Scholar

30 

Stasiak M, Boncela J, Perreau C, Karamanou K, Chatron-Colliet A, Proult I, Przygodzka P, Chakravarti S, Maquart FX, Kowalska MA, et al: Lumican inhibits SNAIL-induced melanoma cell migration specifically by blocking MMP-14 activity. PLoS One. 11:e01502262016. View Article : Google Scholar : PubMed/NCBI

31 

Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL and Cheung M: SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res. 38:172019. View Article : Google Scholar : PubMed/NCBI

32 

Lee H, Torres FX, McLean SA, Chen R and Lee MW: Immunophenotypic heterogeneity of primary sinonasal melanoma with aberrant expression of neuroendocrine markers and calponin. Appl Immunohistochem Mol Morphol. 19:48–53. 2011. View Article : Google Scholar

33 

Tudrej KB, Czepielewska E and Kozlowska-Wojciechowska M: SOX10-MITF pathway activity in melanoma cells. Arch Med Sci. 13:1493–1503. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Iwakami Y, Yokoyama S, Watanabe K and Hayakawa Y: STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem Biophys Res Commun. 507:484–488. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Goding CR and Arnheiter H: MITF-the first 25 years. Genes Dev. 33:983–1007. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Campbell K, Kumarapeli AR, Gokden N, Cox RM, Hutchins L and Gardner JM: Metastatic melanoma with dedifferentiation and extensive rhabdomyosarcomatous heterologous component. J Cutan Pathol. 45:360–364. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Krejci E and Grim M: Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol (Praha). 56:149–157. 2010.

38 

Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM and Limonta P: Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol. 59:221–235. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor REB, Hendrix MJC and Kulesa PM: Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn. 237:2657–2666. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J, Tan JL, Fogley RD, van Rooijen E, Hagedorn EJ, et al: A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 351:aad21972016. View Article : Google Scholar : PubMed/NCBI

41 

Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P and Volinia S: Heterogeneity in circulating tumor cells: The relevance of the stem-cell subset. Cancers (Basel). 11:112019. View Article : Google Scholar

42 

Gkountela S and Aceto N: Stem-like features of cancer cells on their way to metastasis. Biol Direct. 11:332016. View Article : Google Scholar : PubMed/NCBI

43 

Empringham B, Chiang KY and Krueger J: Collection of hematopoietic stem cells and immune effector cells in small children. Transfus Apheresis Sci. 57:614–618. 2018. View Article : Google Scholar

44 

Feehan J, Nurgali K, Apostolopoulos V, Al Saedi A and Duque G: Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine. 39:603–611. 2019. View Article : Google Scholar :

45 

Ratajczak MZ, Bujko K, Mack A, Kucia M and Ratajczak J: Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. 32:2519–2526. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B and Smetana K Jr: Cancer microenvironment: What can we learn from the stem cell niche. Int J Mol Sci. 16:24094–24110. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Hill BS, Pelagalli A, Passaro N and Zannetti A: Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 8:73296–73311. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Plzak J, Boucek J, Bandurova V, Kolar M, Hradilova M, Szabo P, Lacina L, Chovanec M and Smetana K Jr: The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers (Basel). 11:112019. View Article : Google Scholar

49 

Lacina L, Kodet O, Dvorankova B, Szabo P and Smetana K Jr: Ecology of melanoma cell. Histol Histopathol. 33:247–254. 2018.

50 

Preisner F, Leimer U, Sandmann S, Zoernig I, Germann G and Koellensperger E: Impact of human adipose tissue-derived stem cells on malignant melanoma cells in an in vitro co-culture model. Stem Cell Rev Rep. 14:125–140. 2018. View Article : Google Scholar

51 

Dvorankova B, Smetana K Jr, Rihova B, Kucera J, Mateu R and Szabo P: Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem Cell Biol. 143:463–469. 2015. View Article : Google Scholar

52 

Inada M, Takita M, Yokoyama S, Watanabe K, Tominari T, Matsumoto C, Hirata M, Maru Y, Maruyama T, Sugimoto Y, et al: Direct melanoma cell contact induces stromal cell autocrine prostaglandin E2-EP4 receptor signaling that drives tumor growth, angiogenesis, and metastasis. J Biol Chem. 290:29781–29793. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S and Thiery J: Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget. 8:19780–19794. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Kodet O, Lacina L, Krejci E, Dvorankova B, Grim M, Stork J, Kodetova D, Vlcek C, Sachova J, Kolar M, et al: Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer. 14:12015. View Article : Google Scholar : PubMed/NCBI

55 

Van Kilsdonk JWJ, Bergers M, Van Kempen LCLT, Schalkwijk J and Swart GWM: Keratinocytes drive melanoma invasion in a reconstructed skin model. Melanoma Res. 20:372–380. 2010.PubMed/NCBI

56 

Ciolczyk-Wierzbicka D and Laidler P: The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med Oncol. 35:422018. View Article : Google Scholar : PubMed/NCBI

57 

Chung H, Jung H, Jho EH, Multhaupt HAB, Couchman JR and Oh ES: Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation. Biochem Biophys Res Commun. 503:615–620. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Heino J and Pyrhonen S: Integrin chains |31 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res. 14:29–37. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry D IV, Schuchter L, Van Belle TJ, Albelda S, Tahin P, Herlyn M, et al: Progression-related expression of |33 integrin in melanomas and nevi. Hum Pathol. 30:562–567. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T and Herlyn M: Function and regulation of melanoma-stromal fibroblast interactions: When seeds meet soil. Oncogene. 22:3162–3171. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Brandner JM and Haass NK: Melanoma's connections to the tumour microenvironment. Pathology. 45:443–452. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT, Utikal J, Goerdt S and Schneider SW: Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS One. 9:e894912014. View Article : Google Scholar : PubMed/NCBI

63 

Tan LY, Mintoff C, Johan MZ, Ebert BW, Fedele C, Zhang YF, Szeto P, Sheppard KE, McArthur GA, Foster-Smith E, et al: Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget. 7:46492–46508. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Klemke M, Weschenfelder T, Konstandin MH and Samstag Y: High affinity interaction of integrin a4pi (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol. 212:368–374. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Lacaria L, Lange JR, Goldmann WH, Rico F and Alonso JL: av|33 integrin expression increases elasticity in human melanoma cells. Biochem Biophys Res Commun. 525:836–840. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Bedogni B: Notch signaling in melanoma: Interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res. 27:162–168. 2014. View Article : Google Scholar

67 

Jobe NP, Rosel D, Dvorankova B, Kodet O, Lacina L, Mateu R, Smetana K and Brabek J: Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 146:205–217. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Jobe NP, Zivicova V, Mifkova A, Rosel D, Dvorankova B, Kodet O, Strnad H, Kolar M, Sedo A, Smetana K Jr, et al: Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem Cell Biol. 149:503–516. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Strnadova K, Sandera V, Dvorankova B, Kodet O, Duskova M, Smetana K and Lacina L: Skin aging: The dermal perspective. Clin Dermatol. 37:326–335. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Payne AS and Cornelius LA: The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol. 118:915–922. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Gebhardt C, Averbeck M, Viertel A, Kauer F, Saalbach A, Anderegg U and Simon JC: Ultraviolet-B irradiation enhances melanoma cell motility via induction of autocrine interleukin 8 secretion. Exp Dermatol. 16:636–643. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Araki K, Shimura T, Yajima T, Tsutsumi S, Suzuki H, Okada K, Kobayashi T, Raz A and Kuwano H: Phosphoglucose isomerase/autocrine motility factor promotes melanoma cell migration through ERK activation dependent on autocrine production of interleukin-8. J Biol Chem. 284:32305–32311. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Kemp DM, Pidich A, Larijani M, Jonas R, Lash E, Sato T, Terai M, De Pizzol M, Allegretti M, Igoucheva O, et al: Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment. Oncotarget. 8:14428–14442. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Brennecke S, Deichmann M, Naeher H and Kurzen H: Decline in angiogenic factors, such as interleukin-8, indicates response to chemotherapy of metastatic melanoma. Melanoma Res. 15:515–522. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Gabellini C, Trisciuoglio D, Desideri M, Candiloro A, Ragazzoni Y, Orlandi A, Zupi G and Del Bufalo D: Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer. 45:2618–2627. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Nürnberg W, Tobias D, Otto F, Henz BM and Schadendorf D: Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma. J Pathol. 189:546–551. 1999. View Article : Google Scholar

77 

Ortega-Bernal D, La Rosa CHG, Arechaga-Ocampo E, Alvarez-Avitia MA, Moreno NS and Rangel-Escareno C: A meta-analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett. 16:1899–1911. 2018.PubMed/NCBI

78 

Adamski V, Mentlein R, Lucius R, Synowitz M, Held-Feindt J and Hattermann K: The chemokine receptor CXCR6 evokes reverse signaling via the transmembrane chemokine CXCL16. Int J Mol Sci. 18:182017. View Article : Google Scholar

79 

da Silva WC, Oshiro TM, de Sa DC, Franco DDGS, Festa Neto C and Pontillo A: Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet. 209:474–480. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Lacina L, Brabek J, Kral V, Kodet O and Smetana K Jr: Interleukin-6: A molecule with complex biological impact in cancer. Histol Histopathol. 34:125–136. 2019.

81 

Armstrong CA, Murray N, Kennedy M, Koppula SV, Tara D and Ansel JC: Melanoma-derived interleukin 6 inhibits in vivo melanoma growth. J Invest Dermatol. 102:278–284. 1994. View Article : Google Scholar : PubMed/NCBI

82 

Lu C and Kerbel RS: Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J Cell Biol. 120:1281–1288. 1993. View Article : Google Scholar : PubMed/NCBI

83 

Elias EG, Hasskamp JH and Sharma BK: Cytokines and growth factors expressed by human cutaneous melanoma. Cancers (Basel). 2:794–808. 2010. View Article : Google Scholar

84 

Linnskog R, Jönsson G, Axelsson L, Prasad CP and Andersson T: Interleukin-6 drives melanoma cell motility through p38a-MAPK-dependent up-regulation of WNT5A expression. Mol Oncol. 8:1365–1378. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Karst AM, Gao K, Nelson CC and Li G: Nuclear factor kappa B subunit p50 promotes melanoma angiogenesis by upregulating interleukin-6 expression. Int J Cancer. 124:494–501. 2009. View Article : Google Scholar

86 

Nagai H, Oniki S, Fujiwara S, Xu M, Mizoguchi I, Yoshimoto T and Nishigori C: Antitumor activities of interleukin-27 on melanoma. Endocr Metab Immune Disord Drug Targets. 10:41–46. 2010. View Article : Google Scholar

87 

Shinozaki Y, Wang S, Miyazaki Y, Miyazaki K, Yamada H, Yoshikai Y, Hara H and Yoshida H: Tumor-specific cytotoxic T cell generation and dendritic cell function are differentially regulated by interleukin 27 during development of anti-tumor immunity. Int J Cancer. 124:1372–1378. 2009. View Article : Google Scholar

88 

Chiba Y, Mizoguchi I, Mitobe K, Higuchi K, Nagai H, Nishigori C, Mizuguchi J and Yoshimoto T: IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with a TLR3 agonist poly(I:C) partly in a TRAIL-dependent manner. PLoS One. 8:e761592013. View Article : Google Scholar : PubMed/NCBI

89 

Bisevac JP, Stanojevic I, Mijuskovic Z, Banovic T, Djukic M and Vojvodic D: High interleukin 27 production is associated with early clinical stage and localized disease in patients with melanoma. J Med Biochem. 35:443–450. 2016. View Article : Google Scholar

90 

Onoue K, Kusubashi H, Sato Y, Wakitani S and Takagi M: Quantitative correlation between production rate of melanoma inhibitory activity and aggrecan gene expression level during differentiation from mesenchymal stem cells to chondrocytes and redifferentiation of chondrocytes. J Biosci Bioeng. 111:594–596. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Decarlo K, Yang S, Emley A, Wajapeyee N, Green M and Mahalingam M: Oncogenic BRAF-positive dysplastic nevi and the tumor suppressor IGFBP7 - challenging the concept of dysplastic nevi as precursor lesions? Hum Pathol. 41:886–894. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T, Sonoda K, Kawarabayashi T, Mekada E and Miyamoto S: Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun. 365:555–561. 2008. View Article : Google Scholar

93 

Marchetti D and Nicolson GL: Neurotrophin stimulation of human melanoma cell invasion: Selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul. 37:111–134. 1997. View Article : Google Scholar : PubMed/NCBI

94 

Antunes LCM, Cartell A, de Farias CB, Bakos RM, Roesler R and Schwartsmann G: Tropomyosin-related kinase receptor and neurotrophin expression in cutaneous melanoma is associated with a poor prognosis and decreased survival. Oncology. 97:26–37. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Li JR, Wang JQ, Gong Q, Fang RH and Guo YL: MicroRNA-328 inhibits proliferation of human melanoma cells by targeting TGFp2. Asian Pac J Cancer Prev. 16:1575–1579. 2015. View Article : Google Scholar

96 

Hutchenreuther J, Vincent K, Norley C, Racanelli M, Gruber SB, Johnson TM, Fullen DR, Raskin L, Perbal B, Holdsworth DW, et al: Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma. Matrix Biol. 74:52–61. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Capparelli C, Rosenbaum S, Berger AC and Aplin AE: Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J Biol Chem. 290:24267–24277. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Ruivo CF, Adem B, Silva M and Melo SA: The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 77:6480–6488. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Hood JL: Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes. Med Hypotheses. 94:118–122. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, Qu J, McMasters KM and Hao H: Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 376:318–327. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS and Robertson GP: The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev. 85:1019752020. View Article : Google Scholar : PubMed/NCBI

103 

Gajos-Michniewicz A and Czyz M: Role of mirnas in melanoma metastasis. Cancers (Basel). 11:112019. View Article : Google Scholar

104 

Clayton A, Mitchell JP, Court J, Mason MD and Tabi Z: Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67:7458–7466. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Gerloff D, Lützkendorf J, Moritz RKC, Wersig T, Mader K, Müller LP and Sunderkotter C: Melanoma-derived exosomal mir-125b-5p educates tumor associated macrophages (TAMs) by targeting lysosomal acid lipase A (LIPA). Cancers (Basel). 12:122020. View Article : Google Scholar

106 

Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Gershenwald JE and Scolyer RA: Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Ann Surg Oncol. 25:2105–2110. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R and Keilholz U; ESMO Guidelines Committee: Electronic address: simpleclinicalguidelines@esmo.org: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30:1884–1901. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Riechers A and Bosserhoff AK: Melanoma inhibitory activity in melanoma diagnostics and therapy - a small protein is looming large. Exp Dermatol. 23:12–14. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Forgber M, Trefzer U, Sterry W and Walden P: Proteome serological determination of tumor-associated antigens in melanoma. PLoS One. 4:e51992009. View Article : Google Scholar : PubMed/NCBI

111 

Muqaku B, Eisinger M, Meier SM, Tahir A, Pukrop T, Haferkamp S, Slany A, Reichle A and Gerner C: Multi-omics analysis of serum samples demonstrates reprogramming of organ functions via systemic calcium mobilization and platelet activation in metastatic melanoma. Mol Cell Proteomics. 16:86–99. 2017. View Article : Google Scholar :

112 

Weber JS, Sznol M, Sullivan RJ, Blackmon S, Boland G, Kluger HM, Halaban R, Bacchiocchi A, Ascierto PA, Capone M, et al: A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma. Cancer Immunol Res. 6:79–86. 2018. View Article : Google Scholar

113 

Hoejberg L, Bastholt L, Johansen JS, Christensen IJ, Gehl J and Schmidt H: Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res. 22:287–293. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Correa D, Somoza RA, Lin P, Schiemann WP and Caplan AI: Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 138:417–427. 2016. View Article : Google Scholar :

115 

Gandalovicova A, Rosel D, Fernandes M, Vesely P, Heneberg P, Cermak V, Petruzelka L, Kumar S, Sanz-Moreno V and Brabek J: Migrastatics-anti-metastatic and anti-invasion Drugs: Promises and challenges. Trends Cancer. 3:391–406. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Herman H, Fazakas C, Hasko J, Molnar K, Mészaros A, Nyul-Toth A, Szabo G, Erdélyi F, Ardelean A, Hermenean A, et al: Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. J Cell Mol Med. 23:2619–2631. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Kucera R, Topolcan O, Treskova I, Kinkorova J, Windrichova J, Fuchsova R, Svobodova S, Treska V, Babuska V, Novak J, et al: Evaluation of IL-2, IL-6, IL-8 and IL-10 in malignant melanoma diagnostics. Anticancer Res. 35:3537–3541. 2015.PubMed/NCBI

118 

Sanmamed MF, Carranza-Rua O, Alfaro C, Onate C, Martin-Algarra S, Perez G, Landazuri SF, Gonzalez A, Gross S, Rodriguez I, et al: Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res. 20:5697–5707. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Kucera J, Strnadova K, Dvorankova B, Lacina L, Krajsova I, Stork J, Kovarova H, Skalmkova HK, Vodicka P, Motlik J, et al: Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol Rep. 42:1793–1804. 2019.PubMed/NCBI

120 

Pelletier F, Bermont L, Puzenat E, Blanc D, Cairey-Remonnay S, Mougin C, Laurent R, Humbert P and Aubin F: Circulating vascular endothelial growth factor in cutaneous malignant melanoma. Br J Dermatol. 152:685–689. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Ugurel S, Rappl G, Tilgen W and Reinhold U: Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 19:577–583. 2001. View Article : Google Scholar : PubMed/NCBI

122 

Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U and Orfanos CE: Elevated plasma levels of transforming growth factor (TGF)-pi and TGF-|32 in patients with disseminated malignant melanoma. Br J Cancer. 77:1492–1494. 1998. View Article : Google Scholar : PubMed/NCBI

123 

Tuccitto A, Tazzari M, Beretta V, Rini F, Miranda C, Greco A, Santinami M, Patuzzo R, Vergani B, Villa A, et al: Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells. 34:2449–2460. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Tung KH, Ernstoff MS, Allen C and Shu S: A Review of exosomes and their role in the tumor microenvironment and host-tumor 'macroenvironment'. J Immunol Sci. 3:4–8. 2019. View Article : Google Scholar :

125 

Shu S, Yang Y, Allen CL, Maguire O, Minderman H, Sen A, Ciesielski MJ, Collins KA, Bush PJ, Singh P, et al: Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci Rep. 8:129052018. View Article : Google Scholar : PubMed/NCBI

126 

Kodet O, Dvorankova B, Bendlova B, Sykorova V, Krajsova I, Stork J, Kucera J, Szabo P, Strnad H, Kolar M, et al: Microenvironment driven resistance to B Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int J Mol Med. 41:2687–2703. 2018.PubMed/NCBI

127 

Jouve N, Bachelier R, Despoix N, Blin MG, Matinzadeh MK, Poitevin S, Aurrand-Lions M, Fallague K, Bardin N, Blot-Chabaud M, et al: CD146 mediates vEGF-induced melanoma cell extravasation through FAK activation. Int J Cancer. 137:50–60. 2015. View Article : Google Scholar

128 

Hamilla SM, Stroka KM and Aranda-Espinoza H: VE-cadherin-independent cancer cell incorporation into the vascular endothelium precedes transmigration. PLoS One. 9:e1097482014. View Article : Google Scholar : PubMed/NCBI

129 

Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, Lee EH, Ye SK and Cho CH: STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene. 36:5445–5459. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Borgenström M, Wärri A, Hiilesvuo K, Käkönen R, Käkönen S, Nissinen L, Pihlavisto M, Marjamäki A, Vlodavsky I, Naggi A, et al: O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis. Semin Thromb Hemost. 33:547–556. 2007. View Article : Google Scholar : PubMed/NCBI

131 

Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, Gude RP, Mukhopadhyaya R and Kalraiya RD: Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis. 31:661–673. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Desch A, Strozyk EA, Bauer AT, Huck V, Niemeyer V, Wieland T and Schneider SW: Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. Am J Pathol. 181:693–705. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y and Oshiumi H: Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 78:5011–5022. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Coats AJS, et al: Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J Cachexia Sarcopenia Muscle. 10:22–34. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Loumaye A and Thissen JP: Biomarkers of cancer cachexia. Clin Biochem. 50:1281–1288. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Weidle UH, Klostermann S, Eggle D and Krüger A: Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics. 7:287–302. 2010.PubMed/NCBI

137 

Zimmers TA, Fishel ML and Bonetto A: STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 54:28–41. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Cehreli R, Yavuzsen T, Ates H, Akman T, Ellidokuz H and Oztop I: Can inflammatory and nutritional serum markers predict chemotherapy outcomes and survival in advanced stage nonsmall cell lung cancer patients? BioMed Res Int. 2019:16480722019. View Article : Google Scholar : PubMed/NCBI

139 

Johannes CM and Musser ML: Anorexia and the cancer patient. Vet Clin North Am Small Anim Pract. 49:837–854. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Pisetsky DS, Trace SE, Brownley KA, Hamer RM, Zucker NL, Roux-Lombard P, Dayer JM and Bulik CM: The expression of cytokines and chemokines in the blood of patients with severe weight loss from anorexia nervosa: An exploratory study. Cytokine. 69:110–115. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Rochfort KD and Cummins PM: The blood-brain barrier endothelium. A target for pro-inflammatory cytokines. Biochem Soc Trans. 43:702–706. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS and van Norren K: Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 17:262016. View Article : Google Scholar : PubMed/NCBI

143 

Liu WJ, Wang XD, Wu W and Huang X: Relationship between depression and blood cytokine levels in lung cancer patients. Med Sci (Paris). 34(Focus issue F1): 113–115. 2018. View Article : Google Scholar

144 

Lu YR, Rao YB, Mou YJ, Chen Y, Lou HF, Zhang Y, Zhang DX, Xie HY, Hu LW and Fang P: High concentrations of serum interleukin-6 and interleukin-8 in patients with bipolar disorder. Medicine (Baltimore). 98:e144192019. View Article : Google Scholar

145 

Ju RJ, Stehbens SJ and Haass NK: The role of melanoma cell-stroma interaction in cell motility, invasion, and metastasis. Front Med (Lausanne). 5:3072018. View Article : Google Scholar

146 

Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Donnelly D III, Aung PP and Jour G: The '-OMICS' facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol. 59:165–174. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L and Smetana K: Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 57: 619-630, 2020.
APA
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., & Smetana, K. (2020). Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). International Journal of Oncology, 57, 619-630. https://doi.org/10.3892/ijo.2020.5090
MLA
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., Smetana, K."Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)". International Journal of Oncology 57.3 (2020): 619-630.
Chicago
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., Smetana, K."Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)". International Journal of Oncology 57, no. 3 (2020): 619-630. https://doi.org/10.3892/ijo.2020.5090
Copy and paste a formatted citation
x
Spandidos Publications style
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L and Smetana K: Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 57: 619-630, 2020.
APA
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., & Smetana, K. (2020). Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). International Journal of Oncology, 57, 619-630. https://doi.org/10.3892/ijo.2020.5090
MLA
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., Smetana, K."Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)". International Journal of Oncology 57.3 (2020): 619-630.
Chicago
Kodet, O., Kučera, J., Strnadová, K., Dvořánková, B., Štork, J., Lacina, L., Smetana, K."Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)". International Journal of Oncology 57, no. 3 (2020): 619-630. https://doi.org/10.3892/ijo.2020.5090
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team