|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar
|
|
2
|
Siegel RL, Miller KD, Goding Sauer A,
Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal
A: Colorectal cancer statistics, 2020. CA Cancer J Clin.
70:145–164. 2020. View Article : Google Scholar
|
|
3
|
Pearlman R, Frankel WL, Swanson B, Zhao W,
Yilmaz A, Miller K, Bacher J, Bigley C, Nelsen L, Goodfellow PJ, et
al: Prevalence and spectrum of germline cancer susceptibility gene
mutations among patients with early-onset colorectal cancer. JAMA
Oncol. 3:464–471. 2017. View Article : Google Scholar
|
|
4
|
Hull R, Francies FZ, Oyomno M and Dlamini
Z: Colorectal cancer genetics, incidence and risk factors: In
search for targeted therapies. Cancer Manag Res. 12:9869–9882.
2020. View Article : Google Scholar
|
|
5
|
Koopman M, Kortman GAM, Mekenkamp L,
Ligtenberg MJ, Hoogerbrugge N, Antonini NF, Punt CJ and van Krieken
JH: Deficient mismatch repair system in patients with sporadic
advanced colorectal cancer. Br J Cancer. 100:266–273. 2009.
View Article : Google Scholar
|
|
6
|
Venderbosch S, Nagtegaal ID, Maughan TS,
Smith CG, Cheadle JP, Fisher D, Kaplan R, Quirke P, Seymour MT,
Richman SD, et al: Mismatch repair status and BRAF mutation status
in metastatic colorectal cancer patients: A pooled analysis of the
CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res.
20:5322–5330. 2014. View Article : Google Scholar
|
|
7
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar
|
|
8
|
Morse MA, Hochster H and Benson A:
Perspectives on treatment of metastatic colorectal cancer with
immune checkpoint inhibitor therapy. Oncologist. 25:33–45. 2020.
View Article : Google Scholar
|
|
9
|
Chau I and Cunningham D: Treatment in
advanced colorectal cancer: What, when and how? Br J Cancer.
100:1704–1719. 2009. View Article : Google Scholar
|
|
10
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar
|
|
11
|
Overman MJ, McDermott R, Leach JL, Lonardi
S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al:
Nivolumab in patients with metastatic DNA mismatch repair-deficient
or microsatellite instability-high colorectal cancer (CheckMate
142): An open-label, multicentre, phase 2 study. Lancet Oncol.
18:1182–1191. 2017. View Article : Google Scholar
|
|
12
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar
|
|
13
|
Saunders PA, Hendrycks VR, Lidinsky WA and
Woods ML: PD-L2:PD-1 involvement in T cell proliferation, cytokine
production, and integrin-mediated adhesion. Eur J Immunol.
35:3561–3569. 2005. View Article : Google Scholar
|
|
14
|
Sharma P and Allison JP: Immune checkpoint
targeting in cancer therapy: Toward combination strategies with
curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar
|
|
15
|
Ijsselsteijn ME, Petitprez F, Lacroix L,
Ruano D, van der Breggen R, Julie C, Morreau H, Sautès-Fridman C,
Fridman WH and de Miranda NFDCC: Revisiting immune escape in
colorectal cancer in the era of immunotherapy. Br J Cancer.
120:815–818. 2019. View Article : Google Scholar
|
|
16
|
Hodi FS, O'Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, et al: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar
|
|
17
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.
View Article : Google Scholar
|
|
18
|
Garon EB, Rizvi NA, Hui R, Leighl N,
Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L,
et al: Pembrolizumab for the treatment of non-small-cell lung
cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar
|
|
19
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus docetaxel in advanced
squamous-cell non-small-cell lung cancer. N Engl J Med.
373:123–135. 2015. View Article : Google Scholar
|
|
20
|
Borghaei H, Paz-Ares L, Horn L, Spigel DR,
Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al:
Nivolumab versus docetaxel in advanced nonsquamous non-small-cell
lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar
|
|
21
|
Schadendorf D, Hodi FS, Robert C, Weber
JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM and Wolchok JD:
Pooled analysis of long-term survival data from phase II and phase
III trials of ipilimumab in unresectable or metastatic melanoma. J
Clin Oncol. 33:1889–1894. 2015. View Article : Google Scholar
|
|
22
|
Rizvi NA, Hellmann MD, Snyder A, Kvistborg
P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al:
Mutational landscape determines sensitivity to PD-1 blockade in
non-small cell lung cancer. Science. 348:124–128. 2015. View Article : Google Scholar
|
|
23
|
Schumacher TN and Schreiber RD:
Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015.
View Article : Google Scholar
|
|
24
|
Subbiah V, Solit DB, Chan TA and Kurzrock
R: The FDA approval of pembrolizumab for adult and pediatric
patients with tumor mutational burden (TMB) ≥10: A decision
centered on empowering patients and their physicians. Ann Oncol.
31:1115–1118. 2020. View Article : Google Scholar
|
|
25
|
Mlecnik B, Tosolini M, Kirilovsky A,
Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman
WH, Pagès F and Galon J: Histopathologic-based prognostic factors
of colorectal cancers are associated with the state of the local
immune reaction. J Clin Oncol. 29:610–618. 2011. View Article : Google Scholar
|
|
26
|
Galon J, Costes A, Sanchez-Cabo F,
Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M,
Berger A, Wind P, et al: Type, density, and location of immune
cells within human colorectal tumors predict clinical outcome.
Science. 313:1960–1964. 2006. View Article : Google Scholar
|
|
27
|
Galon J, Fridman WH and Pagès F: The
adaptive immunologic microenvironment in colorectal cancer: A novel
perspective. Cancer Res. 67:1883–1886. 2007. View Article : Google Scholar
|
|
28
|
Franke AJ, Skelton WP, Starr JS, Parekh H,
Lee JJ, Overman MJ, Allegra C and George TJ: Immunotherapy for
colorectal cancer: A review of current and novel therapeutic
approaches. J Natl Cancer Inst. 111:1131–1141. 2019. View Article : Google Scholar
|
|
29
|
Shia J, Holck S, DePetris G, Greenson JK
and Klimstra DS: Lynch syndrome-associated neoplasms: A discussion
on histopathology and immunohistochemistry. Fam Cancer. 12:241–260.
2013. View Article : Google Scholar
|
|
30
|
Choi YY, Bae JM, An JY, Kwon IG, Cho I,
Shin HB, Eiji T, Aburahmah M, Kim HI, Cheong JH, et al: Is
microsatellite instability a prognostic marker in gastric cancer? A
systematic review with meta-analysis. J Surg Oncol. 110:129–135.
2014. View Article : Google Scholar
|
|
31
|
Llosa NJ, Cruise M, Tam A, Wicks EC,
Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS,
et al: The vigorous immune microenvironment of microsatellite
instable colon cancer is balanced by multiple counter-inhibitory
checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar
|
|
32
|
Lagos GG, Izar B and Rizvi NA: Beyond
tumor PD-L1: Emerging genomic biomarkers for checkpoint inhibitor
immunotherapy. Am Soc Clin Oncol Educ Book. 40:1–11. 2020.
|
|
33
|
Choucair K, Morand S, Stanbery L, Edelman
G, Dworkin L and Nemunaitis J: TMB: A promising immune-response
biomarker, and potential spearhead in advancing targeted therapy
trials. Cancer Gene Ther. 27:841–853. 2020. View Article : Google Scholar
|
|
34
|
Bever KM and Le DT: An expanding role for
immunotherapy in colorectal cancer. J Natl Compr Canc Netw.
15:401–410. 2017. View Article : Google Scholar
|
|
35
|
Vignali DA and Kuchroo VK: IL-12 family
cytokines: Immunological playmakers. Nat Immunol. 13:722–728. 2012.
View Article : Google Scholar
|
|
36
|
Kim TM, Laird PW and Park PJ: The
landscape of microsatellite instability in colorectal and
endometrial cancer genomes. Cell. 155:858–868. 2013. View Article : Google Scholar
|
|
37
|
Price TJ, Thavaneswaran S, Burge M,
Segelov E, Haller DG, Punt CJ, Arnold D, Karapetis CS, Tebbutt NC,
Pavlakis N, et al: Update on optimal treatment for metastatic
colorectal cancer from the ACTG/AGITG expert meeting: ECCO.
2015.Expert Rev Anticancer Ther. 16:557–571. 2016. View Article : Google Scholar
|
|
38
|
Valero C, Lee M, Hoen D, Zehir A, Berger
MF, Seshan VE, Chan TA and Morris LGT: Response rates to anti-PD-1
immunotherapy in microsatellite-stable solid tumors with 10 or more
mutations per megabase. JAMA Oncol. 7:739–743. 2021. View Article : Google Scholar
|
|
39
|
Segal NH, Parsons DW, Peggs KS, Velculescu
V, Kinzler KW, Vogelstein B and Allison JP: Epitope landscape in
breast and colorectal cancer. Cancer Res. 68:889–892. 2008.
View Article : Google Scholar
|
|
40
|
Kloor M and von Knebel Doeberitz M: The
immune biology of microsatellite-unstable cancer. Trends Cancer.
2:121–133. 2016. View Article : Google Scholar
|
|
41
|
Bauer K, Nelius N, Reuschenbach M, Koch M,
Weitz J, Steinert G, Kopitz J, Beckhove P, Tariverdian M, von
Knebel Doeberitz M and Kloor M: T cell responses against
microsatellite instability-induced frameshift peptides and
influence of regulatory T cells in colorectal cancer. Cancer
Immunol Immunother. 62:27–37. 2013. View Article : Google Scholar
|
|
42
|
Kloor M, Reuschenbach M, Pauligk C,
Karbach J, Rafiyan MR, Al-Batran SE, Tariverdian M, Jäger E and von
Knebel Doeberitz M: A frameshift peptide neoantigen-based vaccine
for mismatch repair-deficient cancers: A phase I/IIa clinical
trial. Clin Cancer Res. 26:4503–4510. 2020. View Article : Google Scholar
|
|
43
|
Reuschenbach M, Kloor M, Morak M,
Wentzensen N, Germann A, Garbe Y, Tariverdian M, Findeisen P,
Neumaier M, Holinski-Feder E and von Knebel Doeberitz M: Serum
antibodies against frameshift peptides in microsatellite unstable
colorectal cancer patients with Lynch syndrome. Fam Cancer.
9:173–179. 2010. View Article : Google Scholar
|
|
44
|
Ballhausen A, Przybilla MJ, Jendrusch M,
Haupt S, Pfaffendorf E, Draxlbauer M, Seidler F, Krausert S,
Ahadova A, Kalteis MS, et al: The shared neoantigen landscape of
MSI cancers reflects immunoediting during tumor evolution. bioRxiv.
Jan 1–2019.Epub ahead of print.
|
|
45
|
Rus Bakarurraini NAA, Ab Mutalib NS and
Jamal R: Abu N. The landscape of tumor-specific antigens in
colorectal cancer. Vaccines (Basel). 8:3712020. View Article : Google Scholar
|
|
46
|
Yang G, Zheng R and Jin Z: Correlations
between microsatellite instability and the biological behaviour of
tumours. J Cancer Res Clin Oncol. 145:2891–2899. 2019. View Article : Google Scholar
|
|
47
|
Kim NG, Rhee H, Li LS and Kim H, Lee JS,
Kim JH, Kim NK and Kim H: Identification of MARCKS, FLJ11383 and
TAF1B as putative novel target genes in colorectal carcinomas with
microsatellite instability. Oncogene. 21:5081–5087. 2002.
View Article : Google Scholar
|
|
48
|
Itatani Y, Kawada K and Sakai Y:
Transforming growth factor-β signaling pathway in colorectal cancer
and its tumor microenvironment. Int J Mol Sci. 20:58222019.
View Article : Google Scholar
|
|
49
|
Bickeböller M, Tagscherer KE, Kloor M,
Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Toth C,
Schirmacher P, Roth W and Bläker H: Functional characterization of
the tumor-suppressor MARCKS in colorectal cancer and its
association with survival. Oncogene. 34:1150–1159. 2015. View Article : Google Scholar
|
|
50
|
Hornung V, Ablasser A, Charrel-Dennis M,
Bauernfeind F, Horvath G, Caffrey DR, Latz E and Fitzgerald KA:
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating
inflammasome with ASC. Nature. 458:514–518. 2009. View Article : Google Scholar
|
|
51
|
Xu M, Wang J, Li H, Zhang Z and Cheng Z:
AIM2 inhibits colorectal cancer cell proliferation and migration
through suppression of Gli1. Aging (Albany NY). 13:1017–1031. 2020.
View Article : Google Scholar
|
|
52
|
Ivanov I, Lo KC, Hawthorn L, Cowell JK and
Ionov Y: Identifying candidate colon cancer tumor suppressor genes
using inhibition of nonsense-mediated mRNA decay in colon cancer
cells. Oncogene. 26:2873–2884. 2007. View Article : Google Scholar
|
|
53
|
Tougeron D, Fauquembergue E, Rouquette A,
Le Pessot F, Sesboüé R, Laurent M, Berthet P, Mauillon J, Di Fiore
F, Sabourin JC, et al: Tumor-infiltrating lymphocytes in colorectal
cancers with microsatellite instability are correlated with the
number and spectrum of frameshift mutations. Mod Pathol.
22:1186–1195. 2009. View Article : Google Scholar
|
|
54
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar
|
|
55
|
Brahmer JR, Drake CG, Wollner I, Powderly
JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller
TL, et al: Phase I study of single-agent anti-programmed death-1
(MDX-1106) in refractory solid tumors: Safety, clinical activity,
pharmacodynamics, and immunologic correlates. J Clin Oncol.
28:3167–3175. 2010. View Article : Google Scholar
|
|
56
|
Giardiello FM, Allen JI, Axilbund JE,
Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA,
Kaltenbach T, et al: Guidelines on genetic evaluation and
management of Lynch syndrome: A consensus statement by the US
multi-society task force on colorectal cancer. Gastroenterology.
147:502–526. 2014. View Article : Google Scholar
|
|
57
|
Stoffel EM, Mangu PB, Gruber SB, Hamilton
SR, Kalady MF, Lau MW, Lu KH, Roach N and Limburg PJ; American
Society of Clinical Oncology; European Society of Clinical
Oncology: Hereditary colorectal cancer syndromes: American society
of clinical oncology clinical practice guideline endorsement of the
familial risk-colorectal cancer: European society for medical
oncology clinical practice guidelines. J Clin Oncol. 33:209–217.
2015. View Article : Google Scholar
|
|
58
|
Luchini C, Bibeau F, Ligtenberg MJL, Singh
N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F and
Scarpa A: ESMO recommendations on microsatellite instability
testing for immunotherapy in cancer, and its relationship with
PD-1/PD-L1 expression and tumour mutational burden: A systematic
review-based approach. Ann Oncol. 30:1232–1243. 2019. View Article : Google Scholar
|
|
59
|
Monahan KJ, Bradshaw N, Dolwani S, Desouza
B, Dunlop MG, East JE, Ilyas M, Kaur A, Lalloo F, Latchford A, et
al: Guidelines for the management of hereditary colorectal cancer
from the British society of gastroenterology (BSG)/association of
coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom
cancer genetics group (UKCGG). Gut. 69:411–444. 2020. View Article : Google Scholar
|
|
60
|
Stein A, Moehler M, Trojan J, Goekkurt E
and Vogel A: Immuno-oncology in GI tumours: Clinical evidence and
emerging trials of PD-1/PD-L1 antagonists. Crit Rev Oncol Hematol.
130:13–26. 2018. View Article : Google Scholar
|
|
61
|
FDA approves pembrolizumab for first-line
treatment of MSI-H/dMMR colorectal cancer. FDA; 2020
|
|
62
|
Le DT, Kim TW, Van Cutsem E, Geva R, Jäger
D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, et al: Phase II
open-label study of pembrolizumab in treatment-refractory,
microsatellite instability-high/mismatch repair-deficient
metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 38:11–19.
2020. View Article : Google Scholar
|
|
63
|
US. Food and drug administration: KEYTRUDA
(pembrolizumab) {package insert}. 2017.
|
|
64
|
Andre T, Shiu KK, Kim TW, Jensen BV,
Jensen LH, Punt CJA, Smith DM, Garcia-Carbonero R, Benavides M,
Gibbs P, et al: Pembrolizumab versus chemotherapy for
microsatellite instability-high/mismatch repair deficient
metastatic colorectal cancer: The phase 3 KEYNOTE-177 study. J Clin
Oncol. 38(18 Suppl): LBA42020. View Article : Google Scholar
|
|
65
|
Shiu KK, Andre T, Kim TW, Jensen BV,
Jensen LH, Punt cJA, Smith DM, Garcia-Carbonero R, Benavides M,
Gibbs P, et al: KEYNOTE-177: Phase III randomized study of
pembrolizumab versus chemotherapy for microsatellite
instability-high advanced colorectal cancer. J Clin Oncol. 39(3
Suppl): S62021. View Article : Google Scholar
|
|
66
|
FDA grants nivolumab accelerated approval
for MSI-H or dMMR colorectal cancer. FDA; 2017
|
|
67
|
Das R, Verma R, Sznol M, Boddupalli CS,
Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R,
Dhodapkar MV and Dhodapkar KM: Combination therapy with anti-CTLA-4
and anti-PD-1 leads to distinct immunologic changes in vivo. J
Immunol. 194:950–959. 2015. View Article : Google Scholar
|
|
68
|
Lenz HJJ, Van Cutsem E, Limon ML, Wong KY,
Hendlisz A, Aglietta M, Garcia-Alfonso P, Neyns B, Luppi G, Cardin
D, et al: Durable clinical benefit with nivolumab (NIVO) plus
low-dose ipilimumab (IPI) as first-line therapy in microsatellite
instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic
colorectal cancer (mCRC). Ann Oncol. 29(Suppl 8): viii7142018.
View Article : Google Scholar
|
|
69
|
FDA grants accelerated approval to
ipilimumab for MSI-H or dMMR metastatic colorectal cancer. FDA;
2018
|
|
70
|
Chung KY, Gore I, Fong L, Venook A, Beck
SB, Dorazio P, Criscitiello PJ, Healey DI, Huang B, Gomez-Navarro J
and Saltz LB: Phase II study of the anti-cytotoxic
T-lymphocyte-associated antigen 4 monoclonal antibody,
tremelimumab, in patients with refractory metastatic colorectal
cancer. J Clin Oncol. 28:3485–3490. 2010. View Article : Google Scholar
|
|
71
|
Chalabi M, Fanchi LF, Dijkstra KK, Van den
Berg JG, Aalbers AG, Sikorska K, Lopez-Yurda M, Grootscholten C,
Beets GL, Snaebjornsson P, et al: Neoadjuvant immunotherapy leads
to pathological responses in MMR-proficient and MMR-deficient
early-stage colon cancers. Nat Med. 26:566–576. 2020. View Article : Google Scholar
|
|
72
|
Herbst RS, Garon EB, Kim DW, Cho BC,
Perez-Gracia JL, Han JY, Arvis CD, Majem M, Forster MD, Monnet I,
et al: Long-term outcomes and retreatment among patients with
previously treated, programmed death-ligand 1-positive, advanced
non-small-cell lung cancer in the KEYNOTE-010 study. J Clin Oncol.
38:1580–1590. 2020. View Article : Google Scholar
|
|
73
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar
|
|
74
|
Eng C, Kim TW, Bendell J, Argilés G,
Tebbutt NC, Di Bartolomeo M, Falcone A, Fakih M, Kozloff M, Segal
NH, et al: Atezolizumab with or without cobimetinib versus
regorafenib in previously treated metastatic colorectal cancer
(IMblaze370): A multicentre, open-label, phase 3, randomised,
controlled trial. Lancet Oncol. 20:849–861. 2019. View Article : Google Scholar
|
|
75
|
Grothey A, Tabernero J, Arnold D, De
Gramont A, Ducreux MP, O'Dwyer PJ, Van Cutsem E, Bosanac I, Srock
S, Mancao C, et al: Fluoropyrimidine (FP) + bevacizumab (BEV) +
atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer
(mCRC): Findings from Cohort 2 of MODUL-a multicentre, randomized
trial of biomarker-driven maintenance treatment following
first-line induction therapy. Ann Oncol. 29(Suppl 8):
viii714–viii715. 2018. View Article : Google Scholar
|
|
76
|
Lee JJ, Yothers G, Jacobs SA, Sanoff HK,
Cohen DJ, Guthrie KA, Henry NL, Ganz PA, Kopetz S, Lucas PC, et al:
Colorectal cancer metastatic dMMR immuno-therapy (COMMIT) study
(NRG-GI004/SWOG-S1610): A randomized phase III study of
mFOLFOX6/bevacizumab combination chemotherapy with or without
atezolizumab or atezolizumab monotherapy in the first-line
treatment of patients with deficient DNA mismatch repair (dMMR)
metastatic colorectal cancer. J Clin Oncol. 36(Suppl 15):
TPS36152018. View Article : Google Scholar
|
|
77
|
Sinicrope FA, Ou FS, Shi Q, Nixon AB, Mody
K, Levasseur A, Dueck AC, Dhanarajan AR, Lieu CH, Cohen DJ, et al:
Randomized trial of FOLFOX alone or combined with atezolizumab as
adjuvant therapy for patients with stage III colon cancer and
deficient DNA mismatch repair or microsatellite instability
(ATOMIC, Alliance A021502). J Clin Oncol. 35(Suppl 15):
TPS36302017. View Article : Google Scholar
|
|
78
|
Chiou VL and Burotto M: Pseudoprogression
and Immune-Related Response in Solid Tumors. J Clin Oncol.
33:3541–3543. 2015. View Article : Google Scholar
|
|
79
|
Solinas C, Porcu M, Hlavata Z, De Silva P,
Puzzoni M, Willard-Gallo K, Scartozzi M and Saba L: Critical
features and challenges associated with imaging in patients
undergoing cancer immunotherapy. Crit Rev Oncol Hematol. 120:13–21.
2017. View Article : Google Scholar
|
|
80
|
Seymour L, Bogaerts J, Perrone A, Ford R,
Schwartz LH, Mandrekar S, Lin NU, Litière S, Dancey J, Chen A, et
al: iRECIST: Guidelines for response criteria for use in trials
testing immunotherapeutics. Lancet Oncol. 18:e143–e152. 2017.
View Article : Google Scholar
|
|
81
|
Ducreux M, Bennouna J, Hebbar M, Ychou M,
Lledo G, Conroy T, Adenis A, Faroux R, Rebischung C, Bergougnoux L,
et al: Capecitabine plus oxaliplatin (XELOX) versus
5-fluorouracil/leucovorin plus oxaliplatin (FOLFOX-6) as first-line
treatment for metastatic colorectal cancer. Int J Cancer.
128:682–690. 2011. View Article : Google Scholar
|
|
82
|
Overman MJ, Bergamo F, McDermott RS,
Aglietta M, Chen F, Gelsomino F, Wong M, Morse M, Van Cutsem E,
Hendlisz A, et al: Nivolumab in patients with DNA mismatch
repair-deficient/microsatellite instability-high (dMMR/MSI-H)
metastatic colorectal cancer (mCRC): Long-term survival according
to prior line of treatment from CheckMate-142. J Clin Oncol.
36(Suppl 4): S5542018. View Article : Google Scholar
|
|
83
|
Overman MJ, Lonardi S, Wong KYM, Lenz HJ,
Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill
A, et al: Durable clinical benefit with nivolumab plus ipilimumab
in DNA mismatch repair-deficient/microsatellite instability-high
metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018.
View Article : Google Scholar
|
|
84
|
Brahmer JR, Lacchetti C, Schneider BJ,
Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner
JM, Ginex P, et al: Management of immune-related adverse events in
patients treated with immune checkpoint inhibitor therapy: American
society of clinical oncology clinical practice guideline. J Clin
Oncol. 36:1714–1768. 2018. View Article : Google Scholar
|
|
85
|
Woo SR, Turnis ME, Goldberg MV, Bankoti J,
Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et
al: Immune inhibitory molecules LAG-3 and PD-1 synergistically
regulate T-cell function to promote tumoral immune escape. Cancer
Res. 72:917–927. 2012. View Article : Google Scholar
|
|
86
|
Ngiow SF, von Scheidt B, Akiba H, Yagita
H, Teng MW and Smyth MJ: Anti-TIM3 antibody promotes T cell
IFN-γ-mediated antitumor immunity and suppresses established
tumors. Cancer Res. 71:3540–3551. 2011. View Article : Google Scholar
|
|
87
|
Anderson AC, Joller N and Kuchroo VK:
Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized
functions in immune regulation. Immunity. 44:989–1004. 2016.
View Article : Google Scholar
|
|
88
|
Ward-Kavanagh LK, Lin WW, Šedý JR and Ware
CF: The TNF receptor superfamily in co-stimulating and
co-inhibitory responses. Immunity. 44:1005–1019. 2016. View Article : Google Scholar
|
|
89
|
Kroemer G, Galluzzi L, Kepp O and Zitvogel
L: Immunogenic cell death in cancer therapy. Annu Rev Immunol.
31:51–72. 2013. View Article : Google Scholar
|
|
90
|
Sun X, Suo J and Yan J: Immunotherapy in
human colorectal cancer: Challenges and prospective. World J
Gastroenterol. 22:6362–6372. 2016. View Article : Google Scholar
|
|
91
|
Ganesh K, Stadler ZK, Cercek A, Mendelsohn
RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal
cancer: Rationale, challenges and potential. Nat Rev Gastroenterol
Hepatol. 16:361–375. 2019. View Article : Google Scholar
|
|
92
|
Limagne E, Euvrard R, Thibaudin M, Rébé C,
Derangère V, Chevriaux A, Boidot R, Végran F, Bonnefoy N, Vincent
J, et al: Accumulation of MDSC and Th17 cells in patients with
metastatic colorectal cancer predicts the efficacy of a
FOLFOX-bevacizumab drug treatment regimen. Cancer Res.
76:5241–5252. 2016. View Article : Google Scholar
|
|
93
|
Hochster HS, Bendell JC, Cleary JM, Foster
P, Zhang W, He X, Hernandez G, Iizuka K and Eckhardt SG: Efficacy
and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase
Ib study of microsatellite instability (MSI)-high metastatic
colorectal cancer (mCRC). J Clin Oncol. 35(Suppl 4): S6732017.
View Article : Google Scholar
|
|
94
|
Kaminski JM, Shinohara E, Summers JB,
Niermann KJ, Morimoto A and Brousal J: The controversial abscopal
effect. Cancer Treat Rev. 31:159–172. 2005. View Article : Google Scholar
|
|
95
|
Gaipl US, Multhoff G, Scheithauer H,
Lauber K, Hehlgans S, Frey B and Rödel F: Kill and spread the word:
Stimulation of antitumor immune responses in the context of
radiotherapy. Immunotherapy. 6:597–610. 2014. View Article : Google Scholar
|
|
96
|
Postow MA, Callahan MK, Barker CA, Yamada
Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al:
Immunologic correlates of the abscopal effect in a patient with
melanoma. N Engl J Med. 366:925–931. 2012. View Article : Google Scholar
|
|
97
|
Segal NH, Kemeny NE, Cercek A, Reidy DL,
Raasch PJ, War ren P, Hrabovsky AE, Campbell N, Shia J, Goodman KA,
et al: Non-randomized phase II study to assess the efficacy of
pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch
repair proficient (pMMR) metastatic colorectal cancer (mCRC)
patients. J Clin Oncol. 34(Suppl 15): S35392016. View Article : Google Scholar
|
|
98
|
Lee JJ, Yothers G, George TJ, Fakih MG,
Mallick AB, Mitchell EP, Wade JL, Krauss JC, Kayaleh OR, Heron DE,
et al: Abstract 2257: Phase II study of dual immune checkpoint
blockade (ICB) with durvalumab (Durva) plus tremelimumab (T)
following palliative hypofractionated radiotherapy (SBRT) in
patients (pts) with microsatellite-stable (MSS) metastatic
colorectal cancer (mCRC) progressing on chemotherapy: NSABP FC-9.
Cancer Res. 79(Suppl 13): S22572019.
|
|
99
|
O'Donnell JS, Long GV, Scolyer RA, Teng
MWL and Smyth MJ: Resistance to PD1/PDL1 checkpoint inhibition.
Cancer Treat Rev. 52:71–81. 2017. View Article : Google Scholar
|
|
100
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar
|
|
101
|
Hugo W, Zaretsky JM, Sun L, Song C, Moreno
BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G,
et al: Genomic and transcriptomic features of response to anti-PD-1
therapy in metastatic melanoma. Cell. 165:35–44. 2016. View Article : Google Scholar
|
|
102
|
O'Neil BH, Wallmark JM, Lorente D, Elez E,
Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Stein MN, Abdul
Razak AR, et al: Safety and antitumor activity of the anti-PD-1
antibody pembrolizumab in patients with advanced colorectal
carcinoma. PLoS One. 12:e01898482017. View Article : Google Scholar
|
|
103
|
Kopetz S, Andre T, Overman MJ, Zagonel V,
Lonardi S, Aglietta M, Gelsomino F, McDermott R, Wong KYM, Hendlisz
A, et al: Abstract 2603: Exploratory analysis of Janus kinase 1
(JAK1) loss-of-function (LoF) mutations in patients with DNA
mismatch repair-deficient/microsatellite instability-high
(dMMR/MSI-H) metastatic colorectal cancer (mCRC) treated with
nivolumab + ipilimumab in CheckMate-142. Cancer Res. 78(Suppl 13):
S26032018.
|
|
104
|
Zaretsky JM, Garcia-Diaz A, Shin DS,
Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY,
Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations
associated with acquired resistance to PD-1 blockade in melanoma. N
Engl J Med. 375:819–829. 2016. View Article : Google Scholar
|
|
105
|
Llosa NJ, Luber B, Siegel N, Awan AH, Oke
T, Zhu Q, Bartlett BR, Aulakh LK, Thompson ED, Jaffee EM, et al:
Immunopathologic stratification of colorectal cancer for checkpoint
blockade immunotherapy. Cancer Immunol Res. 7:1574–1579. 2019.
View Article : Google Scholar
|
|
106
|
Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ,
He QM, Yang XJ, Sun Y, Mao YP, Yun JP, et al: Genomic analysis of
tumor microenvironment immune types across 14 solid cancer types:
Immunotherapeutic implications. Theranostics. 7:3585–3594. 2017.
View Article : Google Scholar
|
|
107
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar
|
|
108
|
Daassi D, Mahoney KM and Freeman GJ: The
importance of exosomal PDL1 in tumour immune evasion. Nat Rev
Immunol. 20:209–215. 2020. View Article : Google Scholar
|
|
109
|
Li XY, Das I, Lepletier A, Addala V, Bald
T, Stannard K, Barkauskas D, Liu J, Aguilera AR, Takeda K, et al:
CD155 loss enhances tumor suppression via combined host and
tumor-intrinsic mechanisms. J Clin Invest. 128:2613–2625. 2018.
View Article : Google Scholar
|
|
110
|
Blake SJ, Stannard K, Liu J, Allen S, Yong
MC, Mittal D, Aguilera AR, Miles JJ, Lutzky VP, de Andrade LF, et
al: Suppression of metastases using a new lymphocyte checkpoint
target for cancer immunotherapy. Cancer Discov. 6:446–459. 2016.
View Article : Google Scholar
|
|
111
|
Harjunpää H, Blake SJ, Ahern E, Allen S,
Liu J, Yan J, Lutzky V, Takeda K, Aguilera AR, Guillerey C, et al:
Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity
without significantly compromising immune homeostasis.
OncoImmunology. 7:e14459492018. View Article : Google Scholar
|
|
112
|
Neubert NJ, Schmittnaegel M, Bordry N,
Nassiri S, Wald N, Martignier C, Tillé L, Homicsko K, Damsky W,
Maby-El Hajjami H, et al: T cell-induced CSF1promotes melanoma
resistance to PD1 blockade. Sci Transl Med. 10:eaan33112018.
View Article : Google Scholar
|
|
113
|
Seliger B: The link between MHC class I
abnormalities of tumors, oncogenes, tumor suppressor genes, and
transcription factors. J Immunotoxicol. 11:308–310. 2014.
View Article : Google Scholar
|
|
114
|
Godfrey DI, Le Nours J, Andrews DM,
Uldrich AP and Rossjohn J: Unconventional T cell targets for cancer
immunotherapy. Immunity. 48:453–473. 2018. View Article : Google Scholar
|
|
115
|
Sade-Feldman M, Jiao YJ, Chen JH, Rooney
MS, Barzily-Rokni M, Eliane JP, Bjorgaard SL, Hammond MR, Vitzthum
H, Blackmon SM, et al: Resistance to checkpoint blockade therapy
through inactivation of antigen presentation. Nat Commun.
8:11362017. View Article : Google Scholar
|
|
116
|
Takeda K, Nakayama M, Hayakawa Y, Kojima
Y, Ikeda H, Imai N, Ogasawara K, Okumura K, Thomas DM and Smyth MJ:
IFN-γ is required for cytotoxic T cell-dependent cancer genome
immunoediting. Nat Commun. 8:146072017. View Article : Google Scholar
|
|
117
|
Dunn GP, Ikeda H, Bruce AT, Koebel C,
Uppaluri R, Bui J, Chan R, Diamond M, White JM, Sheehan KC and
Schreiber RD: Interferon-gamma and cancer immunoediting. Immunol
Res. 32:231–245. 2005. View Article : Google Scholar
|
|
118
|
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He
Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al: Loss of IFN-γ
pathway genes in tumor cells as a mechanism of resistance to
anti-CTLA-4 therapy. Cell. 167:397–404.e9. 2016. View Article : Google Scholar
|
|
119
|
Kearney CJ, Vervoort SJ, Hogg SJ,
Ramsbottom KM, Freeman AJ, Lalaoui N, Pijpers L, Michie J, Brown
KK, Knight DA, et al: Tumor immune evasion arises through loss of
TNF sensitivity. Sci Immunol 3: eaar3451,. 2018.
|
|
120
|
Vijayan D, Young A, Teng MWL and Smyth MJ:
Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer.
17:709–724. 2017. View Article : Google Scholar
|
|
121
|
Ohta A, Gorelik E, Prasad SJ, Ronchese F,
Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, et al:
A2A adenosine receptor protects tumors from antitumor T cells. Proc
Natl Acad Sci USA. 103:13132–13137. 2006. View Article : Google Scholar
|
|
122
|
Beavis PA, Divisekera U, Paget C, Chow MT,
John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ and Darcy PK:
Blockade of A2A receptors potently suppresses the metastasis of
CD73+ tumors. Proc Natl Acad Sci USA. 110:14711–14716.
2013. View Article : Google Scholar
|
|
123
|
Chen L, Diao L, Yang Y, Yi X, Rodriguez
BL, Li Y, Villalobos PA, Cascone T, Liu X, Tan L, et al:
CD38-mediated immunosuppression as a mechanism of tumor cell escape
from PD-1/PD-L1 blockade. Cancer Discov. 8:1156–1175. 2018.
View Article : Google Scholar
|
|
124
|
Triplett TA, Garrison KC, Marshall N,
Donkor M, Blazeck J, Lamb C, Qerqez A, Dekker JD, Tanno Y, Lu WC,
et al: Reversal of indoleamine 2,3-dioxygenase-mediated cancer
immune suppression by systemic kynurenine depletion with a
therapeutic enzyme. Nat Biotechnol. 36:758–764. 2018. View Article : Google Scholar
|
|
125
|
Moon YW, Hajjar J, Hwu P and Naing A:
Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J
Immunother Cancer. 3:512015. View Article : Google Scholar
|
|
126
|
Voron T, Colussi O, Marcheteau E, Pernot
S, Nizard M, Point AL, Latreche S, Bergaya S, Benhamouda N, Tanchot
C, et al: VEGF-A modulates expression of inhibitory checkpoints on
CD8+ T cells in tumors. J Exp Med. 212:139–148. 2015.
View Article : Google Scholar
|
|
127
|
Johnston CJ, Smyth DJ, Dresser DW and
Maizels RM: TGF-β in tolerance, development and regulation of
immunity. Cell Immunol. 299:14–22. 2016. View Article : Google Scholar
|
|
128
|
Strauss J, Heery CR, Schlom J, Madan RA,
Cao L, Kang Z, Lamping E, Marté JL, Donahue RN, Grenga I, et al:
Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein
targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer
Res. 24:1287–1295. 2018. View Article : Google Scholar
|