Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review)

  • Authors:
    • Gu Yang
    • Yanjiao Wu
    • Rongxue Wan
    • Hongxun Sang
    • Huan Liu
    • Wenhua Huang
  • View Affiliations / Copyright

    Affiliations: Guangdong Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China, Shunde Hospital, Southern Medical University (The First People's Hospital of Shun de), Foshan, Guangdong 528000, P.R. China, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China, Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518000, P.R. China, Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
  • Article Number: 69
    |
    Published online on: July 22, 2021
       https://doi.org/10.3892/ijo.2021.5249
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcoma (OS) is the most common primary bone tumor worldwide. OS exhibits a range of aggressive behaviors, including early metastasis potential, rapid progression, poor clinical prognosis and insensitivity to chemoradiotherapy. Non‑coding RNAs are transcripts that do not encode proteins. A significant number of studies published on OS have been focused on the aberrant expression of non‑coding RNAs and their involvement in tumor initiation and progression. It has been confirmed that non‑coding RNAs exert their regulatory functions at both the transcriptional and post‑transcriptional level, which leads to tumor initiation or progression in OS. According to present knowledge, this review provides a state‑of‑the‑art overview of the functions and mechanisms of microRNAs, long non‑coding RNAs and circular RNAs in terms of their involvement with OS. The review also covers their potential clinical application in the diagnosis, prognosis and treatment of OS. It is hoped that the information presented in this review on the involvement of non‑coding RNAs in OS will lead to a more comprehensive understanding of OS and provide a useful perspective on the potential diagnostic and therapeutic applications of non‑coding RNAs for patients with OS.
View Figures

Figure 1

View References

1 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar

2 

Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ, Lowe SW, Man TK, Lau CC and Donehower LA: MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 69:2559–2567. 2009. View Article : Google Scholar

3 

Sampson VB, Kamara DF and Kolb EA: Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing's sarcoma: Tumor models for cancer drug discovery. Expert Opin Drug Discov. 8:1181–1189. 2013. View Article : Google Scholar

4 

Moore DD and Luu HH: Osteosarcoma. Cancer Treat Res. 162:65–92. 2014. View Article : Google Scholar

5 

Shi ZW, Wang JL, Zhao N, Guan Y and He W: Single nucleotide polymorphism of hsa-miR-124a affects risk and prognosis of osteosarcoma. Cancer Biomark. 17:249–257. 2016. View Article : Google Scholar

6 

He F, Zhang W, Shen Y, Yu P, Bao Q, Wen J, Hu C and Qiu S: Effects of resection margins on local recurrence of osteosarcoma in extremity and pelvis: Systematic review and meta-analysis. Int J Surg. 36:283–292. 2016. View Article : Google Scholar

7 

Marcove RC, Miké V, Hajek JV, Levin AG and Hutter RV: Osteogenic sarcoma under the age of twenty-one. A review of one hundred and forty-five operative cases. J Bone Joint Surg Am. 52:411–423. 1970. View Article : Google Scholar

8 

Dahlin DC and Coventry MB: Osteogenic sarcoma. A study of six hundred cases. J Bone Joint Surg Am. 49:101–110. 1967. View Article : Google Scholar

9 

Isakoff MS, Bielack SS, Meltzer P and Gorlick R: Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol. 33:3029–3035. 2015. View Article : Google Scholar

10 

Wang B, Xu M, Zheng K and Yu X: Effect of unplanned therapy on the prognosis of patients with extremity osteosarcoma. Sci Rep. 6:387832016. View Article : Google Scholar

11 

Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X and Li W: MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle. 16:578–587. 2017. View Article : Google Scholar

12 

Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM and Cai XH: miR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett. 587:1366–1372. 2013. View Article : Google Scholar

13 

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the mammalian genome. Science. 309:1559–1563. 2005. View Article : Google Scholar

14 

Baltimore D: Our genome unveiled. Nature. 409:814–816. 2001. View Article : Google Scholar

15 

Mattick JS: The genetic signatures of noncoding RNAs. PLoS Genet. 5:e10004592009. View Article : Google Scholar

16 

Kour S and Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 26:1–21. 2016. View Article : Google Scholar

17 

Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ and Wang Y: miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther. 26:1299–1312. 2018. View Article : Google Scholar

18 

Andersen GB, Knudsen A, Hager H, Hansen LL and Tost J: miRNA profiling identifies deregulated miRNAs associated with osteosarcoma development and time to metastasis in two large cohorts. Mol Oncol. 12:114–131. 2018. View Article : Google Scholar

19 

ENCODE Project Consortium; Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar

20 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar

21 

Evans JR, Feng FY and Chinnaiyan AM: The bright side of dark matter: lncRNAs in cancer. J Clin Invest. 126:2775–2782. 2016. View Article : Google Scholar

22 

Lin C and Yang L: Long noncoding RNA in cancer: Wiring signaling circuitry. Trends Cell Biol. 28:287–301. 2018. View Article : Google Scholar

23 

Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016. View Article : Google Scholar

24 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar

25 

Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar

26 

Hwang HW and Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 94:776–780. 2006. View Article : Google Scholar

27 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar

28 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar

29 

Foulkes WD, Priest JR and Duchaine TF: DICER1: Mutations, microRNAs and mechanisms. Nat Rev Cancer. 14:662–672. 2014. View Article : Google Scholar

30 

Stappert L, Roese-Koerner B and Brüstle O: The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res. 359:47–64. 2015. View Article : Google Scholar

31 

Bottai G, Pasculli B, Calin GA and Santarpia L: Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opin Biol Ther. 14:1667–1683. 2014. View Article : Google Scholar

32 

Adams BD, Kasinski AL and Slack FJ: Aberrant regulation and function of microRNAs in cancer. Curr Biol. 24:R762–R776. 2014. View Article : Google Scholar

33 

Huntzinger E and Izaurralde E: Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar

34 

Ell B and Kang Y: MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep. 3:5492014. View Article : Google Scholar

35 

Nugent M: MicroRNA function and dysregulation in bone tumors: The evidence to date. Cancer Manag Res. 6:15–25. 2014. View Article : Google Scholar

36 

Liu W, Jiang D, Gong F, Huang Y, Luo Y, Rong Y, Wang J, Ge X, Ji C, Fan J and Cai W: miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis. 11:932020. View Article : Google Scholar

37 

Luo Y, Liu W, Tang P, Jiang D, Gu C, Huang Y, Gong F, Rong Y, Qian D, Chen J, et al: miR-624-5p promoted tumorigenesis and metastasis by suppressing hippo signaling through targeting PTPRB in osteosarcoma cells. J Exp Clin Cancer Res. 38:4882019. View Article : Google Scholar

38 

He M, Shen P, Qiu C and Wang J: miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY). 11:5744–5756. 2019. View Article : Google Scholar

39 

Duan Z, Gao Y, Shen J, Choy E, Cote G, Harmon D, Bernstein K, Lozano-Calderon S, Mankin H and Hornicek FJ: miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol. 11:151–166. 2017. View Article : Google Scholar

40 

Xu M, Jin H, Xu CX, Sun B, Mao Z, Bi WZ and Wang Y: miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma. Oncotarget. 5:9472–9483. 2014. View Article : Google Scholar

41 

Wu P, Liang J, Yu F, Zhou Z, Tang J and Li K: miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1. Oncotarget. 7:42241–42251. 2016. View Article : Google Scholar

42 

Hirahata M, Osaki M, Kanda Y, Sugimoto Y, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Kawai A, Ito H, et al: PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med. 5:892–902. 2016. View Article : Google Scholar

43 

Lu J, Song G, Tang Q, Yin J, Zou C, Zhao Z, Xie X, Xu H, Huang G, Wang J, et al: MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene. 36:231–241. 2017. View Article : Google Scholar

44 

Zhu K, Liu L, Zhang J, Wang Y, Liang H, Fan G, Jiang Z, Zhang CY, Chen X and Zhou G: MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell. 7:434–444. 2016. View Article : Google Scholar

45 

Jin H and Wang W: MicroRNA-539 suppresses osteosarcoma cell invasion and migration in vitro and targeting matrix metallopeptidase-8. Int J Clin Exp Pathol. 8:8075–8082. 2015.

46 

Xu B, Xia H, Cao J, Wang Z, Yang Y and Lin Y: MicroRNA-21 inhibits the apoptosis of osteosarcoma cell line SAOS-2 via targeting caspase 8. Oncol Res. 25:1161–1168. 2017. View Article : Google Scholar

47 

Zhang H, Guo X, Feng X, Wang T, Hu Z, Que X, Tian Q, Zhu T, Guo G, Huang W and Li X: MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein. Oncotarget. 8:2342–2355. 2017. View Article : Google Scholar

48 

Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM and Aqeilan RI: miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 6:4920–4935. 2015. View Article : Google Scholar

49 

Huang YZ, Zhang J, Shao HY, Chen JP and Zhao HY: MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumour Biol. 36:6095–6101. 2015. View Article : Google Scholar

50 

Wang C, Ba X, Guo Y, Sun D, Jiang H, Li W, Huang Z, Zhou G, Wu S, Zhang J and Chen J: MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma. Sci Rep. 7:414562017. View Article : Google Scholar

51 

Zhu SW, Li JP, Ma XL, Ma JX, Yang Y, Chen Y and Liu W: miR-9 modulates osteosarcoma cell growth by targeting the GCIP tumor suppressor. Asian Pac J Cancer Prev. 16:4509–4513. 2015. View Article : Google Scholar

52 

Zhou S, Wang B, Hu J, Zhou Y, Jiang M, Wu M, Qin L and Yang X: miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol. 37:9001–9007. 2016. View Article : Google Scholar

53 

Yuan J, Chen L, Chen X, Sun W and Zhou X: Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma. J Int Med Res. 40:2090–2097. 2012. View Article : Google Scholar

54 

Yao ZS, Li C, Liang D, Jiang XB, Tang JJ, Ye LQ, Yuan K, Ren H, Yang ZD, Jin DX, et al: Diagnostic and prognostic implications of serum miR-101 in osteosarcoma. Cancer Biomark. 22:127–133. 2018. View Article : Google Scholar

55 

Lian F, Cui Y, Zhou C, Gao K and Wu L: Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 10:e01214992015. View Article : Google Scholar

56 

Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar

57 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar

58 

Jian C, Tu MJ, Ho PY, Duan Z, Zhang Q, Qiu JX, DeVere White RW, Wun T, Lara PN, Lam KS, et al: Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget. 8:30742–30755. 2017. View Article : Google Scholar

59 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar

60 

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar

61 

Zhang K, Shi ZM, Chang YN, Hu ZM, Qi HX and Hong W: The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene. 547:1–9. 2014. View Article : Google Scholar

62 

Chen LL: Linking long noncoding RNA localization and function. Trends Biochem Sci. 41:761–772. 2016. View Article : Google Scholar

63 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar

64 

Sun J, Lin Y and Wu J: Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One. 8:e757502013. View Article : Google Scholar

65 

Ríos-Barrera LD, Gutiérrez-Pérez I, Domínguez M and Riesgo-Escovar JR: acal is a long non-coding RNA in JNK signaling in epithelial shape changes during drosophila dorsal closure. PLoS Genet. 11:e10049272015. View Article : Google Scholar

66 

Tao F, Tian X, Ruan S, Shen M and Zhang Z: miR-211 sponges lncRNA MALAT1 to suppress tumor growth and progression through inhibiting PHF19 in ovarian carcinoma. FASEB J. fj201800495RR2018.Online ahead of print.

67 

Schaukowitch K and Kim TK: Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience. 264:25–38. 2014. View Article : Google Scholar

68 

Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, Zhang Y and Lu Z: Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 17:892018. View Article : Google Scholar

69 

Wang X, Peng L, Gong X, Zhang X and Sun R: LncRNA HIF1A-AS2 promotes osteosarcoma progression by acting as a sponge of miR-129-5p. Aging (Albany NY). 11:11803–11813. 2019. View Article : Google Scholar

70 

Fu D, Lu C, Qu X, Li P, Chen K, Shan L and Zhu X: LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY). 11:8374–8385. 2019. View Article : Google Scholar

71 

Li S, Liu F, Pei Y, Wang W, Zheng K and Zhang X: Long noncoding RNA TTN-AS1 enhances the malignant characteristics of osteosarcoma by acting as a competing endogenous RNA on microRNA-376a thereby upregulating dickkopf-1. Aging (Albany NY). 11:7678–7693. 2019. View Article : Google Scholar

72 

Ba Z, Gu L, Hao S, Wang X, Cheng Z and Nie G: Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif. 51:e124092018. View Article : Google Scholar

73 

Wang Z, Liu Z and Wu S: Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget. 8:31465–31477. 2017. View Article : Google Scholar

74 

Ye K, Wang S, Zhang H, Han H, Ma B and Nan W: Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem. 118:4772–4781. 2017. View Article : Google Scholar

75 

Kun-Peng Z, Xiao-Long M and Chun-Lin Z: LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget. 8:71881–71893. 2017. View Article : Google Scholar

76 

Zhao J and Ma ST: Downregulation of lncRNA H19 inhibits migration and invasion of human osteosarcoma through the NF-κB pathway. Mol Med Rep. 17:7388–7394. 2018.

77 

Zhou S, Yu L, Xiong M and Dai G: LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem Biophys Res Commun. 495:1822–1832. 2018. View Article : Google Scholar

78 

Ji S, Wang S, Zhao X and Lv L: Long noncoding RNA NEAT1 regulates the development of osteosarcoma through sponging miR-34a-5p to mediate HOXA13 expression as a competitive endogenous RNA. Mol Genet Genomic Med. 7:e6732019. View Article : Google Scholar

79 

Guan H, Shang G, Cui Y, Liu J, Sun X, Cao W, Wang Y and Li Y: Long noncoding RNA APTR contributes to osteosarcoma progression through repression of miR-132-3p and upregulation of yes-associated protein 1. J Cell Physiol. 234:8998–9007. 2019. View Article : Google Scholar

80 

Bielack S, Carrle D and Casali PG; ESMO Guidelines Working Group: Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 20(Suppl): S137–S139. 2009. View Article : Google Scholar

81 

Dong Y, Liang G, Yuan B, Yang C, Gao R and Zhou X: MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 36:1477–1486. 2015. View Article : Google Scholar

82 

Ma B, Li M, Zhang L, Huang M, Lei JB, Fu GH, Liu CX, Lai QW, Chen QQ and Wang YL: Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma. Tumour Biol. 37:4445–4455. 2016. View Article : Google Scholar

83 

Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar

84 

Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled exons. Cell. 64:607–613. 1991. View Article : Google Scholar

85 

Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar

86 

Lei K, Bai H, Wei Z, Xie C, Wang J, Li J and Chen Q: The mechanism and function of circular RNAs in human diseases. Exp Cell Res. 368:147–158. 2018. View Article : Google Scholar

87 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar

88 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar

89 

de Almeida RA, Fraczek MG, Parker S, Delneri D and O'Keefe RT: Non-coding RNAs and disease: The classical ncRNAs make a comeback. Biochem Soc Trans. 44:1073–1078. 2016. View Article : Google Scholar

90 

Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018. View Article : Google Scholar

91 

Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, et al: Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer. 18:732019. View Article : Google Scholar

92 

Song YZ and Li JF: Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun. 495:2369–2375. 2018. View Article : Google Scholar

93 

Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar

94 

Huang L, Chen M, Pan J and Yu W: Circular RNA circNASP modulates the malignant behaviors in osteosarcoma via miR-1253/FOXF1 pathway. Biochem Biophys Res Commun. 500:511–517. 2018. View Article : Google Scholar

95 

Wu Z, Shi W and Jiang C: Overexpressing circular RNA hsa_ circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 502:465–471. 2018. View Article : Google Scholar

96 

Ren C, Liu J, Zheng B, Yan P, Sun Y and Yue B: The circular RNA circ-ITCH acts as a tumour suppressor in osteosarcoma via regulating miR-22. Artif Cells Nanomed Biotechnol. 47:3359–3367. 2019. View Article : Google Scholar

97 

Li H, Lan M, Liao X, Tang Z and Yang C: Circular RNA cir-ITCH promotes osteosarcoma migration and invasion through cir-ITCH/miR-7/EGFR pathway. Technol Cancer Res Treat. 19:15330338198987282020.

98 

Xiao-Long M, Kun-Peng Z and Chun-Lin Z: Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer. 9:1856–1862. 2018. View Article : Google Scholar

99 

Jin Y, Li L, Zhu T and Liu G: Circular RNA circ_0102049 promotes cell progression as ceRNA to target MDM2 via sponging miR-1304-5p in osteosarcoma. Pathol Res Pract. 215:1526882019. View Article : Google Scholar

100 

Li L, Guo L, Yin G, Yu G, Zhao Y and Pan Y: Upregulation of circular RNA circ_0001721 predicts unfavorable prognosis in osteosarcoma and facilitates cell progression via sponging miR-569 and miR-599. Biomed Pharmacother. 109:226–232. 2019. View Article : Google Scholar

101 

Li JF and Song YZ: Circular RNA GLI2 promotes osteosarcoma cell proliferation, migration, and invasion by targeting miR-125b-5p. Tumour Biol. 39:10104283177099912017. View Article : Google Scholar

102 

Li S, Pei Y, Wang W, Liu F, Zheng K and Zhang X: Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2. Cell Cycle. 18:1281–1291. 2019. View Article : Google Scholar

103 

Cao J and Liu XS: Circular RNA 0060428 sponges miR-375 to promote osteosarcoma cell proliferation by upregulating the expression of RPBJ. Gene. 740:1445202020. View Article : Google Scholar

104 

Li S, Sun X, Miao S, Lu T, Wang Y, Liu J and Jiao W: hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma. Thorac Cancer. 9:924–930. 2018. View Article : Google Scholar

105 

Li XM, Ge HM, Yao J, Zhou YF, Yao MD, Liu C, Hu HT, Zhu YX, Shan K, Yan B and Jiang Q: Genome-wide identification of circular RNAs as a novel class of putative biomarkers for an ocular surface disease. Cell Physiol Biochem. 47:1630–1642. 2018. View Article : Google Scholar

106 

Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, Tong D, Wu D, Li C, Wei Q, et al: Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 8:61687–61697. 2017. View Article : Google Scholar

107 

Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al: Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids. 13:312–321. 2018. View Article : Google Scholar

108 

Xu S, Gong Y, Yin Y, Xing H and Zhang N: The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother. 127:1101412020. View Article : Google Scholar

109 

Yin F, Wang Z, Jiang Y, Zhang T, Wang Z, Hua Y, Song Z, Liu J, Xu W, Xu J, et al: Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomedicine. 23:1020852020. View Article : Google Scholar

110 

Matsui M and Corey DR: Non-coding RNAs as drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar

111 

Li Z and Rana TM: Therapeutic targeting of microRNAs: Current status and future challenges. Nat Rev Drug Discov. 13:622–638. 2014. View Article : Google Scholar

112 

Wang WT, Han C, Sun YM, Chen TQ and Chen YQ: Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12:552019. View Article : Google Scholar

113 

Huang KW, Lai YT, Chern GJ, Huang SF, Tsai CL, Sung YC, Chiang CC, Hwang PB, Ho TL, Huang RL, et al: Galactose derivative-modified nanoparticles for efficient siRNA delivery to hepatocellular carcinoma. Biomacromolecules. 19:2330–2339. 2018. View Article : Google Scholar

114 

Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel'in AV, Milstein S, et al: Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 136:16958–16961. 2014. View Article : Google Scholar

115 

Wen JJ, Ma YD, Yang GS and Wang GM: Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci. 21:498–503. 2017.

116 

Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H and Yan GR: A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 68:171–184.e6. 2017. View Article : Google Scholar

117 

Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:3042018. View Article : Google Scholar

118 

Ribatti D: The concept of immune surveillance against tumors. The first theories Oncotarget. 8:7175–7180. 2017. View Article : Google Scholar

119 

Ji X, Wang E and Tian F: MicroRNA-140 suppresses osteosarcoma tumor growth by enhancing anti-tumor immune response and blocking mTOR signaling. Biochem Biophys Res Commun. 495:1342–1348. 2018. View Article : Google Scholar

120 

Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, Lei YN, Liu CX, Guo SK, Shan L, et al: Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods. 18:51–59. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang G, Wu Y, Wan R, Sang H, Liu H and Huang W: The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). Int J Oncol 59: 69, 2021.
APA
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., & Huang, W. (2021). The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). International Journal of Oncology, 59, 69. https://doi.org/10.3892/ijo.2021.5249
MLA
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., Huang, W."The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review)". International Journal of Oncology 59.3 (2021): 69.
Chicago
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., Huang, W."The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review)". International Journal of Oncology 59, no. 3 (2021): 69. https://doi.org/10.3892/ijo.2021.5249
Copy and paste a formatted citation
x
Spandidos Publications style
Yang G, Wu Y, Wan R, Sang H, Liu H and Huang W: The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). Int J Oncol 59: 69, 2021.
APA
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., & Huang, W. (2021). The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review). International Journal of Oncology, 59, 69. https://doi.org/10.3892/ijo.2021.5249
MLA
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., Huang, W."The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review)". International Journal of Oncology 59.3 (2021): 69.
Chicago
Yang, G., Wu, Y., Wan, R., Sang, H., Liu, H., Huang, W."The role of non‑coding RNAs in the regulation, diagnosis, prognosis and treatment of osteosarcoma (Review)". International Journal of Oncology 59, no. 3 (2021): 69. https://doi.org/10.3892/ijo.2021.5249
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team