|
1
|
Siegel RL, Miller KD, Goding Sauer A,
Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal
A: Colorectal cancer statistics, 2020. CA Cancer J Clin.
70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Keum N and Giovannucci E: Global burden of
colorectal cancer: Emerging trends, risk factors and prevention
strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Helmink BA, Khan MAW, Hermann A,
Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer
therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dahmus JD, Kotler DL, Kastenberg DM and
Kistler CA: The gut microbiome and colorectal cancer: A review of
bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gagnière J, Raisch J, Veziant J, Barnich
N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut
microbiota imbalance and colorectal cancer. World J Gastroenterol.
22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini
V, Mardis ER and Gordon JI: An obesity-associated gut microbiome
with increased capacity for energy harvest. Nature. 444:1027–1031.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chung H, Pamp SJ, Hill JA, Surana NK,
Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR,
et al: Gut immune maturation depends on colonization with a
host-specific microbiota. Cell. 149:1578–1593. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
John GK and Mullin GE: The gut microbiome
and obesity. Corr Oncol Rep. 18:452016. View Article : Google Scholar
|
|
9
|
Dabke K, Hendrick G and Devkota S: The gut
microbiome and metabolic syndrome. J Clin Invest. 129:4050–4057.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu H, Liu M, Cao J, Li X, Fan D, Xia Y, Lu
X, Li J, Ju D and Zhao H: The dynamic interplay between the gut
microbiota and autoimmune diseases. J Immunol Res.
2019:75460472019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kostic AD, Chun E, Robertson L, Glickman
JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold
GL, et al: Fusobacterium nucleatum potentiates intestinal
tumorigenesis and modulates the tumor-immune microenvironment. Cell
Host Microbe. 14:207–215. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ternes D, Karta J, Tsenkova M, Wilmes P,
Haan S and Letellier E: Microbiome in colorectal cancer: How to get
from Meta-omics to Mechanism. Trends Microbiol. 28:401–423. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Schwabe RF and Jobin C: The microbiome and
cancer. Nat Rev Cancer. 13:800–812. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Costello EK, Lauber CL, Hamady M, Fierer
N, Gordon JI and Knight R: Bacterial community variation in human
body habitats across space and time. Science. 326:1694–1697. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wu GD, Chen J, Hoffmann C, Bittinger K,
Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R,
et al: Linking long-term dietary patterns with gut microbial
enterotypes. Science. 334:105–108. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bhat MI and Kapila R: Dietary metabolites
derived from gut microbiota: Critical modulators of epigenetic
changes in mammals. Nutr Rev. 75:374–389. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wong SH, Kwong TNY, Chow TC, Luk AKC, Dai
RZW, Nakatsu G, Lam TYT, Zhang L, Wu JCY, Chan FKL, et al:
Quantitation of faecal Fusobacterium improves faecal immunochemical
test in detecting advanced colorectal neoplasia. Gut. 66:1441–1448.
2017. View Article : Google Scholar :
|
|
18
|
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong
SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota
dysbiosis and ecological alterations in colorectal cancer. Gut.
68:654–662. 2019. View Article : Google Scholar :
|
|
19
|
Ley RE, Peterson DA and Gordon JI:
Ecological and evolutionary forces shaping microbial diversity in
the human intestine. Cell. 124:837–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tlaskalová-Hogenová H, Stepánková R,
Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková
H, Rossmann P, Bártová J, Sokol D, et al: Commensal bacteria
(normal microflora), mucosal immunity and chronic inflammatory and
autoimmune diseases. Immunol Lett. 93:97–108. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang
X, Jia W, Cai S and Zhao L: Structural segregation of gut
microbiota between colorectal cancer patients and healthy
volunteers. ISME J. 6:320–329. 2012. View Article : Google Scholar :
|
|
22
|
Zackular JP, Rogers MA, Ruffin MT IV and
Schloss PD: The human gut microbiome as a screening tool for
colorectal cancer. Cancer Prev Res (Phila). 7:1112–1121. 2014.
View Article : Google Scholar
|
|
23
|
Yu YN and Fang JY: Gut microbiota and
colorectal cancer. Gastrointest Tumors. 2:26–32. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wong SH and Yu J: Gut microbiota in
colorectal cancer: Mechanisms of action and clinical applications.
Nat Rev Gastroenterol Hepatol. 16:690–704. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sobhani I, Tap J, Roudot-Thoraval F,
Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and
Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients.
PLoS One. 6:e163932011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sears CL: Enterotoxigenic bacteroides
fragilis: A rogue among symbiotes. Clin Micobiol Rev. 22:349–369.
2009. View Article : Google Scholar
|
|
27
|
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J,
Shi J, Goedert JJ, Hayes RB and Yang L: Human gut microbiome and
risk for colorectal cancer. J Natl Cancer Inst. 105:1907–1911.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y,
Chen Y, Yang F, Lu N, Wang Z, et al: Dysbiosis signature of fecal
microbiota in colorectal cancer patients. Microb Ecol. 66:462–470.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bonnet M, Buc E, Sauvanet P, Darcha C,
Dubois D, Pereira B, Déchelotte P, Bonnet R, Pezet D and
Darfeuille-Michaud A: Colonization of the human gut by E coli and
colorectal cancer risk. Clin Cancer Res. 20:859–867. 2014.
View Article : Google Scholar
|
|
30
|
Buc E, Dubois D, Sauvanet P, Raisch J,
Delmas J, Darfeuille-Michaud A, Pezet D and Bonnet R: High
prevalence of mucosa-associated E coli producing cyclomudulin and
genotoxin in colon cancer. PLoS One. 8:e569642013. View Article : Google Scholar
|
|
31
|
Zhang H, Chang Y, Zheng Q, Zhang R, Hu C
and Jia W: Altered intestinal microbiota associated with colorectal
cancer. Front Med. 13:461–470. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Marchesi JR, Dutilh BE, Hall N, Peters
WHM, Roelofs R, Boleji A and Tjalsma H: Towards the human
colorectal cancer microbiome. PLoS One. 6:e204472011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zou S, Fang L and Lee MH: Dysbiosis of Gut
microbiota in promoting the development of colorectal cancer.
Gastroenterol Rep (Oxf). 6:1–12. 2018. View Article : Google Scholar
|
|
34
|
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G
and Han YW: Fusobacterium nucleatum promotes colorectal
carcinogenesis by modulating E-cadherin/β-catenin signaling via its
FadA adhesin. Cell Host Microbe. 14:195–206. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gur C, Ibrahim Y, Isaacson B, Yamin R,
Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N,
Coppenhagen-Glazer S, et al: Binding of the Fap2 protein of
Fusobacterium nucleatum to human inhibitory receptor TIGIT protects
tumors from immune cell attack. Immunity. 42:344–355. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Abed J, Emgard JE, Zamir G, Faroja M,
Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al:
Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma
enrichment by binding to tumor-expressed gal-GalNAc. Cell Host
Microbe. 20:215–225. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ma CT, Luo HS, Gao F, Tang QC and Chen W:
Fusobacterium nucleatum promotes the progression of colorectal
cancer by interacting with E-cadherin. Oncol Lett. 16:2606–2612.
2018.PubMed/NCBI
|
|
38
|
Kourtidis A, Lu R, Pence LJ and
Anastasiadis PZ: A central role for cadherin signaling in cancer.
Exp Cell Res. 358:78–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim WK, Kwon Y, Jang M, Park M, Kim J, Cho
S, Jang DG, Lee WB, Jung SH, Choi HJ, et al: β-catenin activation
down-regulates cell-cell junction-related genes and induces
epithelial-to-mesenchymal transition in colorectal cancer. Sci Re.
9:184402019.
|
|
40
|
Yu MR, Kim HJ and Park HRF: Fusobacterium
nucleatum accelerates the progression of colitis-associated
colorectal cancer by promoting EMT. Cancers (Basel). 12:27282020.
View Article : Google Scholar
|
|
41
|
Guo P, Tian Z, Kong X, Yang L, Shan X,
Dong B, Ding X, Jing X, Jiang C, Jiang N and Yu Y: FadA promotes
DNA damage and progression of Fusobacterium nucleatum-induced
colorectal cancer through up-regulation of chk2. J Exp Clin Cancer
Res. 39:2022020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Okita Y, Koi M, Takeda K, Ross R,
Mukherjee B, Koeppe E, Stoffel EM, Galanko JA, McCoy AN, Keku TO,
et al: Fusobacterium nucleatum infection correlates with two types
of microsatellite alterations in colorectal cancer and triggers DNA
damage. Gut Pathol. 12:462020. View Article : Google Scholar
|
|
43
|
Sayed IM, Chakraborty A, Abd El-Hafeez AA,
Sharma A, Sahan AZ, Huang WJM, Sahoo D, Ghosh P, Hazra TK and Das
S: The DNA Glycosylase NEIL2 suppresses
Fusobacterium-infection-induced inflammation and DNA damage in
colonic epithelial cells. Cells. 9:19802020. View Article : Google Scholar :
|
|
44
|
Guo S, Chen J, Chen F, Zeng Q, Liu WL and
Zhang G: Exosomes derived from Fusobacterium nucleatum-infected
colorectal cancer cells facilitate tumour metastasis by selectively
carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. Nov 10–2020.Epub
ahead of print. View Article : Google Scholar
|
|
45
|
Lin R, Han C, Ding Z, Shi H, He R, Liu J,
Qian W, Zhang Q, Fu X, Deng X, et al: Knock down of BMSC-derived
Wnt3a or its antagonist analogs attenuate colorectal carcinogenesis
induced by chronic Fusobacterium nucleatum infection. Cancer Lett.
495:165–179. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Q, Yu C, Yue C and Liu X and Liu X:
Fusobacterium nucleatum produces cancer stem cell characteristics
via EMT-resembling variations. Int J Clin Exp Pathol. 13:1819–1828.
2020.PubMed/NCBI
|
|
47
|
Wu S, Rhee KJ, Zhang M, Franco A and Sears
CL: Bacteroides fragilis toxin stimulates intestinal epithelial
cell shedding and gamma-secretase dependent E-cadherin cleavage. J
Cell Sci. 120:1944–1952. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tian X, Liu Z, Niu B, Zhang J, Lee SR,
Zhao Y, Harris DC and Zheng G: E-cadherin/beta-catenin complex and
the epithelial barrier. J Biomed Biotechnol. 2011:5673052011.
View Article : Google Scholar
|
|
49
|
Sears CL, Geis AL and Housseau F:
Bacteroides fragilis subverts mucosal biology: From symbiont to
colon carcinogenesis. J Clin Invest. 124:4166–4172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nistal E, Fernández-Fernández N, Vivas S
and Olcoz JL: Factors determining colorectal cancer: The role of
the intestinal microbiota. Front Oncol. 5:2202015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zamani S, Taslimi R, Sarabi A, Jasemi S,
Sechi LA and Feizabadi MM: Enterotoxigenic Bacteroides fragilis: A
possible etiological candidate for bacterially-induced colorectal
precancerous and cancerous lesions. Frontier Cell Infect Microbiol.
9:4492020. View Article : Google Scholar
|
|
52
|
Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang
YQ, Sun DF, Gao QY, Chen YX and Fang JY: Enterotoxigenic
Bacteroides fragilis induces the stemness in colorectal cancer via
upregulating histone demethylase JMJD2B. Gut Microbes.
12:17889002020. View Article : Google Scholar :
|
|
53
|
Hwang S, Lee CG, Jo M, Park CO, Gwon SY,
Hwang S, Yi HC, Lee SY, Eom YB, Karim B and Rhee KJ:
Enterotoxigenic Bacteroides fragilis infection exacerbates
tumorigenesis in AOM/DSS mouse model. Int J Med Sci. 17:145–152.
2020. View Article : Google Scholar :
|
|
54
|
Roberti MP, Yonekura S, Duong CPM, Picard
M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon
L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal
microbiome shape immunosurveillance and prognosis of proximal colon
cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen
Z, Sun D, Zhong M, Chen H, Hong J, et al: Long noncoding RNA BFAL1
mediates enterotoxigenic Bacteroides fragilis-related
carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell
Death Dis. 10:6752019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Arthur JC, Perez-Chanona E, Muhlbauer M,
Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B,
Rogers AB, et al: Intestinal inflammation targets cancer-inducing
activity of the microbiota. Science. 338:120–123. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tjalsma H, Boleij A, Marchesi JR and
Dutilh BE: A bacterial driver-passenger model for colorectal
cancer: Beyond the usual suspects. Nat Rev Microbiol. 10:575–582.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Swidsinski A, Khilkin M, Kerjaschki D,
Schreiber S, Ortner M, Weber J and Lochs H: Association between
intraepithelial Escherichia coli and colorectal cancer.
Gastroenterology. 115:281–286. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Martin HM, Campbell BJ, Hart CA, Mpofu C,
Nayar M, Singh R, Englyst H, Williams HF and Rhodes JM: Enhanced
Escherichia coli adherence and invasion in Crohn's disease and
colon cancer. Gastroenterology. 127:80–93. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Darfeuille-Michaud A, Neut C, Barnich N,
Lederman E and Di Martino P: Presence of adherent Escherichia coli
strains in ileal mucosa of patients with Crohn's disease.
Gastroenterology. 115:1405–1413. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Darfeuille-Michaud A, Boudeau J, Bulois P,
Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie
L and Colombel JF: High prevalence of adherent-invasive Escherichia
coli associated with ileal mucosa in Crohn's disease.
Gastroenterology. 127:412–421. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lax AJ: Opinion: Bacterial toxins and
cancer-a case to answer? Nat Rev Microbiol. 3:343–349. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Thelestam M and Frisan T: Cytolethal
distending toxins. Rev Physiol Biochem Pharmacol. 152:111–133.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Falzano L, Filippini P, Travaglione S,
Miraglia AG, Fabbri A and Fiorentini C: Escherichia coli cytotoxic
necrotizing factor 1 blocks cell cycle G2/M transition in
uroepithelial cells. Infect Immun. 74:3765–3772. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Malorni W and Fiorentini C: Is the Rac
GTPase-activating toxin CNF1 a smart hijacker of host cell fate?
FASEB J. 20:606–609. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jubelin G, Chavez CV, Taieb F, Banfield
MJ, Samba-Louaka A, Nobe R, Nougayrède JP, Zumbihl R, Givaudan A,
Escoubas JM and Oswald E: Cycle inhibiting factors (CIFs) are a
growing family of functional cyclomodulins present in invertebrate
and mammal bacterial pathogens. PLoS One. 4:e48552009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nougayrede JP, Homburg S, Taieb F, Boury
M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt
U and Oswald E: Escherichia coli induces DNA double-strand breaks
in eukaryotic cells. Science. 313:848–851. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cuevas-Ramosa G, Petita CR, Marcqa I,
Bourya M, Oswalda E and Nougayrède JP: Escherichia coli induces DNA
damage in vivo and triggers genomic instability in mammalian cells.
Proc Natl Acad Sci USA. 107:11357–11542. 2010.
|
|
69
|
Kwong TNY, Wang X, Nakatsu G, Chow TC,
Tipoe T, Dai RZW, Tsoi KKK, Wong MCS, Tse G, Chan MTV, et al:
Association between bactereia from specific microbes and subsequent
diagnosis of colorectal cancer. Gastroenterology. 155:383–390.e8.
2018. View Article : Google Scholar
|
|
70
|
Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu
G, Ng SC, Chan AWH, Chan FKL, Sung JJY and Yu J: Peptostreptococcus
anaerobius induces intracellular cholesterol biosynthesis in colon
cells to induce proliferation and causes dysplasia in mice.
Gastroenterology. 152:1419–1433.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Purcell RV, Visnovska M, Biggs PJ,
Schmeier S and Frizelle FA: Distinct gut microbiome patterns
associate with consensus molecular subtypes of colorectal cancer.
Sci Rep. 7:115902017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Long X, Wong CC, Tong L, Chu ESH, Ho Szeto
C, Go MYY, Coker OO, Chan AWH, Chan FKL, Sung JJY and Yu J:
Peptostreptococcus anaerobius promotes colorectal carcinogenesis
and modulates tumour immunity. Nat Microbiol. 4:2319–2330. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kumar R, Herold JL, Schady D, Davis J,
Kopetz S, Martinez-Moczygemba M, Murray BE, Han F, Li Y, Callaway
E, et al: Streptococcus gallolyticus Subsp gallolyticus promotes
colorectal tumor development. PLoS Pathog. 13:e10064402017.
View Article : Google Scholar
|
|
74
|
Aymeric L, Donnadieu F, Mulet C, du Merle
L, Nigro G, Saffarian A, Bérard M, Poyart C, Robine S, Regnault B,
et al: Colorect a l ca ncer sp eci f ic cond itions promote
Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci
USA. 115:E283–E291. 2018. View Article : Google Scholar
|
|
75
|
Konstantinov SR, Kuipers EJ and
Peppelenbosch MP: Functional genomic analysis of Gut microbiota for
CRC screening. Nat Rev Gastroenterol Hepatol. 10:741–745. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gamallat Y, Meyiah A, Kuugbee ED, Hago AM,
Chiwala G, Awadasseid A, Bamba D, Zhang X, Shang X, Luo F and Xin
Y: Lactobacillus rhamnosus induced epithelial cell apoptosis,
ameliorates inflammation and prevents colon cancer development in
an animal model. Biomed Pharmacother. 83:536–541. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wallace BD, Wang H, Lane KT, Scott JE,
Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S and Redinbo
MR: Alleviating cancer drug toxicity by inhibiting a bacterial
enzyme. Science. 330:831–835. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Marchesan J, Jiao YZ, Schaff RA, Hao J,
Morelli T, Kinney JS, Gerow E, Sheridan R, Rodrigues V, Paster BJ,
et al: TLR4, NOD1 and NOD2 mediate immune recognition of putative
newly identified periodontal pathogens. Mol Oral Microbiol.
31:243–258. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu J, Yang M, Wang D, Zhang S, Yan S, Zhu
Y and Chen W: Alteration of the abundance of Parvimonas micra in
the gut along the adenoma-carcinoma sequence. Oncol Lett.
20:1062020. View Article : Google Scholar :
|
|
80
|
Allali I, Boukhatem N, Bouguenouch L,
Hardi H, Boudouaya HA, Cadenas MB, Ouldim K, Amzazi S,
Azcarate-Peril MA and Ghazal H: Gut microbiome of Moroccan
colorectal cancer patients. Med Microbiol Immunol (Berl).
207:211–225. 2018. View Article : Google Scholar
|
|
81
|
Yang Y, Cai Q, Shu XO, Steinwandel MD,
Blot WJ, Zheng W and Long J: Prospective study of oral microbiome
and colorectal cancer risk in low-income and African American
populations. Int J Cancer. 144:2381–2389. 2019. View Article : Google Scholar :
|
|
82
|
Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao
L, Chen Z, Chan FKL, Kristiansen K, Sung JJY, Wong SH and Yu J:
Multi-cohort analysis of colorectal cancer metagenome identified
altered bacteria across populations and universal bacterial
markers. Microbiome. 6:702018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sobrinho AR: Cytokine production in
response to endodontic infection in germ-free mice. Oral Microbiol
Immunol. 17:344–353. 2002. View Article : Google Scholar
|
|
84
|
Lomholt JA and Kilian M: Immunoglobulin A1
protease activity in Gemella haemolysans. J Clin Microbiol.
38:2760–2762. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Montalban-Arques A and Scharl M:
Intestinal microbiota and colorectal carcinoma: Implications for
pathogenesis, diagnosis, and therapy. EBioMedicine. 48:648–655.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Allen J and Sears CL: Impact of the gut
microbiome on the genome and epigenome of colon epithelial cells:
Contributions to colorectal cancer development. Genome Med.
11:112019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xia X, Wu WKK, Wong SH, Liu D, Kwong TNY,
Nakatsu G, Yan PS, Chuang YM, Chan MW, Coker OO, et al: Bacteria
pathogens drive host colonic epithelial cell promoter
hypermethylation of tumor suppressor genes in colorectal cancer.
Microbiome. 8:1082020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sobhani I, Rotkopf H and Khazaie K:
Bacteria-related changes in host DNA methylation and risk for CRC.
Gut Microbes. 12:e18008982020. View Article : Google Scholar
|
|
89
|
Gagnière J, Bonnin V, Jarrousse AS,
Cardamone E, Agus A, Uhrhammer N, Sauvanet P, Déchelotte P, Barnich
N, Bonnet R, et al: Interactions between microsatellite instability
and human gut colonization by Escherichia coli in colorectal
cancer. Clin Sci (Lond). 131:471–485. 2017. View Article : Google Scholar
|
|
90
|
Foran E, Garrity-Park MM, Mureau C, Newell
J, Smyrk TC, Limburg PJ and Egan LJ: Upregulation of DNA
methyltransferase-mediated gene silencing, anchorage-independent
growth, and migration of colon cancer cells by interleukin-6. Mol
Cancer Res. 8:471–481. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li Y, Deuring J, Peppelenbosch MP, Kuipers
EJ, de Haar C and van der Woude CJ: IL-6-induced DNMT1 activity
mediates SOCS3 promoter hypermethylation in ulcerative
colitis-related colorectal cancer. Carcinogenesis. 3:1889–1896.
2012. View Article : Google Scholar
|
|
92
|
Hartnett L and Egan LJ: Inflammation, DNA
methylation and colitis-associated cancer. Carcinogenesis.
33:723–731. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hashemi Goradel N, Heidarzadeh S,
Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N and Neghadari
B: Fusobacterium nucleatum and colorectal cancer: A mechanistic
overview. J Cell Physiol. 234:2337–2344. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J,
Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium
nucleatum promotes chemoresistance to colorectal cancer by
modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tarallo S, Ferrero G, Gallo G, Francavilla
A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata
N, et al: Altered fecal small RNA profiles in colorectal cancer
reflected gut microbiome composition in stool samples. mSystems.
4:200289–19. 2019. View Article : Google Scholar
|
|
96
|
Yuan C, Steer CJ and Subramanian S:
Host-microRNA-Microbiota interaction in colorectal cancer. Genes
(Basel). 10:2702019. View Article : Google Scholar
|
|
97
|
Kang M and Martin A: Microbiome and
colorectal cancer: Unraveling host-microbiota interactions in
colitis-associated colorectal cancer development. Semin Immunol.
13:3–13. 2017. View Article : Google Scholar
|
|
98
|
Cooks T, Pateras IS, Tarcic O, Solomon H,
Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rosenfeld
N, et al: Mutant p53 prolongs NF-κB activation and promotes chronic
inflammation and inflammation-associated colorectal cancer. Cancer
Cell. 23:634–646. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lasry A, Zinger A and Ben-Neriah Y:
Inflammatory networks underlying colorectal cancer. Nat Immunol.
17:230–240. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ruskov H, Burcharth J and Pommergaard HC:
Linking gut microbiota to colorectal cancer. J Cancer. 8:3378–3395.
2017. View Article : Google Scholar
|
|
101
|
Grivennikov SI: Inflammation and
colorectal cancer: Colitisassociated neoplasia. Semin Immunopathol.
35:229–244. 2013. View Article : Google Scholar
|
|
102
|
Coussens LM and Pollard JW: Leukocytes in
mammary development and cancer. Cold Spring Harb Perspect Biol.
3:a0032852011. View Article : Google Scholar
|
|
103
|
Chen T, Li Q, Wu J, Wu Y, Peng W, Li H,
Wang J, Tang X, Peng Y and Fu X: Fusobacterium nucleatum promotes
M2 polarization of macrophages in the microenvironment of
colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol
Immunother. 67:1635–1646. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Drewes JL, Housseau F and Sears CL:
Sporadic colorectal cancer: Microbial contributors to disease
prevention, development and therapy. Br J Cancer. 115:273–280.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dejea CM, Wick EC, Hechenbleikner EM,
White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC,
Borisy GG, Lazarev M, et al: Microbiota organization is a distinct
feature of proximal colorectal cancers. Proc Natl Acad Sci USA.
111:18321–18326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Villéger R, Lopès A, Veziant J, Gagnière
J, Barnich N, Billard E, Boucher D and Bonnet M: Microbial markers
in colorectal cancer detection and/or prognosis. World J
Gastroenterol. 24:2327–2347. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kostic AD, Gevers D, Pedamallu CS, Michaud
M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et
al: Genomic analysis identifies association of Fusobacterium with
colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar :
|
|
108
|
Yu J, Feng Q, Wong SH, Zhang D, Liang QY,
Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al: Metagenomic
analysis of faecal microbiome as a tool towards targeted
non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. 2017.
View Article : Google Scholar
|
|
109
|
Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y,
Li J, Zhang D and Zhou Y: Could gut microbiota serve as prognostic
biomarker associated with colorectal cancer patients' survival? A
pilot study on relevant mechanism. Oncotarget. 7:46158–46170. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wu Y, Ziao N, Zhu R, Zhang Y, Wu D, Wang
AJ, Fang S, Tao L, Li Y, Cheng S, et al: Identification of
microbial markers across populations in early detection of
colorectal cancer. bioRixv. https://doi.org/10.1101/2020.08.16.253344.
|
|
111
|
Liu S, da Cunha AP, Rezende RM, Cialic R,
Wei Z, Bry L, Comstock LE, Gandhi R and Weiner HL: The host shapes
the gut Microbiota via fecal MicroRNA. Cell Host Microbe. 19:32–43.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yuan C, Burns MB, Subramanian S and
Blekhman R: Interaction between Host MicroRNAs and the Gut
Microbiota in Colorectal Cancer. mSystems. 3:e00205–17. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Sarshar M, Scribano D, Ambrosi C, Palamara
AT and Masotti A: Fecal microRNAs as innovative biomarkers of
intestinal diseases and effective players in Host-Microbiome
interactions. Cancers (Basel). 12:21742020. View Article : Google Scholar
|
|
114
|
Yang T, Owen JL, Lightfoot YL, Kladde MP
and Mohamadzadeh M: Microbiota impact on the epigenetic regulation
of colorectal cancer. Trends Mol Med. 19:714–725. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Li M, Chen WD and Wang YD: The roles of
the gut microbiotamiRNA interaction in the host pathophysiology.
Mol Med. 26:1012020. View Article : Google Scholar
|
|
116
|
Geller LT, Barzily-Rokni M, Danino T,
Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee
K, et al: Potential role of intratumor bacteria in mediating tumor
resistance to the chemotherapeutic drug gemcitabine. Science.
357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Serna G, Ruiz-Pace F, Hernando J, Alonso
L, Fasani R, Landolfi S, Comas R, Jimenez J, Elez E, Bullman S, et
al: Fusobacterium nucleatum persistance and risk of recurrence
after preoperative treatment in locally advanced rectal cancer. Ann
Oncol. 31:1366–1375. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Iida N, Dzutsev A, Stewart CA, Smith L,
Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S,
et al: Commensal bacteria control cancer response to therapy by
modulating the tumor microenvironment. Science. 342:967–970. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Viaud S, Saccheri F, Mignot G, Yamazaki T,
Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ,
et al: The intestinal microbiota modulates the anticancer immune
effects of cyclophosphamide. Science. 342:971–976. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xu X and Zhang X: Effects of
cyclophosphamide on immune system and gut microbiota in mice.
Microbiol Res. 171:97–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sivan A, Corrales L, Hubert N, Williams
JB, Aquino-Michaels K, Earley JM, Benyamin FW, Lei YM, Jabri B,
Alegre ML, et al: Commensal Bifidobacterium promotes antitumor
activity and facilitates anti-PD-L1 efficacy. Science.
350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Uribe-Herranz M, Bittinger K, Rafail S,
Guedan S, Pierini S, Tanes C, Ganetsky A, Morgan MA, Gill S, Tanyi
JL, et al: Gut microbiota modulates adoptive cell therapy via CD8α
dendritic cells and IL-12. JCI Insight. 3:e949522018. View Article : Google Scholar
|
|
124
|
Hold GL: Gastrointestinal microbiota and
colon cancer. Dig Dis. 34:244–250. 2016. View Article : Google Scholar : PubMed/NCBI
|