Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2022 Volume 61 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2022 Volume 61 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)

  • Authors:
    • Xiaoran Ma
    • Jibiao Wu
    • Bin Wang
    • Cun Liu
    • Lijuan Liu
    • Changgang Sun
  • View Affiliations / Copyright

    Affiliations: College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China, College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 134
    |
    Published online on: September 20, 2022
       https://doi.org/10.3892/ijo.2022.5424
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD‑1)/programmed death ligand 1 (PD‑L1) axis have achieved marked and durable efficacy in patients with different solid tumors and have improved their survival. However, the presence of primary or acquired resistance to immune checkpoint blockades results in only a small fraction of patients benefiting from the treatment. An increasing number of preclinical studies have reported that PD‑L1 expression in tumor cells is involved in a number of epigenetic changes, including histone modifications, non‑coding RNA regulation and DNA methylation. In addition, multiple epigenetic targeting drugs have been demonstrated to directly or indirectly interfere with PD‑L1 expression in various cancer models. This provides opportunities to better characterize the regulatory mechanisms of PD‑L1 expression and explore novel therapeutic strategies to improve immunosuppressant response rates and overcome drug resistance. The present review focuses on the latest findings and evidence on the epigenetic mechanism regulating PD‑L1 expression and discusses the biological and clinical implications of this regulatory mechanism in solid tumors. A rational combination of epigenetic regulation and PD‑1/PD‑L1 axis blockade may improve the prognosis of patients with solid tumors.
View Figures

Figure 1

Figure 2

View References

1 

Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar

2 

Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Guan J, Lim KS, Mekhail T and Chang CC: Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch Pathol Lab Med. 141:851–861. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Yang F, Wang JF, Wang Y, Liu B and Molina JR: Comparative analysis of predictive biomarkers for PD-1/PD-L1 inhibitors in cancers: Developments and challenges. Cancers. 14:1092021. View Article : Google Scholar

6 

Liu D, Wang S and Bindeman W: Clinical applications of PD-L1 bioassays for cancer immunotherapy. J Hematol Oncol. 10:1102017. View Article : Google Scholar : PubMed/NCBI

7 

Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, et al: Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 15:1112022. View Article : Google Scholar : PubMed/NCBI

8 

Kim CG, Kim M, Hwang J, Kim ST, Jung M, Kim KH, Kim KH, Chang JS, Koom WS, Roh MR, et al: First-line pembrolizumab versus dabrafenib/trametinib treatment for BRAF V600-mutant advanced melanoma. J Am Acad Dermatol. Sep 3–2022.Epub ahead of print. View Article : Google Scholar

9 

Donne R and Lujambio A: The liver cancer immune microenvironment: Therapeutic Implications for hepatocellular carcinoma. Hepatology. Aug 21–2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

10 

Sun C, Mezzadra R and Schumacher TN: Regulation and function of the PD-L1 checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, et al: Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res. 39:292020. View Article : Google Scholar : PubMed/NCBI

13 

Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Burkitt K and Saloura V: Epigenetic modifiers as novel therapeutic targets and a systematic review of clinical studies investigating epigenetic inhibitors in head and neck cancer. Cancers (Basel). 13:52412021. View Article : Google Scholar

15 

Huo M, Zhang J, Huang W and Wang Y: Interplay among metabolism, epigenetic modifications, and gene expression in cancer. Front Cell Dev Biol. 9:7934282021. View Article : Google Scholar

16 

Perrier A, Didelot A, Laurent-Puig P, Blons H and Garinet S: Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules. 10:10612020. View Article : Google Scholar :

17 

Martínez-Cano J, Campos-Sánchez E and Cobaleda C: Epigenetic priming in immunodeficiencies. Front Cell Dev Biol. 7:1252019. View Article : Google Scholar : PubMed/NCBI

18 

Kuendgen A and Lübbert M: Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol. 87:601–611. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Hoy SM: Tazemetostat: First approval. Drugs. 80:513–521. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Li Y and Seto E: HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 6:a0268312016. View Article : Google Scholar : PubMed/NCBI

21 

Chen Y, Liu X, Li Y, Quan C, Zheng L and Huang K: Lung cancer therapy targeting histone methylation: Opportunities and challenges. Comput Struct Biotechnol J. 16:211–223. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Lei Q, Wang D, Sun K, Wang L and Zhang Y: Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol. 8:6722020. View Article : Google Scholar : PubMed/NCBI

23 

O'Donnell JS, Long GV, Scolyer RA, Teng MW and Smyth MJ: Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 52:71–81. 2017. View Article : Google Scholar

24 

Shen Y, Liu L, Wang M, Xu B, Lyu R, Shi YG and Tan L: TET2 inhibits PD-L1 gene expression in breast cancer cells through histone deacetylation. Cancers (Basel). 13:22072021. View Article : Google Scholar

25 

Fan P, Zhao J, Meng Z, Wu H, Wang B, Wu H and Jin X: Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J Exp Clin Cancer Res. 38:472019. View Article : Google Scholar : PubMed/NCBI

26 

Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, Oberlies NH, Pearce C and Liu K: The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst. 109:djw2832017. View Article : Google Scholar :

27 

Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H, Li N, Li Z, Li Y, Dai X, et al: LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer. 9:e0027462021. View Article : Google Scholar : PubMed/NCBI

28 

Gilles ME and Slack FJ: Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets. 22:929–939. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Hou J, Huang Q, Fan Z, Sang H, Wu S, Cheng S and Li Q: LncRNA OIP5-AS1 knockdown facilitated the ferroptosis and immune evasion by modulating the GPX4 in oesophageal carcinoma. Comput Math Methods Med. 2022:81031982022. View Article : Google Scholar : PubMed/NCBI

30 

Wang X, Liang C, Yao X, Yang RH, Zhang ZS, Liu FY, Li WQ, Pei SH, Ma J, Xie SQ and Fang D: Corrigendum: PKM2-induced the phosphorylation of histone H3 contributes to EGF-Mediated PD-L1 transcription in HCC. Front Pharmacol. 12:7247992021. View Article : Google Scholar : PubMed/NCBI

31 

Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L, Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Abiko K, Hamanishi J, Matsumura N and Mandai M: Dynamic host immunity and PD-L1/PD-1 blockade efficacy: Developments after 'IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer'. Br J Cancer. Sep 6–2022.Epub ahead of print. View Article : Google Scholar

33 

Mussafi O, Mei J, Mao W and Wan Y: Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol. 12:9484052022. View Article : Google Scholar : PubMed/NCBI

34 

Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 29:37662019. View Article : Google Scholar : PubMed/NCBI

35 

Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Akinleye A and Rasool Z: Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 12:922019. View Article : Google Scholar : PubMed/NCBI

37 

Heemskerk B, Kvistborg P and Schumacher TN: The cancer antigenome. EMBO J. 32:194–203. 2013. View Article : Google Scholar :

38 

McLane LM, Abdel-Hakeem MS and Wherry EJ: CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 37:457–495. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Z, Liu S, Zhang B, Qiao L and Zhang Y and Zhang Y: T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 8:172020. View Article : Google Scholar : PubMed/NCBI

40 

Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, Bjorgaard SL, Hammond MR, Vitzthum H, Blackmon SM, et al: Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 8:11362017. View Article : Google Scholar : PubMed/NCBI

41 

Yeon Yeon S, Jung SH, Jo YS, Choi EJ, Kim MS, Chung YJ and Lee SH: Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract. 215:209–214. 2019. View Article : Google Scholar

42 

Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L and Smyth MJ: A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res. 75:3800–3811. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Li X, Wenes M, Romero P, Huang SC, Fendt SM and Ho PC: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019. View Article : Google Scholar : PubMed/NCBI

44 

O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar

45 

Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, et al: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 354:1160–1165. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, Salama AK, Kang Y, Hsu D, Balko JM, et al: A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 130:2570–2586. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Bowman GD and Poirier MG: Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev. 115:2274–2295. 2015. View Article : Google Scholar :

48 

Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M and Hamid Q: Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int J Mol Sci. 22:117012021. View Article : Google Scholar : PubMed/NCBI

49 

Hu X, Lin Z, Wang Z and Zhou Q: Emerging role of PD-L1 modification in cancer immunotherapy. Am J Cancer Res. 11:3832–3840. 2021.PubMed/NCBI

50 

Greer EL and Shi Y: Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Li W, Wu H, Sui S, Wang Q, Xu S and Pang D: Targeting histone modifications in breast cancer: A precise weapon on the way. Front Cell Dev Biol. 9:7369352021. View Article : Google Scholar : PubMed/NCBI

52 

Shi Y, Fu Y, Zhang X, Zhao G, Yao Y, Guo Y, Ma G, Bai S and Li H: Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother. 70:61–73. 2021. View Article : Google Scholar :

53 

Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, Sommer L and Boyman O: The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20:854–867. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Gallagher SJ, Tiffen JC and Hersey P: Histone modifications, modifiers and readers in melanoma resistance to targeted and immune therapy. Cancers (Basel). 7:1959–1982. 2015. View Article : Google Scholar

55 

Deng S, Hu Q, Zhang H, Yang F, Peng C and Huang C: HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther. 18:900–908. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Mondello P, Tadros S, Teater M, Fontan L, Chang AY, Jain N, Yang H, Singh S, Ying HY, Chu CS, et al: Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 10:440–459. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K and Matsuda T: Central roles of STAT3-mediated signals in onset and development of cancers: Tumorigenesis and immunosurveillance. Cells. 11:26182022. View Article : Google Scholar : PubMed/NCBI

58 

Hu G, He N, Cai C, Cai F, Fan P, Zheng Z and Jin X: HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology. 19:383–389. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Wang YF, Liu F, Sherwin S, Farrelly M, Yan XG, Croft A, Liu T, Jin L, Zhang XD and Jiang CC: Cooperativity of HOXA5 and STAT3 is critical for HDAC8 inhibition-mediated transcriptional activation of PD-L1 in human melanoma cells. J Invest Dermatol. 138:922–932. 2018. View Article : Google Scholar

60 

ML PPV, TK MP, ES JP, KVW CL, FC SD, et al: Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 10:735–750. 2016. View Article : Google Scholar

61 

Keremu A, Aimaiti A, Liang Z and Zou X: Role of the HDAC6/STAT3 pathway in regulating PD-L1 expression in osteosarcoma cell lines. Cancer Chemother Pharmacol. 83:255–264. 2019. View Article : Google Scholar

62 

Yano M, Katoh T, Miyazawa M, Miyazawa M, Ogane N, Miwa M, Hasegawa K, Narahara H and Yasuda M: Clinicopathological correlation of ARID1A status with HDAC6 and its related factors in ovarian clear cell carcinoma. Sci Rep. 9:23972019. View Article : Google Scholar : PubMed/NCBI

63 

Liu X, Wang Y, Zhang R, Jin T, Qu L, Jin Q, Zheng J, Sun J, Wu Z, Wang L, et al: HDAC10 is positively associated with PD-L1 expression and poor prognosis in patients with NSCLC. Front Oncol. 10:4852020. View Article : Google Scholar : PubMed/NCBI

64 

Xu P, Xiong W, Lin Y, Fan L, Pan H and Li Y: Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 12:7792021. View Article : Google Scholar : PubMed/NCBI

65 

Darvin P, Sasidharan Nair V and Elkord E: PD-L1 expression in human breast cancer stem cells is epigenetically regulated through posttranslational histone modifications. J Oncol. 2019:39589082019. View Article : Google Scholar : PubMed/NCBI

66 

Makowski AM, Dutnall RN and Annunziato AT: Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem. 276:43499–43502. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Jin X, Tian S and Li P: Histone acetyltransferase 1 promotes cell proliferation and induces cisplatin resistance in hepatocellular carcinoma. Oncol Res. 25:939–946. 2017. View Article : Google Scholar

68 

Halaburková A, Jendželovský R, Kovaľ J, Herceg Z, Fedoročko P and Ghantous A: Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin Epigenetics. 9:622017. View Article : Google Scholar :

69 

Maccallini C, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L and Amoroso R: HDAC inhibitors for the therapy of triple negative breast cancer. Pharmaceuticals (Basel). 15:6672022. View Article : Google Scholar

70 

Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, Kim J, Powers J, Gracia-Hernandez M, Oliveira V, et al: Author correction: Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 9:148242019. View Article : Google Scholar : PubMed/NCBI

71 

Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS and Christensen JG: The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 67:381–392. 2018. View Article : Google Scholar

72 

Que Y, Zhang XL, Liu ZX, Zhao JJ, Pan QZ, Wen XZ, Xiao W, Xu BS, Hong DC, Guo TH, et al: Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. J Immunother Cancer. 9:e0016962021. View Article : Google Scholar : PubMed/NCBI

73 

Sheikh TN, Chen X, Xu X, McGuire JT, Ingham M, Lu C and Schwartz GK: Growth inhibition and induction of innate immune signaling of chondrosarcomas with epigenetic inhibitors. Mol Cancer Ther. 20:2362–2371. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Huang R, Zhang X, Min Z, Shadia AS, Yang S and Liu X: MGCD0103 induces apoptosis and simultaneously increases the expression of NF-κB and PD-L1 in classical Hodgkin's lymphoma. Exp Ther Med. 16:3827–3834. 2018.PubMed/NCBI

75 

Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM and Weber J: HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res. 3:1375–1385. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Liu J, He D, Cheng L, Huang C, Zhang Y, Rao X, Kong Y, Li C, Zhang Z, Liu J, et al: p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene. 39:3939–3951. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Bissonnette RP, Cesario RM, Goodenow B, Shojaei F and Gillings M: The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors. BMC Cancer. 21:9692021. View Article : Google Scholar : PubMed/NCBI

78 

Chen MC, Lin YC, Liao YH, Liou JP and Chen CH: MPT0G612, a novel HDAC6 inhibitor, induces apoptosis and suppresses IFN-γ-induced programmed death-ligand 1 in human colorectal carcinoma cells. Cancers (Basel). 11:16172019. View Article : Google Scholar

79 

Shin HS, Choi J, Lee J and Lee SY: Histone deacetylase as a valuable predictive biomarker and therapeutic target in immunotherapy for non-small cell lung cancer. Cancer Res Treat. 54:458–468. 2022. View Article : Google Scholar

80 

Kuroki H, Anraku T, Kazama A, Shirono Y, Bilim V and Tomita Y: Histone deacetylase 6 inhibition in urothelial cancer as a potential new strategy for cancer treatment. Oncol Lett. 21:642021. View Article : Google Scholar

81 

Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM and Luo X: The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol. 931:1752162022. View Article : Google Scholar : PubMed/NCBI

82 

Xia C, Leon-Ferre R, Laux D, Deutsch J, Smith BJ, Frees M and Milhem M: Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide). Cancer Chemother Pharmacol. 74:691–697. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 129:823–837. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Sasidharan Nair V, Saleh R, Toor SM, Taha RZ, Ahmed AA, Kurer MA, Murshed K, Abu Nada M and Elkord E: Epigenetic regulation of immune checkpoints and T cell exhaustion markers in tumor-infiltrating T cells of colorectal cancer patients. Epigenomics. 12:1871–1882. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Bedford MT and Richard S: Arginine methylation an emerging regulator of protein function. Mol Cell. 18:263–272. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, Sun Y, Wang G, Xu H, Wang Z, et al: PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 11:9162–9176. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Zhou Q, Chen X, He H, Peng S, Zhang Y, Zhang J, Cheng L, Liu S, Huang M, Xie R, et al: WD repeat domain 5 promotes chemoresistance and programmed death-ligand 1 expression in prostate cancer. Theranostics. 11:4809–4824. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Zhao Y, Wang XX, Wu W, Long H, Huang J, Wang Z, Li T, Tang S, Zhu B and Chen D: EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochem Biophys Res Commun. 517:201–209. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Liu L, Yu T, Jin Y, Mai W, Zhou J and Zhao C: MicroRNA-15a carried by mesenchymal stem cell-derived extracellular vesicles inhibits the immune evasion of colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1 axis. Front Cell Dev Biol. 9:6298932021. View Article : Google Scholar : PubMed/NCBI

91 

Soldi R, Ghosh Halder T, Weston A, Thode T, Drenner K, Lewis R, Kaadige MR, Srivastava S, Daniel Ampanattu S, Rodriguez Del Villar R, et al: The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One. 15:e02357052020. View Article : Google Scholar : PubMed/NCBI

92 

Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, Huang M, Vlad AM, Lu B, Oesterreich S, et al: Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene. 38:390–405. 2019. View Article : Google Scholar :

93 

Liu J, Zhao Z, Qiu N, Zhou Q, Wang G, Jiang H, Piao Y, Zhou Z, Tang J and Shen Y: Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat Commun. 12:24252021. View Article : Google Scholar : PubMed/NCBI

94 

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 3:ra32010. View Article : Google Scholar : PubMed/NCBI

95 

Schmitz ML, Higgins JMG and Seibert M: Priming chromatin for segregation: Functional roles of mitotic histone modifications. Cell Cycle. 19:625–641. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Santaguida S and Amon A: Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 16:473–485. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Cerutti H and Casas-Mollano JA: Histone H3 phosphorylation: Universal code or lineage specific dialects? Epigenetics. 4:71–75. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Chen S, Youhong T, Tan Y, He Y, Ban Y, Cai J, Li X, Xiong W, Zeng Z, Li G, et al: EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis. 41:723–733. 2020. View Article : Google Scholar :

99 

Wang WT, Han C, Sun YM, Chen TQ and Chen YQ: Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12:552019. View Article : Google Scholar : PubMed/NCBI

100 

Kaur M, Kaur B, Konar M and Sharma S: Noncoding RNAs as novel immunotherapeutic tools against cancer. Adv Protein Chem Struct Biol. 129:135–161. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Rolfo C, Fanale D, Hong DS, Tsimberidou AM, Piha-Paul SA, Pauwels P, Van Meerbeeck JP, Caruso S, Bazan V, Cicero G, et al: Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol. 15:475–485. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M and Stiegelbauer V: MicroRNAs associated with Von Hippel-Lindau pathway in renal cell carcinoma: A comprehensive review. Int J Mol Sci. 18:24952017. View Article : Google Scholar

103 

Forterre A, Komuro H, Aminova S and Harada M: A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel). 12:18522020. View Article : Google Scholar

104 

Anastasiadou E, Faggioni A, Trivedi P and Slack FJ: The nefarious nexus of noncoding RNAs in cancer. Int J Mol Sci. 19:20722018. View Article : Google Scholar :

105 

Shi C and Zhang Z: The prognostic value of the miR-200 family in ovarian cancer: A meta-analysis. Acta Obstet Gynecol Scand. 95:505–512. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, Welsh J and Calin GA: Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer. 58:244–253. 2019. View Article : Google Scholar :

107 

Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L, Gao W and Sun Y: The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med. 22:3847–3856. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Chen Y, Xie C, Zheng X, Nie X, Wang Z, Liu H and Zhao Y: LIN28/let-7/PD-L1 pathway as a target for cancer immunotherapy. Cancer Immunol Res. 7:487–497. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar

110 

Zhang Q, Pan J, Xiong D, Wang Y, Miller MS, Sei S, Shoemaker RH, Izzotti A and You M: Pulmonary aerosol delivery of Let-7b microRNA confers a striking inhibitory effect on lung carcinogenesis through targeting the tumor immune microenvironment. Adv Sci (Weinh). 8:e21006292021. View Article : Google Scholar

111 

Xie WB, Liang LH, Wu KG, Wang LX, He X, Song C, Wang YQ and Li YH: MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem. 46:654–663. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Jo H, Shim K and Jeoung D: Potential of the miR-200 family as a target for developing anti-cancer therapeutics. Int J Mol Sci. 23:58812022. View Article : Google Scholar : PubMed/NCBI

113 

Katakura S, Kobayashi N, Hashimoto H, Kamimaki C, Tanaka K, Kubo S, Nakashima K, Teranishi S, Manabe S, Watanabe K, et al: MicroRNA-200b is a potential biomarker of the expression of PD-L1 in patients with lung cancer. Thorac Cancer. 11:2975–2982. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Anastasiadou E, Messina E, Sanavia T, Mundo L, Farinella F, Lazzi S, Megiorni F, Ceccarelli S, Pontecorvi P, Marampon F, et al: MiR-200c-3p contrasts PD-L1 induction by combinatorial therapies and slows proliferation of epithelial ovarian cancer through downregulation of β-catenin and c-Myc. Cells. 10:5192021. View Article : Google Scholar

115 

Rogers TJ, Christenson JL, Greene LI, O'Neill KI, Williams MM, Gordon MA, Nemkov T, D'Alessandro A, Degala GD, Shin J, et al: Reversal of triple-negative breast cancer EMT by miR-200c decreases tryptophan catabolism and a program of immunosuppression. Mol Cancer Res. 17:30–41. 2019. View Article : Google Scholar

116 

Yao Y, Kong X, Liu R, Xu F, Liu G and Sun C: Development of a novel immune-related gene prognostic index for breast cancer. Front Immunol. 13:8450932022. View Article : Google Scholar : PubMed/NCBI

117 

Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F and Semenza GL: Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA. 115:E1239–E1248. 2018.

118 

Dou D, Ren X, Han M, Xu X, Ge X, Gu Y and Wang X: Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol. 11:20262020. View Article : Google Scholar : PubMed/NCBI

119 

Zhang M, Shi Y, Zhang Y, Wang Y, Alotaibi F, Qiu L, Wang H, Peng S, Liu Y, Li Q, et al: miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immunotherapy. Cancer Immunol Immunother. 69:951–967. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Wang LL, Huang WW, Huang J, Huang RF, Li NN, Hong Y, Chen ML, Wu F and Liu J: Protective effect of hsa-miR-570-3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci. 36:581–591. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Yang L, Cai Y, Zhang D, Sun J, Xu C, Zhao W, Jiang W and Pan C: miR-195/miR-497 regulate CD274 expression of immune regulatory ligands in triple-negative breast cancer. J Breast Cancer. 21:371–381. 2018. View Article : Google Scholar

122 

Li D, Wang X, Yang M, Kan Q and Duan Z: miR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp Cell Res. 380:20–28. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021. View Article : Google Scholar : PubMed/NCBI

124 

Mathivanan S, Ji H and Simpson RJ: Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J and Zhu G: Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 38:2830–2843. 2019. View Article : Google Scholar

127 

Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C and Wang D: Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biol. 8:5726892020. View Article : Google Scholar : PubMed/NCBI

128 

Miliotis C and Slack FJ: miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett. 518:115–126. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Wang W, Sun J, Li F, Li R, Gu Y, Liu C, Yang P, Zhu M, Chen L, Tian W, et al: A frequent somatic mutation in CD274 3′-UTR leads to protein over-expression in gastric cancer by disrupting miR-570 binding. Hum Mutat. 33:480–484. 2012. View Article : Google Scholar

130 

Ashizawa M, Okayama H, Ishigame T, Thar Min AK, Saito K, Ujiie D, Murakami Y, Kikuchi T, Nakayama Y, Noda M, et al: miRNA-148a-3p regulates immunosuppression in DNA mismatch repair-deficient colorectal cancer by targeting PD-L1. Mol Cancer Res. 17:1403–1413. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Roshani Asl E, Rasmi Y and Baradaran B: MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J Cell Physiol. 236:7071–7087. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW and Wu CP: LncRNA HCG18 suppresses CD8+ T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics. 13:1281–1297. 2021.PubMed/NCBI

133 

Whiteside TL: The role of regulatory T cells in cancer immunology. Immunotargets Ther. 4:159–171. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Cai J, Wang D, Zhang G and Guo X: The role Of PD-1/PD-L1 axis in treg development and function: Implications for cancer immunotherapy. Onco Targets Ther. 12:8437–8445. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Li S, Wu T, Zhang D, Sun X and Zhang X: The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol. 47:703–712. 2020. View Article : Google Scholar

136 

Bian W, Li Y, Zhu H, Gao S, Niu R, Wang C, Zhang H, Qin X and Li S: miR-493 by regulating of c-Jun targets Wnt5a/PD-L1-inducing esophageal cancer cell development. Thorac Cancer. 12:1579–1588. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Javadrashid D, Mohammadzadeh R, Baghbanzadeh A, Safaee S, Amini M, Lotfi Z, Baghbani E, Khaze Shahgoli V and Baradaran B: Simultaneous microRNA-612 restoration and 5-FU treatment inhibit the growth and migration of human PANC-1 pancreatic cancer cells. EXCLI J. 20:160–173. 2021.PubMed/NCBI

138 

Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML, Begum J, Baker AM, Amgheib A, Saif J, et al: The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget. 8:21609–21625. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Wang Y and Cao K: KDM1A promotes immunosuppression in hepatocellular carcinoma by regulating PD-L1 through demethylating MEF2D. J Immunol Res. 2021:99650992021. View Article : Google Scholar : PubMed/NCBI

140 

Incorvaia L, Fanale D, Badalamenti G, Brando C, Bono M, De Luca I, Algeri L, Bonasera A, Corsini LR, Scurria S, et al: A 'lymphocyte MicroRNA signature' as predictive biomarker of immunotherapy response and plasma PD-1/PD-L1 expression levels in patients with metastatic renal cell carcinoma: Pointing towards epigenetic reprogramming. Cancers (Basel). 12:33962020. View Article : Google Scholar

141 

Adil MS, Khulood D and Somanath PR: Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol. 189:1143842021. View Article : Google Scholar :

142 

Xue J, Yang J, Luo M, Cho WC and Liu X: MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov. 12:141–157. 2017. View Article : Google Scholar

143 

Pal S, Garg M and Pandey AK: Deciphering the mounting complexity of the p53 regulatory network in correlation to long non-coding RNAs (lncRNAs) in ovarian cancer. Cells. 9:5272020. View Article : Google Scholar :

144 

Chen X, Tang FR, Arfuso F, Cai WQ, Ma Z, Yang J and Sethi G: The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma. Biomolecules. 10:662019. View Article : Google Scholar

145 

Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A and Mirzaei H: Long non-coding RNAs as epigenetic regulators in cancer. Curr Pharm Des. 25:3563–3577. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Yi K, Cui X, Liu X, Wang Y, Zhao J, Yang S, Xu C, Yang E, Xiao M, Hong B, et al: PTRF/Cavin-1 as a novel RNA-binding protein expedites the NF-κB/PD-L1 axis by stabilizing lncRNA NEAT1, contributing to tumorigenesis and immune evasion in glioblastoma. Front Immunol. 12:8027952022. View Article : Google Scholar

147 

Ni W, Mo H, Liu Y, Xu Y, Qin C, Zhou Y, Li Y, Li Y, Zhou A, Yao S, et al: Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation. Mol Ther. 29:2995–3010. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Fan Y, Dong X, Li M, Liu P, Zheng J, Li H and Zhang Y: LncRNA KRT19P3 is involved in breast cancer cell proliferation, migration and invasion. Front Oncol. 11:7990822022. View Article : Google Scholar : PubMed/NCBI

149 

Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z and Wang J: LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. 53:e128552020. View Article : Google Scholar : PubMed/NCBI

150 

Shang A, Wang W, Gu C, Chen C, Zeng B, Yang Y, Ji P, Sun J, Wu J, Lu W, et al: Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res. 38:4112019. View Article : Google Scholar : PubMed/NCBI

151 

Chen Y, Li F, Li D, Liu W and Zhang L: Atezolizumab and blockade of LncRNA PVT1 attenuate cisplatin resistant ovarian cancer cells progression synergistically via JAK2/STAT3/PD-L1 pathway. Clin Immunol. 227:1087282021. View Article : Google Scholar : PubMed/NCBI

152 

Huang Y, Xia L, Tan X, Zhang J, Zeng W, Tan B, Yu X, Fang W and Yang Z: Molecular mechanism of lncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis. Cell Mol Biol Lett. 27:432022. View Article : Google Scholar : PubMed/NCBI

153 

Shi L, Yang Y, Li M, Li C, Zhou Z, Tang G, Wu L, Yao Y, Shen X, Hou Z and Jia H: LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther. 30:1564–1577. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Wang Y, Yi K, Liu X, Tan Y, Jin W, Li Y, Zhou J, Wang H and Kang C: HOTAIR up-regulation activates NF-κB to induce immunoescape in gliomas. Front Immunol. 12:7854632021. View Article : Google Scholar

155 

Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP, Alvarez-Dominguez JR, Bhatta A, Schattgen SA, McGowan JD, Blin J, et al: A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell. 165:1672–1685. 2016. View Article : Google Scholar : PubMed/NCBI

156 

Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, et al: Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol Cell. 78:1207–1223.e8. 2020. View Article : Google Scholar : PubMed/NCBI

157 

Xu J, Meng Q, Li X, Yang H, Xu J, Gao N, Sun H, Wu S, Familiari G, Relucenti M, et al: Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p. Cancer Res. 79:4882–4895. 2019. View Article : Google Scholar : PubMed/NCBI

158 

Yin L, Tang Y and Yuan Y: An overview of the advances in research on the molecular function and specific role of circular RNA in cardiovascular diseases. Biomed Res Int. 2022:51541222022. View Article : Google Scholar : PubMed/NCBI

159 

Verduci L, Tarcitano E, Strano S, Yarden Y and Blandino G: CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis. 12:4682021. View Article : Google Scholar : PubMed/NCBI

160 

Dong W, Dai ZH, Liu FC, Guo XG, Ge CM, Ding J, Liu H and Yang F: The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine. 45:155–167. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, et al: Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics. 11:1732–1752. 2021. View Article : Google Scholar : PubMed/NCBI

162 

Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, et al: Advances in the study of CircRNAs in tumor drug resistance. Front Oncol. 12:8683632022. View Article : Google Scholar : PubMed/NCBI

163 

Li C, Zhang J, Yang X, Hu C, Chu T, Zhong R, Shen Y, Hu F, Pan F, Xu J, et al: hsa_circ_0003222 accelerates stemness and progression of non-small cell lung cancer by sponging miR-527. Cell Death Dis. 12:8072021. View Article : Google Scholar : PubMed/NCBI

164 

Feinberg AP: The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 378:1323–1334. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Srivastava R and Lodhi N: DNA methylation malleability and dysregulation in cancer progression: Understanding the role of PARP1. Biomolecules. 12:4172022. View Article : Google Scholar : PubMed/NCBI

166 

Emran AA, Chatterjee A, Rodger EJ, Tiffen JC, Gallagher SJ, Eccles MR and Hersey P: Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 40:328–344. 2019. View Article : Google Scholar : PubMed/NCBI

167 

Lv D, Xing C, Cao L, Zhuo Y, Wu T and Gao N: PD-L1 gene promoter methylation represents a potential diagnostic marker in advanced gastric cancer. Oncol Lett. 19:1223–1234. 2020.PubMed/NCBI

168 

Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J and Herrera LA: DNA methyltransferases: From evolution to clinical applications. Int J Mol Sci. 23:89942022. View Article : Google Scholar : PubMed/NCBI

169 

Lu X, Li Y, Yang W, Tao M, Dai Y, Xu J and Xu Q: Inhibition of NF-κB is required for oleanolic acid to downregulate PD-L1 by promoting DNA demethylation in gastric cancer cells. J Biochem Mol Toxicol. 35:e226212021. View Article : Google Scholar

170 

Liu J, Liu Y, Meng L, Liu K and Ji B: Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep. 38:899–907. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Chatterjee A, Rodger EJ, Ahn A, Stockwell PA, Parry M, Motwani J, Gallagher SJ, Shklovskaya E, Tiffen J, Eccles MR and Hersey P: Marked global DNA hypomethylation is associated with constitutive PD-L1 expression in melanoma. iScience. 4:312–325. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, et al: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 527:249–253. 2015. View Article : Google Scholar : PubMed/NCBI

173 

Li X, Wang Z, Huang J, Luo H, Zhu S, Yi H, Zheng L, Hu B, Yu L, Li L, et al: Specific zinc finger-induced methylation of PD-L1 promoter inhibits its expression. FEBS Open Bio. 9:1063–1070. 2019. View Article : Google Scholar : PubMed/NCBI

174 

Garg M: Epithelial-mesenchymal transition-activating transcription factors-multifunctional regulators in cancer. World J Stem Cells. 5:188–195. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Asgarova A, Asgarov K, Godet Y, Peixoto P, Nadaradjane A, Boyer-Guittaut M, Galaine J, Guenat D, Mougey V, Perrard J, et al: PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncoimmunology. 7:e14231702018. View Article : Google Scholar : PubMed/NCBI

176 

Zhang Y, Xiang C, Wang Y, Duan Y, Liu C and Zhang Y: PD-L1 promoter methylation mediates the resistance response to anti-PD-1 therapy in NSCLC patients with EGFR-TKI resistance. Oncotarget. 8:101535–101544. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Lai Q, Wang H, Li A, Xu Y, Tang L, Chen Q, Zhang C, Gao Y, Song J and Du Z: Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene. 37:2302–2312. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Mu L, Long Y, Yang C, Jin L, Tao H, Ge H, Chang YE, Karachi A, Kubilis PS, De Leon G, et al: The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci. 11:822018. View Article : Google Scholar : PubMed/NCBI

179 

Briand J, Nadaradjane A, Bougras-Cartron G, Olivier C, Vallette FM and Cartron PF: Diuron exposure and Akt overexpression promote glioma formation through DNA hypomethylation. Clin Epigenetics. 11:1592019. View Article : Google Scholar : PubMed/NCBI

180 

Elashi AA, Sasidharan Nair V, Taha RZ, Shaath H and Elkord E: DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients. Oncoimmunology. 8:e15429182018. View Article : Google Scholar

181 

Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, et al: BRCA1 promoter hypermethylation is associated with good prognosis and chemosensitivity in triple-negative breast cancer. Cancers (Basel). 12:8282020. View Article : Google Scholar

182 

Yamada R, Yamaguchi T, Iijima T, Wakaume R, Takao M, Koizumi K, Hishima T and Horiguchi SI: Differences in histological features and PD-L1 expression between sporadic microsatellite instability and Lynch-syndrome-associated disease in Japanese patients with colorectal cancer. Int J Clin Oncol. 23:504–513. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Hua S, Gu M, Wang Y, Ban D and Ji H: Oxymatrine reduces expression of programmed death-ligand 1 by promoting DNA demethylation in colorectal cancer cells. Clin Transl Oncol. 23:750–756. 2021. View Article : Google Scholar

184 

Liu Z, Ren Y, Weng S, Xu H, Li L and Han X: A new trend in cancer treatment: The combination of epigenetics and immunotherapy. Front Immunol. 13:8097612022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma X, Wu J, Wang B, Liu C, Liu L and Sun C: Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review). Int J Oncol 61: 134, 2022.
APA
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., & Sun, C. (2022). Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review). International Journal of Oncology, 61, 134. https://doi.org/10.3892/ijo.2022.5424
MLA
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., Sun, C."Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)". International Journal of Oncology 61.5 (2022): 134.
Chicago
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., Sun, C."Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)". International Journal of Oncology 61, no. 5 (2022): 134. https://doi.org/10.3892/ijo.2022.5424
Copy and paste a formatted citation
x
Spandidos Publications style
Ma X, Wu J, Wang B, Liu C, Liu L and Sun C: Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review). Int J Oncol 61: 134, 2022.
APA
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., & Sun, C. (2022). Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review). International Journal of Oncology, 61, 134. https://doi.org/10.3892/ijo.2022.5424
MLA
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., Sun, C."Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)". International Journal of Oncology 61.5 (2022): 134.
Chicago
Ma, X., Wu, J., Wang, B., Liu, C., Liu, L., Sun, C."Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)". International Journal of Oncology 61, no. 5 (2022): 134. https://doi.org/10.3892/ijo.2022.5424
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team