Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
July-2021 Volume 59 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 59 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review)

  • Authors:
    • Jiali Li
    • Zihang Zeng
    • Qiuji Wu
    • Jiarui Chen
    • Xingyu Liu
    • Jianguo Zhang
    • Yuan Luo
    • Wenjie Sun
    • Zhengrong Huang
    • Junhong Zhang
    • Yan Gong
    • Conghua Xie
  • View Affiliations / Copyright

    Affiliations: Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China, Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
  • Article Number: 50
    |
    Published online on: June 7, 2021
       https://doi.org/10.3892/ijo.2021.5230
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Extensive evidence has documented that the balance between cytokines from T helper type 1 (Th1) and type 2 (Th2) cells is disrupted in the tumorigenic microenvironment compared with immunocompetent individuals. Ionizing radiation (IR) has been reported to markedly modulate the Th1/Th2 polarization in a concentration‑dependent manner. In the present review article, the immune modulation of Th1/Th2 and the IR‑induced crosstalk of the Th1/Th2 shift with immunocytes and tumor cells are summarized. The involvement of the Th1/Th2 shift in post‑radiotherapy complications is highlighted. Specifically, high‑dose IR has been shown to promote the Th2 shift, leading to an immunosuppressive cytokine network, while the impact of low‑dose IR remains controversial. The IR‑induced modulation of the Th1/Th2 shift is mediated by tumor cells and multiple immunocytes, including dendritic cells, tumor‑associated macrophages, cytotoxic T lymphocytes and natural killer cells. However, the excessive production of pro‑inflammatory factors, such as IFN‑γ and IL‑2, by Th1 cells, aggravates the clinical side‑effects of radiotherapy, including radiation‑induced lung and intestinal injury, radiation encephalopathy, as well as other complications. Therefore, further research into the underlying mechanism is required to confirm the potential applicability of the Th1/Th2 shift combined with IR in the treatment of malignant tumors.
View Figures

Figure 1

Figure 2

View References

1 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Borst J, Ahrends T, Bąbała N, Melief CJM and Kastenmüller W: CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Linehan WM and Ricketts CJ: The cancer genome atlas of renal cell carcinoma: Findings and clinical implications. Nat Rev Urol. 16:539–552. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Skinnider BF and Mak TW: The role of cytokines in classical Hodgkin lymphoma. Blood. 99:4283–4297. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Liu Z, Fan H and Jiang S: CD4(+) T-cell subsets in transplantation. Immunol Rev. 252:183–191. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Formenti SC and Demaria S: Combining radiotherapy and cancer immunotherapy: A paradigm shift. J Natl Cancer Inst. 105:256–265. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M and Jadidi-Niaragh F: The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother. 108:1415–1424. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zhu J and Paul WE: CD4 T cells: Fates, functions, and faults. Blood. 112:1557–1569. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Wan YY: GATA3: A master of many trades in immune regulation. Trends Immunol. 35:233–242. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Maazi H and Akbari O: Type two innate lymphoid cells: The Janus cells in health and disease. Immunol Rev. 278:192–206. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, Murphy TL and Murphy KM: T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol. 3:549–557. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, Sheng K, Dobrolecki LE, Zhang X, Putluri N, et al: Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 544:250–254. 2017. View Article : Google Scholar : PubMed/NCBI

13 

El-Darawish Y, Li W, Yamanishi K, Pencheva M, Oka N, Yamanishi H, Matsuyama T, Tanaka Y, Minato N and Okamura H: Frontline Science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. J Leukoc Biol. 104:253–264. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Gupta S and Gollapudi S: Molecular mechanisms of TNF-alpha-induced apoptosis in naïve and memory T cell subsets. Autoimmun Rev. 5:264–268. 2006. View Article : Google Scholar : PubMed/NCBI

15 

van Horssen R, Ten Hagen TL and Eggermont AM: TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist. 11:397–408. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Vadevoo SMP, Kim JE, Gunassekaran GR, Jung HK, Chi L, Kim DE, Lee SH, Im SH and Lee B: IL4 receptor-targeted proapoptotic peptide blocks tumor growth and metastasis by enhancing antitumor immunity. Mol Cancer Ther. 16:2803–2816. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Oft M: Immune regulation and cytotoxic T cell activation of IL-10 agonists-preclinical and clinical experience. Semin Immunol. 44:1013252019. View Article : Google Scholar

18 

Urosevic M and Dummer R: HLA-G and IL-10 expression in human cancer-different stories with the same message. Semin Cancer Biol. 13:337–342. 2003. View Article : Google Scholar

19 

Sallusto F, Lenig D, Mackay CR and Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 187:875–883. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Annunziato F, Galli G, Cosmi L, Romagnani P, Manetti R, Maggi E and Romagnani S: Molecules associated with human Th1 or Th2 cells. Eur Cytokine Netw. 9(3 Suppl): S12–S16. 1998.

21 

Annunziato F, Manetti R, Tomasévic I, Guidizi MG, Biagiotti R, Giannò V, Germano P, Mavilia C, Maggi E and Romagnani S: Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production. FASEB J. 10:769–776. 1996. View Article : Google Scholar : PubMed/NCBI

22 

Szabo SJ, Dighe AS, Gubler U and Murphy KM: Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med. 185:817–824. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C and Dayer JM: CCR5 is characteristic of Th1 lymphocytes. Nature. 391:344–345. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B and Mackay CR: The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 101:746–754. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Sabatos CA, Chakravarti S, Cha E, Schubart A, Sánchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ and Kuchroo VK: Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 4:1102–1110. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Xu D, Chan WL, Leung BP, Hunter D, Schulz K, Carter RW, McInnes IB, Robinson JH and Liew FY: Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med. 188:1485–1492. 1998. View Article : Google Scholar : PubMed/NCBI

27 

D'Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A and Sinigaglia F: Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol. 161:5111–5115. 1998.PubMed/NCBI

28 

Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K and Romagnani S: CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol. 30:2972–2979. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Groux H, Sornasse T, Cottrez F, de Vries JE, Coffman RL, Roncarolo MG and Yssel H: Induction of human T helper cell type 1 differentiation results in loss of IFN-gamma receptor beta-chain expression. J Immunol. 158:5627–5631. 1997.PubMed/NCBI

30 

Jourdan P, Abbal C, Noraz N, Hori T, Uchiyama T, Vendrell JP, Bousquet J, Taylor N, Pène J and Yssel H: IL-4 induces functional cell-surface expression of CXCR4 on human T cells. J Immunol. 160:4153–4157. 1998.PubMed/NCBI

31 

Xu D, Chan WL, Leung BP, Huang Fp, Wheeler R, Piedrafita D, Robinson JH and Liew FY: Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 187:787–794. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Del Prete G, De Carli M, D'Elios MM, Daniel KC, Almerigogna F, Alderson M, Smith CA, Thomas E and Romagnani S: CD30-mediated signaling promotes the development of human T helper type 2-like T cells. J Exp Med. 182:1655–1661. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Sallusto F, Mackay CR and Lanzavecchia A: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 277:2005–2007. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Weinstein JS, Laidlaw BJ, Lu Y, Wang JK, Schulz VP, Li N, Herman EI, Kaech SM, Gallagher PG and Craft J: STAT4 and T-bet control follicular helper T cell development in viral infections. J Exp Med. 215:337–355. 2018. View Article : Google Scholar :

35 

Christodoulopoulos P, Cameron L, Nakamura Y, Lemière C, Muro S, Dugas M, Boulet LP, Laviolette M, Olivenstein R and Hamid Q: TH2 cytokine-associated transcription factors in atopic and nonatopic asthma: Evidence for differential signal transducer and activator of transcription 6 expression. J Allergy Clin Immunol. 107:586–591. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Zheng W and Flavell RA: The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 89:587–596. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Kaplan MH, Schindler U, Smiley ST and Grusby MJ: Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 4:313–319. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Ho IC, Hodge MR, Rooney JW and Glimcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell. 85:973–983. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Han SK, Song JY, Yun YS and Yi SY: Effect of gamma radiation on cytokine expression and cytokine-receptor mediated STAT activation. Int J Radiat Biol. 82:686–697. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Ridnour LA, Cheng RY, Weiss JM, Kaur S, Soto-Pantoja DR, Basudhar D, Heinecke JL, Stewart CA, DeGraff W, Sowers AL, et al: NOS inhibition modulates immune polarization and improves radiation-induced tumor growth delay. Cancer Res. 75:2788–2799. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Attar M, Molaie Kondolousy Y and Khansari N: Effect of high dose natural ionizing radiation on the immune system of the exposed residents of Ramsar Town, Iran. Iran J Allergy Asthma Immunol. 6:73–78. 2007.PubMed/NCBI

42 

Karkanitsa L, Mitskevitch P, Uss A, Ostapenko V and Dainiak N: Elevated levels of cytokine gene expression in leukemic hemopoietic cells of belorussians exposed to ionizing radiation (IR) following the chernobyl catastrophe. Blood. 96:295A2000.

43 

Han SK, Song JY, Yun YS and Yi SY: Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res. 28:343–350. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Kunwar A, Bag PP, Chattopadhyay S, Jain VK and Priyadarsini KI: Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3′-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch Toxicol. 85:1395–1405. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Liu H, Li B, Jia X, Ma Y, Gu Y, Zhang P, Wei Q, Cai J, Cui J, Gao F and Yang Y: Radiation-induced decrease of CD8+ dendritic cells contributes to Th1/Th2 shift. Int Immunopharmacol. 46:178–185. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Mishra S, Patel DD, Bansal DD and Kumar R: Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. Environ Toxicol. 31:478–488. 2016. View Article : Google Scholar

47 

Malhotra P, Adhikari M, Mishra S, Singh S, Kumar P, Singh SK and Kumar R: N-acetyl tryptophan glucopyranoside (NATG) as a countermeasure against gamma radiation-induced immunosuppression in murine macrophage J774A.1 cells. Free Radic Res. 50:1265–1278. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Nadella V, Ranjan R, Senthilkumaran B, Qadri SSYH, Pothani S, Singh AK, Gupta ML and Prakash H: Podophyllotoxin and rutin modulate M1 (iNOS+) macrophages and mitigate lethal radiation (LR) induced inflammatory responses in mice. Front Immunol. 10:1062019. View Article : Google Scholar : PubMed/NCBI

49 

Liu XD, Ma SM and Liu SZ: Effects of 0.075 Gy x-ray irradiation on the expression of IL-10 and IL-12 in mice. Phys Med Biol. 48:2041–2049. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Gao H, Dong Z, Gong X, Dong J, Zhang Y, Wei W, Wang R and Jin S: Effects of various radiation doses on induced T-helper cell differentiation and related cytokine secretion. J Radiat Res. 59:395–403. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Karimi G, Balali-Mood M, Alamdaran SA, Badie-Bostan H, Mohammadi E, Ghorani-Azam A, Sadeghi M and Riahi-Zanjani B: Increase in the Th1-cell-based immune response in healthy workers exposed to low-dose radiation-immune system status of radiology staff. J Pharmacopuncture. 20:107–111. 2017.PubMed/NCBI

52 

Cho SJ, Kang H, Hong EH, Kim JY and Nam SY: Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T-cells undergoing activation and regulation of their expression of select cytokines. J Immunotoxicol. 15:137–146. 2018. View Article : Google Scholar

53 

Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, Hildebrandt G, Sáfrány G and Lumniczky K: Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res. 174:480–489. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Elhadary AA, Marzook EA and Abdelmonem HA: Evaluation of the level of gamma radiation dose on some immune system parameters against cancer. Biosci J. 35:307–316. 2019. View Article : Google Scholar

55 

Ghazy AA, Abu El-Nazar SY, Ghoneim HE, Taha AR and Abouelella AM: Effect of murine exposure to gamma rays on the interplay between Th1 and Th2 lymphocytes. Front Pharmacol. 6:742015. View Article : Google Scholar : PubMed/NCBI

56 

Liu X, Liu Z, Wang D, Han Y, Hu S, Xie Y, Liu Y, Zhu M, Guan H, Gu Y and Zhou PK: Effects of low dose radiation on immune cells subsets and cytokines in mice. Toxicol Res (Camb). 9:249–262. 2020. View Article : Google Scholar

57 

Steinman RM: Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol. 30:1–22. 2012. View Article : Google Scholar

58 

Arpinati M, Green CL, Heimfeld S, Heuser JE and Anasetti C: Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood. 95:2484–2490. 2000. View Article : Google Scholar

59 

Jutel M and Akdis CA: T-cell subset regulation in atopy. Curr Allergy Asthma Rep. 11:139–145. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Merrick A, Errington F, Milward K, O'Donnell D, Harrington K, Bateman A, Pandha H, Vile R, Morrison E, Selby P and Melcher A: Immunosuppressive effects of radiation on human dendritic cells: Reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer. 92:1450–1458. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Clerici M, Shearer GM and Clerici E: Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: Time to consider the TH1/TH2 paradigm. J Natl Cancer Inst. 90:261–263. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Lappin MB and Campbell JD: The Th1-Th2 classification of cellular immune responses: Concepts, current thinking and applications in haematological malignancy. Blood Rev. 14:228–239. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Backer RA, Diener N and Clausen BE: Langerin+CD8+ dendritic cells in the splenic marginal zone: Not so marginal after all. Front Immunol. 10:7412019. View Article : Google Scholar

64 

Prendergast KA, Daniels NJ, Petersen TR, Hermans IF and Kirman JR: Langerin+ CD8α+ dendritic cells drive early CD8+ T cell activation and IL-12 production during systemic bacterial infection. Front Immunol. 9:9532018. View Article : Google Scholar

65 

Yu N, Wang S, Song X, Gao L, Li W, Yu H, Zhou C, Wang Z, Li F and Jiang Q: Low-dose radiation promotes dendritic cell migration and IL-12 production via the ATM/NF-kappaB pathway. Radiat Res. 189:409–417. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Shigematsu A, Adachi Y, Koike-Kiriyama N, Suzuki Y, Iwasaki M, Koike Y, Nakano K, Mukaide H, Imamura M and Ikehara S: Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J Radiat Res. 48:51–55. 2007. View Article : Google Scholar

67 

Murray PJ: Macrophage polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar

68 

Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI

69 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Shiratori H, Feinweber C, Luckhardt S, Wallner N, Geisslinger G, Weigert A and Parnham MJ: An in vitro test system for compounds that modulate human inflammatory macrophage polarization. Eur J Pharmacol. 833:328–338. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Nadella V, Singh S, Jain A, Jain M, Vasquez KM, Sharma A, Tanwar P, Rath GK and Prakash H: Low dose radiation primed iNOS + M1macrophages modulate angiogenic programming of tumor derived endothelium. Mol Carcinog. 57:1664–1671. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Knoops L, Haas R, de Kemp S, Majoor D, Broeks A, Eldering E, de Boer JP, Verheij M, van Ostrom C, de Vries A, et al: In vivo p53 response and immune reaction underlie highly effective low-dose radiotherapy in follicular lymphoma. Blood. 110:1116–1122. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Seifert L, Werba G, Tiwari S, Giao Ly NN, Nguy S, Alothman S, Alqunaibit D, Avanzi A, Daley D, Barilla R, et al: Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 150:1659–1672.e5. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Okubo M, Kioi M, Nakashima H, Sugiura K, Mitsudo K, Aoki I, Taniguchi H and Tohnai I: M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation. Sci Rep. 6:275482016. View Article : Google Scholar : PubMed/NCBI

75 

Fu E, Liu T, Yu S, Chen X, Song L, Lou H, Ma F, Zhang S, Hussain S, Guo J, et al: M2 macrophages reduce the radiosensitivity of head and neck cancer by releasing HB-EGF. Oncol Rep. 44:698–710. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Reading JL, Gálvez-Cancino F, Swanton C, Lladser A, Peggs KS and Quezada SA: The function and dysfunction of memory CD8+ T cells in tumor immunity. Immunol Rev. 283:194–212. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Crespo J, Sun H, Welling TH, Tian Z and Zou W: T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 25:214–221. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T, et al: Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood. 114:589–595. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG and Lord EM: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 174:7516–7523. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H and Nishimura T: Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: Its potentiation by combination with Th1 cell therapy. Cancer Res. 70:2697–2706. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Chattopadhyay S and Chakraborty NG: Continuous presence of Th1 conditions is necessary for longer lasting tumor-specific CTL activity in stimulation cultures with PBL. Hum Immunol. 66:884–891. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Harada M, Matsueda S, Yao A, Noguchi M and Itoh K: Vaccination of cytotoxic T lymphocyte-directed peptides elicited and spread humoral and Th1-type immune responses to prostate-specific antigen protein in a prostate cancer patient. J Immunother. 28:368–375. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Yokouchi H, Chamoto K, Wakita D, Yamazaki K, Shirato H, Takeshima T, Dosaka-Akita H, Nishimura M, Yue Z, Kitamura H and Nishimura T: Combination tumor immunotherapy with radiotherapy and Th1 cell therapy against murine lung carcinoma. Clin Exp Metastasis. 24:533–540. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI

85 

Hodgins JJ, Khan ST, Park MM, Auer RC and Ardolino M: Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest. 129:3499–3510. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Wei H, Zheng X, Lou D, Zhang L, Zhang R, Sun R and Tian Z: Tumor-induced suppression of interferon-gamma production and enhancement of interleukin-10 production by natural killer (NK) cells: Paralleled to CD4+ T cells. Mol Immunol. 42:1023–1031. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Yang G, Kong Q, Wang G, Jin H, Zhou L, Yu D, Niu C, Han W, Li W and Cui J: Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm. 29:428–434. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M and Janiak MK: Single low doses of X rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res. 161:335–340. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Miller GM, Andres ML and Gridley DS: NK cell depletion results in accelerated tumor growth and attenuates the antitumor effect of total body irradiation. Int J Oncol. 23:1585–1592. 2003.PubMed/NCBI

90 

Park HR, Jung U and Jo SK: Impairment of natural killer (NK) cells is an important factor in a weak Th1-like response in irradiated mice. Radiat Res. 168:446–452. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Zarcone D, Tilden AB, Lane VG and Grossi CE: Radiation sensitivity of resting and activated nonspecific cytotoxic cells of T lineage and NK lineage. Blood. 73:1615–1621. 1989. View Article : Google Scholar : PubMed/NCBI

92 

Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li M and Cui J: Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice. Cancer Med. 7:1338–1348. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Zhou J, Zhang J, Lichtenheld MG and Meadows GG: A role for NF-kappa B activation in perforin expression of NK cells upon IL-2 receptor signaling. J Immunol. 169:1319–1325. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Herrera FG, Bourhis J and Coukos G: Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 67:65–85. 2017. View Article : Google Scholar

95 

Demaria S, Golden EB and Formenti SC: Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 1:1325–1332. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Simon PS, Bardhan K, Chen MR, Paschall AV, Lu C, Bollag RJ, Kong FC, Jin J, Kong FM, Waller JL, et al: NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression. Oncotarget. 7:23395–23415. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML and Demaria S: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 181:3099–3107. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Song KH, Jung SY, Kang SM, Kim MH, Ahn J, Hwang SG, Lee JH, Lim DS, Nam SY and Song JY: Induction of immunogenic cell death by radiation-upregulated karyopherin alpha 2 in vitro. Eur J Cell Biol. 95:219–227. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Song KH, Jung SY, Park JI, Ahn J, Park JK, Um HD, Park IC, Hwang SG, Ha H and Song JY: Inhibition of karyopherin-α2 augments radiation-induced cell death by perturbing BRCA1-mediated DNA repair. Int J Mol Sci. 20:28432019. View Article : Google Scholar

100 

Huettner C, Paulus W and Roggendorf W: Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol. 146:317–322. 1995.PubMed/NCBI

101 

Hao C, Parney IF, Roa WH, Turner J, Petruk KC and Ramsay DA: Cytokine and cytokine receptor mRNA expression in human glioblastomas: Evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol. 103:171–178. 2002. View Article : Google Scholar : PubMed/NCBI

102 

Chen B, Alvarado DM, Iticovici M, Kau NS, Park H, Parikh PJ, Thotala D and Ciorba MA: Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer. Cancer Immunol Res. 8:451–464. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Hanania AN, Mainwaring W, Ghebre YT, Hanania NA and Ludwig M: Radiation-induced lung injury: Assessment and management. Chest. 156:150–162. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Giuranno L, Ient J, De Ruysscher D and Vooijs MA: Radiation-induced lung injury (RILI). Front Oncol. 9:8772019. View Article : Google Scholar : PubMed/NCBI

105 

Stenmark MH, Cai XW, Shedden K, Hayman JA, Yuan S, Ritter T, Ten Haken RK, Lawrence TS and Kong FM: Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys. 84:e217–e222. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Rübe CE, Rodemann HP and Rübe C: The relevance of cytokines in the radiation-induced lung reaction. Experimental basis and clinical significance. Strahlenther Onkol. 180:541–549. 2004.In German. View Article : Google Scholar

107 

Arpin D, Perol D, Blay JY, Falchero L, Claude L, Vuillermoz-Blas S, Martel-Lafay I, Ginestet C, Alberti L, Nosov D, et al: Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol. 23:8748–8756. 2005. View Article : Google Scholar : PubMed/NCBI

108 

Büttner C, Skupin A, Reimann T, Rieber EP, Unteregger G, Geyer P and Frank KH: Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol. 17:315–325. 1997. View Article : Google Scholar : PubMed/NCBI

109 

Chen Y, Rubin P, Williams J, Hernady E, Smudzin T and Okunieff P: Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 49:641–648. 2001. View Article : Google Scholar : PubMed/NCBI

110 

Tang Y, Yang L, Qin W, Yi M, Liu B and Yuan X: Validation study of the association between genetic variant of IL4 and severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Radiother Oncol. 141:86–94. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Li Y, Guan X, Liu W, Chen HL, Truscott J, Beyatli S, Metwali A, Weiner GJ, Zavazava N, Blumberg RS, et al: Helminth-induced production of TGF-β and suppression of graft-versus-host disease is dependent on IL-4 production by host cells. J Immunol. 201:2910–2922. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Groves AM, Johnston CJ, Misra RS, Williams JP and Finkelstein JN: Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol. 92:754–765. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Han G, Zhang H, Xie CH and Zhou YF: Th2-like immune response in radiation-induced lung fibrosis. Oncol Rep. 26:383–388. 2011.PubMed/NCBI

114 

Paun A, Bergeron ME and Haston CK: The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Sci Rep. 7:115862017. View Article : Google Scholar : PubMed/NCBI

115 

Xu L, Xiong S, Guo R, Yang Z, Wang Q, Xiao F, Wang H, Pan X and Zhu M: Transforming growth factor β3 attenuates the development of radiation-induced pulmonary fibrosis in mice by decreasing fibrocyte recruitment and regulating IFN-gamma/IL-4 balance. Immunol Lett. 162:27–33. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Chiang CS, Liu WC, Jung SM, Chen FH, Wu CR, McBride WH, Lee CC and Hong JH: Compartmental responses after thoracic irradiation of mice: Strain differences. Int J Radiat Oncol Biol Phys. 62:862–871. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Zhang C, Zhao H, Li BL, Fu-Gao, Liu H, Cai JM and Zheng M: CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation induced pulmonary fibrosis. Toxicol Lett. 292:181–189. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Huang Y, Liu W, Liu H, Yang Y, Cui J, Zhang P, Zhao H, He F, Cheng Y, Ni J, et al: Grape seed pro-anthocyanidins ameliorates radiation-induced lung injury. J Cell Mol Med. 18:1267–1277. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Chen J, Wang Y, Mei Z, Zhang S, Yang J, Li X, Yao Y and Xie C: Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity. J Radiat Res. 57:133–141. 2016. View Article : Google Scholar :

120 

Oh K, Seo MW, Kim YW and Lee DS: Osteopontin potentiates pulmonary inflammation and fibrosis by modulating IL-17/IFN-γ-secreting T-cell ratios in bleomycin-treated mice. Immune Netw. 15:142–149. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Lei L, Zhao C, Qin F, He ZY, Wang X and Zhong XN: Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis. Clin Exp Rheumatol. 34(Suppl 100): S14–S22. 2016.

122 

Li Y, Zou L, Yang X, Chu L, Ni J, Chu X, Guo T and Zhu Z: Identification of lncRNA, MicroRNA, and mRNA-associated CeRNA network of radiation-induced lung injury in a mice model. Dose Response. 17:15593258198910122019. View Article : Google Scholar : PubMed/NCBI

123 

Hauer-Jensen M, Denham JW and Andreyev HJ: Radiation enteropathy-pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol. 11:470–479. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Zheng J, Wang J, Pouliot M, Authier S, Zhou D, Loose DS and Hauer-Jensen M: Gene expression profiling in non-human primate jejunum, ileum and colon after total-body irradiation: A comparative study of segment-specific molecular and cellular responses. BMC Genomics. 16:9842015. View Article : Google Scholar : PubMed/NCBI

125 

Huang Z, Epperly M, Watkins SC, Greenberger JS, Kagan VE and Bayır H: Necrostatin-1 rescues mice from lethal irradiation. Biochim Biophys Acta. 1862:850–856. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Kim JS, Ryoo SB, Heo K, Kim JG, Son TG, Moon C and Yang K: Attenuating effects of granulocyte-colony stimulating factor (G-CSF) in radiation induced intestinal injury in mice. Food Chem Toxicol. 50:3174–3180. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Kim JS, Yang M, Lee CG, Kim SD, Kim JK and Yang K: In vitro and in vivo protective effects of granulocyte colony-stimulating factor against radiation-induced intestinal injury. Arch Pharm Res. 36:1252–1261. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Symon Z, Goldshmidt Y, Picard O, Yavzori M, Ben-Horin S, Alezra D, Barshack I and Chowers Y: A murine model for the study of molecular pathogenesis of radiation proctitis. Int J Radiat Oncol Biol Phys. 76:242–250. 2010. View Article : Google Scholar

129 

Sha H, Gu Y, Shen W, Zhang L, Qian F, Zhao Y, Li H, Zhang T and Lu W: Rheinic acid ameliorates radiation-induced acute enteritis in rats through PPAR-γ/NF-κB. Genes Genomics. 41:909–917. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Lu L, Li W, Sun C, Kang S, Li J, Luo X, Su Q, Liu B and Qin S: Phycocyanin ameliorates radiation-induced acute intestinal toxicity by regulating the effect of the gut microbiota on the TLR4/Myd88/NF-κB pathway. JPEN J Parenter Enteral Nutr. 44:1308–1317. 2020. View Article : Google Scholar

131 

Wei YL, Xu JY, Zhang R, Zhang Z, Zhao L and Qin LQ: Effects of lactoferrin on X-ray-induced intestinal injury in Balb/C mice. Appl Radiat Isot. 146:72–77. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Radwan RR and Karam HM: Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. Environ Toxicol. 35:223–230. 2020. View Article : Google Scholar

133 

Wang H, Sun RT, Li Y, Yang YF, Xiao FJ, Zhang YK, Wang SX, Sun HY, Zhang QW, Wu CT and Wang LS: HGF gene modification in mesenchymal stem cells reduces radiation-induced intestinal injury by modulating immunity. PLoS One. 10:e01244202015. View Article : Google Scholar : PubMed/NCBI

134 

Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H and Jin X: Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 4:e6852013. View Article : Google Scholar : PubMed/NCBI

135 

Linard C, Strup-Perrot C, Lacave-Lapalun JV and Benderitter M: Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model. J Leukoc Biol. 100:569–580. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Akpolat M, Gulle K, Topcu-Tarladacalisir Y, Safi Oz Z, Bakkal BH, Arasli M and Ozel Turkcu U: Protection by L-carnitine against radiation-induced ileal mucosal injury in the rat: Pattern of oxidative stress, apoptosis and cytokines. Int J Radiat Biol. 89:732–740. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Bessout R, Demarquay C, Moussa L, René A, Doix B, Benderitter M, Sémont A and Mathieu N: TH17 predominant T-cell responses in radiation-induced bowel disease are modulated by treatment with adipose-derived mesenchymal stromal cells. J Pathol. 237:435–446. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Balentova S and Adamkov M: Molecular, cellular and functional effects of radiation-induced brain injury: A review. Int J Mol Sci. 16:27796–27815. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Deng Z, Sui G, Rosa PM and Zhao W: Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One. 7:e367392012. View Article : Google Scholar : PubMed/NCBI

140 

Xue J, Dong JH, Huang GD, Qu XF, Wu G and Dong XR: NF-κB signaling modulates radiation-induced microglial activation. Oncol Rep. 31:2555–2560. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y, Cai Q, Dong J, Wu G and Cheng J: Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol. 91:224–239. 2015. View Article : Google Scholar

142 

Chen LJ, Zhang RG, Yu DD, Wu G and Dong XR: Shenqi fuzheng injection ameliorates radiation-induced brain injury. Curr Med Sci. 39:965–971. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Xin N, Li YJ, Li X, Wang X, Li Y, Zhang X, Dai RJ, Meng WW, Wang HL, Ma H, et al: Dragon's blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res. 178:75–85. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Chiang CS, Hong JH, Stalder A, Sun JR, Withers HR and McBride WH: Delayed molecular responses to brain irradiation. Int J Radiat Biol. 72:45–53. 1997. View Article : Google Scholar : PubMed/NCBI

145 

Vozenin-Brotons MC, Gault N, Sivan V, Tricaud Y, Dubray B, Clough K, Cosset JM, Lefaix JL and Martin M: Histopathological and cellular studies of a case of cutaneous radiation syndrome after accidental chronic exposure to a cesium source. Radiat Res. 152:332–337. 1999. View Article : Google Scholar : PubMed/NCBI

146 

Lee JW, Zoumalan RA, Valenzuela CD, Nguyen PD, Tutela JP, Roman BR, Warren SM and Saadeh PB: Regulators and mediators of radiation-induced fibrosis: Gene expression profiles and a rationale for Smad3 inhibition. Otolaryngol Head Neck Surg. 143:525–530. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Blétry O and Somogyi A: Do the interferons have an antifibrotic action? The internist's point of view. Rev Med Interne. 23(Suppl 4): 511s–515s. 2002.In French. View Article : Google Scholar

148 

Peter RU, Gottlöber P, Nadeshina N, Krähn G, Braun-Falco O and Plewig G: Interferon gamma in survivors of the Chernobyl power plant accident: New therapeutic option for radiation-induced fibrosis. Int J Radiat Oncol Biol Phys. 45:147–152. 1999. View Article : Google Scholar : PubMed/NCBI

149 

Oliva D, Nilsson M, Strandéus M, Andersson BÅ, Sharp L, Laytragoon-Lewin N and Lewin F: Individual genetic variation might predict acute skin reactions in women undergoing adjuvant breast cancer radiotherapy. Anticancer Res. 38:6763–6770. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Takeda I, Kizu Y, Yoshitaka O, Saito I and Yamane GY: Possible role of nitric oxide in radiation-induced salivary gland dysfunction. Radiat Res. 159:465–470. 2003. View Article : Google Scholar : PubMed/NCBI

151 

Moura JF, Mota JM, Leite CA, Wong DV, Bezerra NP, Brito GA, Lima V, Cunha FQ and Ribeiro RA: A novel model of megavoltage radiation-induced oral mucositis in hamsters: Role of inflammatory cytokines and nitric oxide. Int J Radiat Biol. 91:500–509. 2015. View Article : Google Scholar : PubMed/NCBI

152 

Chung YL, Lee MY and Pui NN: Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: Prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis. 30:1387–1397. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Epperly MW, Gretton JA, DeFilippi SJ, Greenberger JS, Sikora CA, Liggitt D and Koe G: Modulation of radiation-induced cytokine elevation associated with esophagitis and esophageal stricture by manganese superoxide dismutase-plasmid/liposome (SOD2-PL) gene therapy. Radiat Res. 155:2–14. 2001. View Article : Google Scholar

154 

Moreb J and Zucali JR: The therapeutic potential of interleukin-1 and tumor necrosis factor on hematopoietic stem cells. Leuk Lymphoma. 8:267–275. 1992. View Article : Google Scholar : PubMed/NCBI

155 

Boniver J, Humblet C, Rongy AM, Delvenne C, Delvenne P, Greimers R, Thiry A, Courtoy R and Defresne MP: Cellular aspects of the pathogenesis of radiation-induced thymic lymphomas in C57 BL mice (review). In Vivo. 4:41–43. 1990.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Zeng Z, Wu Q, Chen J, Liu X, Zhang J, Luo Y, Sun W, Huang Z, Zhang J, Zhang J, et al: Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review). Int J Oncol 59: 50, 2021.
APA
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J. ... Xie, C. (2021). Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review). International Journal of Oncology, 59, 50. https://doi.org/10.3892/ijo.2021.5230
MLA
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J., Luo, Y., Sun, W., Huang, Z., Zhang, J., Gong, Y., Xie, C."Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review)". International Journal of Oncology 59.1 (2021): 50.
Chicago
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J., Luo, Y., Sun, W., Huang, Z., Zhang, J., Gong, Y., Xie, C."Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review)". International Journal of Oncology 59, no. 1 (2021): 50. https://doi.org/10.3892/ijo.2021.5230
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Zeng Z, Wu Q, Chen J, Liu X, Zhang J, Luo Y, Sun W, Huang Z, Zhang J, Zhang J, et al: Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review). Int J Oncol 59: 50, 2021.
APA
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J. ... Xie, C. (2021). Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review). International Journal of Oncology, 59, 50. https://doi.org/10.3892/ijo.2021.5230
MLA
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J., Luo, Y., Sun, W., Huang, Z., Zhang, J., Gong, Y., Xie, C."Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review)". International Journal of Oncology 59.1 (2021): 50.
Chicago
Li, J., Zeng, Z., Wu, Q., Chen, J., Liu, X., Zhang, J., Luo, Y., Sun, W., Huang, Z., Zhang, J., Gong, Y., Xie, C."Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review)". International Journal of Oncology 59, no. 1 (2021): 50. https://doi.org/10.3892/ijo.2021.5230
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team