|
1
|
May R, Riehl TE, Hunt C, Sureban SM, Anant
S and Houchen CW: Identification of a novel putative
gastrointestinal stem cell and adenoma stem cell marker,
doublecortin and CaM kinase-like-1, following radiation injury and
in adenomatous polyposis coli/multiple intestinal neoplasia mice.
Stem Cells. 26:630–637. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vega KJ, May R, Sureban SM, Lightfoot SA,
Qu D, Reed A, Weygant N, Ramanujam R, Souza R, Madhoun M, et al:
Identification of the putative intestinal stem cell marker
doublecortin and CaM kinase-like-1 in Barrett's esophagus and
esophageal adenocarcinoma. J Gastroenterol Hepatol. 27:773–780.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Weygant N, Qu D, May R, Tierney RM, Berry
WL, Zhao L, Agarwal S, Chandrakesan P, Chinthalapally HR, Murphy
NT, et al: DCLK1 is a broadly dysregulated target against
epithelial-mesenchymal transition, focal adhesion, and stemness in
clear cell renal carcinoma. Oncotarget. 6:2193–2205. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nakanishi Y, Seno H, Fukuoka A, Ueo T,
Yamaga Y, Maruno T, Nakanishi N, Kanda K, Komekado H, Kawada M, et
al: Dclk1 distinguishes between tumor and normal stem cells in the
intestine. Nat Genet. 45:98–103. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Delgiorno KE, Hall JC, Takeuchi KK, Pan
FC, Halbrook CJ, Washington MK, Olive KP, Spence JR, Sipos B,
Wright CV, et al: Identification and manipulation of biliary
metaplasia in pancreatic tumors. Gastroenterology. 146:233–244.e5.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Saqui-Salces M, Keeley TM, Grosse AS, Qiao
XT, El-Zaatari M, Gumucio DL, Samuelson LC and Merchant JL: Gastric
tuft cells express DCLK1 and are expanded in hyperplasia. Histochem
Cell Biol. 136:191–204. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gerbe F, van Es JH, Makrini L, Brulin B,
Mellitzer G, Robine S, Romagnolo B, Shroyer NF, Bourgaux JF,
Pignodel C, et al: Distinct ATOH1 and Neurog3 requirements define
tuft cells as a new secretory cell type in the intestinal
epithelium. J Cell Biol. 192:767–780. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Howitt MR, Lavoie S, Michaud M, Blum AM,
Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF,
Osborne LC, et al: Tuft cells, taste-chemosensory cells,
orchestrate parasite type 2 immunity in the gut. Science.
351:1329–1333. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Westphalen CB, Quante M and Wang TC:
Functional implication of Dclk1 and Dclk1-expressing cells in
cancer. Small GTPases. 8:164–171. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yi J, Bergstrom K, Fu J, Shan X, McDaniel
JM, McGee S, Qu D, Houchen CW, Liu X and Xia L: Dclk1 in tuft cells
promotes inflammation-driven epithelial restitution and mitigates
chronic colitis. Cell Death Differ. 26:1656–1669. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Patel O, Dai W, Mentzel M, Griffin MD,
Serindoux J, Gay Y, Fischer S, Sterle S, Kropp A, Burns CJ, et al:
Biochemical and structural insights into doublecortin-like kinase
domain 1. Structure. 24:1550–1561. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cheung AS, de Rooy C, Levinger I, Rana K,
Clarke MV, How JM, Garnham A, McLean C, Zajac JD, Davey RA and
Grossmann M: Actin alpha cardiac muscle 1 gene expression is
upregulated in the skeletal muscle of men undergoing androgen
deprivation therapy for prostate cancer. J Steroid Biochem Mol
Biol. 174:56–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Matsumoto N, Pilz DT and Ledbetter DH:
Genomic structure, chromosomal mapping, and expression pattern of
human DCAMKL1 (KIAA0369), a homologue of DCX (XLIS). Genomics.
56:179–183. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Burgess HA and Reiner O: Cleavage of
doublecortin-like kinase by calpain releases an active kinase
fragment from a microtubule anchorage domain. J Biol Chem.
276:36397–36403. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kim MH, Cierpicki T, Derewenda U,
Krowarsch D, Feng Y, Devedjiev Y, Dauter Z, Walsh CA, Otlewski J,
Bushweller JH and Derewenda ZS: The DCX-domain tandems of
doublecortin and doublecortin-like kinase. Nat Struct Biol.
10:324–333. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lin PT, Gleeson JG, Corbo JC, Flanagan L
and Walsh CA: DCAMKL1 encodes a protein kinase with homology to
doublecortin that regulates microtubule polymerization. J Neurosci.
20:9152–9161. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Engels BM, Schouten TG, van Dullemen J,
Gosens I and Vreugdenhil E: Functional differences between two DCLK
splice variants. Brain Res Mol Brain Res. 120:103–114. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Burgess HA and Reiner O: Alternative
splice variants of doublecortin-like kinase are differentially
expressed and have different kinase activities. J Biol Chem.
277:17696–17705. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
O'Connell MR, Sarkar S, Luthra GK, Okugawa
Y, Toiyama Y, Gajjar AH, Qiu S, Goel A and Singh P: Epigenetic
changes and alternate promoter usage by human colon cancers for
expressing DCLK1-isoforms: Clinical Implications. Sci Rep.
5:149832015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Walker TL, Yasuda T, Adams DJ and Bartlett
PF: The doublecortin-expressing population in the developing and
adult brain contains multipotential precursors in addition to
neuronal-lineage cells. J Neurosci. 27:3734–3742. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Park SY, Kim JY, Choi JH, Kim JH, Lee CJ,
Singh P, Sarkar S, Baek JH and Nam JS: Inhibition of LEF1-mediated
DCLK1 by niclosamide attenuates colorectal cancer stemness. Clin
Cancer Res. 25:1415–1429. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sarkar S, Popov VL, O'Connell MR,
Stevenson HL, Lee BS, Obeid RA, Luthra GK and Singh P: A novel
antibody against cancer stem cell biomarker, DCLK1-S, is
potentially useful for assessing colon cancer risk after screening
colonoscopy. Lab Invest. 97:1245–1261. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Andresen K, Boberg KM, Vedeld HM, Honne H,
Hektoen M, Wadsworth CA, Clausen OP, Karlsen TH, Foss A, Mathisen
O, et al: Novel target genes and a valid biomarker panel identified
for cholangiocarcinoma. Epigenetics. 7:1249–1257. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Westphalen CB, Takemoto Y, Tanaka T,
Macchini M, Jiang Z, Renz BW, Chen X, Ormanns S, Nagar K, Tailor Y,
et al: Dclk1 defines quiescent pancreatic progenitors that promote
injury-induced regeneration and tumorigenesis. Cell Stem Cell.
18:441–455. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yamaga Y, Fukuda A, Nakanishi Y, Goto N,
Matsumoto Y, Yoshioka T, Maruno T, Chiba T and Seno H: Gene
expression profile of Dclk1+ cells in intestinal tumors.
Dig Liver Dis. 50:1353–1361. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ge Y, Liu H, Zhang Y, Liu J, Yan R, Xiao
Z, Fan X, Huang X and An G: Inhibition of DCLK1 kinase reverses
epithelial-mesenchymal transition and restores T-cell activity in
pancreatic ductal adenocarcinoma. Transl Oncol. 17:1013172022.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
27
|
May R, Sureban SM, Hoang N, Riehl TE,
Lightfoot SA, Ramanujam R, Wyche JH, Anant S and Houchen CW:
Doublecortin and CaM kinase-like-1 and
leucine-rich-repeat-containing G-protein-coupled receptor mark
quiescent and cycling intestinal stem cells, respectively. Stem
Cells. 27:2571–2579. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ladang A, Rapino F, Heukamp LC, Tharun L,
Shostak K, Hermand D, Delaunay S, Klevernic I, Jiang Z, Jacques N,
et al: Elp3 drives Wnt-dependent tumor initiation and regeneration
in the intestine. J Exp Med. 212:2057–2075. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Leppänen J, Helminen O, Huhta H, Kauppila
JH, Miinalainen I, Ronkainen VP, Saarnio J, Lehenkari PP and
Karttunen TJ: Doublecortin-like kinase 1-positive enterocyte-a new
cell type in human intestine. APMIS. 124:958–965. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Westphalen CB, Asfaha S, Hayakawa Y,
Takemoto Y, Lukin DJ, Nuber AH, Brandtner A, Setlik W, Remotti H,
Muley A, et al: Long-lived intestinal tuft cells serve as colon
cancer-initiating cells. J Clin Invest. 124:1283–1295. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Qu D, Weygant N, May R, Chandrakesan P,
Madhoun M, Ali N, Sureban SM, An G, Schlosser MJ and Houchen CW:
Ablation of doublecortin-like kinase 1 in the colonic epithelium
exacerbates dextran sulfate sodium-induced colitis. PLoS One.
10:e01342122015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gerbe F, Brulin B, Makrini L, Legraverend
C and Jay P: DCAMKL-1 expression identifies Tuft cells rather than
stem cells in the adult mouse intestinal epithelium.
Gastroenterology. 137:2179–2181. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Eini L, Naseri M, Karimi-Busheri F,
Bozorgmehr M, Ghods R and Madjd Z: Primary colonospheres maintain
stem cell-like key features after cryopreservation. J Cell Physiol.
235:2452–2463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chandrakesan P, Yao J, Qu D, May R,
Weygant N, Ge Y, Ali N, Sureban SM, Gude M, Vega K, et al: Dclk1, a
tumor stem cell marker, regulates pro-survival signaling and
self-renewal of intestinal tumor cells. Mol Cancer. 16:302017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang X, Yang Y and Huycke MM:
Commensal-infected macrophages induce dedifferentiation and
reprogramming of epithelial cells during colorectal carcinogenesis.
Oncotarget. 8:102176–102190. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gagliardi G, Goswami M, Passera R and
Bellows CF: DCLK1 immunoreactivity in colorectal neoplasia. Clin
Exp Gastroenterol. 5:35–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Vedeld HM, Skotheim RI, Lothe RA and Lind
GE: The recently suggested intestinal cancer stem cell marker DCLK1
is an epigenetic biomarker for colorectal cancer. Epigenetics.
9:346–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Takiyama A, Tanaka T, Kazama S, Nagata H,
Kawai K, Hata K, Otani K, Nishikawa T, Sasaki K, Kaneko M, et al:
DCLK1 expression in colorectal polyps increases with the severity
of dysplasia. In Vivo. 32:365–371. 2018.PubMed/NCBI
|
|
39
|
Ahmed I, Roy BC, Raach RT, Owens SM, Xia
L, Anant S, Sampath V and Umar S: Enteric infection coupled with
chronic Notch pathway inhibition alters colonic mucus composition
leading to dysbiosis, barrier disruption and colitis. PLoS One.
13:e02067012018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mirzaei A, Tavoosidana G, Modarressi MH,
Rad AA, Fazeli MS, Shirkoohi R, Tavakoli-Yaraki M and Madjd Z:
Upregulation of circulating cancer stem cell marker, DCLK1 but not
Lgr5, in chemoradiotherapy-treated colorectal cancer patients.
Tumour Biol. 36:4801–4810. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang J, Yokoyama Y, Hirose H, Shimomura Y,
Bonkobara S, Itakura H, Kouda S, Morimoto Y, Minami K, Takahashi H,
et al: Functional assessment of miR-1291 in colon cancer cells. Int
J Oncol. 60:132022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Razi S, Sadeghi A, Asadi-Lari Z, Tam KJ,
Kalantari E and Madjd Z: DCLK1, a promising colorectal cancer stem
cell marker, regulates tumor progression and invasion through
miR-137 and miR-15a dependent manner. Clin Exp Med. 21:139–147.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sureban SM, May R, Mondalek FG, Qu D,
Ponnurangam S, Pantazis P, Anant S, Ramanujam RP and Houchen CW:
Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144
and inhibits colorectal cancer tumor growth via a Notch-1 dependent
mechanism. J Nanobiotechnology. 9:402011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR,
Piao JJ, Gorospe M and Wang JY: MicroRNA-195 regulates Tuft cell
function in the intestinal epithelium by altering translation of
DCLK1. Am J Physiol Cell Physiol. 320:C1042–C1054. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Neradugomma NK, Subramaniam D, Tawfik OW,
Goffin V, Kumar TR, Jensen RA and Anant S: Prolactin signaling
enhances colon cancer stemness by modulating Notch signaling in a
Jak2-STAT3/ERK manner. Carcinogenesis. 35:795–806. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ahmed I, Roy BC, Subramaniam D, Ganie SA,
Kwatra D, Dixon D, Anant S, Zargar MA and Umar S: An ornamental
plant targets epigenetic signaling to block cancer stem cell-driven
colon carcinogenesis. Carcinogenesis. 37:385–396. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ponnurangam S, Dandawate PR, Dhar A,
Tawfik OW, Parab RR, Mishra PD, Ranadive P, Sharma R, Mahajan G,
Umar S, et al: Quinomycin A targets Notch signaling pathway in
pancreatic cancer stem cells. Oncotarget. 7:3217–3232. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Venugopal A, Subramaniam D, Balmaceda J,
Roy B, Dixon DA, Umar S, Weir SJ and Anant S: RNA binding protein
RBM3 increases β-catenin signaling to increase stem cell
characteristics in colorectal cancer cells. Mol Carcinog.
55:1503–1516. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Krishnamachary B, Subramaniam D, Dandawate
P, Ponnurangam S, Srinivasan P, Ramamoorthy P, Umar S, Thomas SM,
Dhar A, Septer S, et al: Targeting transcription factor TCF4 by
γ-mangostin, a natural xanthone. Oncotarget. 10:5576–5591. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Osman J, Bellamkonda K, Liu Q, Andersson T
and Sjölander A: The WNT5A agonist Foxy5 reduces the number of
colonic cancer stem cells in a xenograft mouse model of human
colonic cancer. Anticancer Res. 39:1719–1728. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hammond DE, Mageean CJ, Rusilowicz EV,
Wickenden JA, Clague MJ and Prior IA: Differential reprogramming of
isogenic colorectal cancer cells by distinct activating KRAS
mutations. J Proteome Res. 14:1535–1546. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qiu W, Remotti HE, Tang SM, Wang E,
Dobberteen L, Lee Youssof A, Lee JH, Cheung EC and Su GH:
Pancreatic DCLK1+ cells originate distinctly from
PDX1+ progenitors and contribute to the initiation of
intraductal papillary mucinous neoplasm in mice. Cancer Lett.
423:71–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bailey JM, Alsina J, Rasheed ZA,
McAllister FM, Fu YY, Plentz R, Zhang H, Pasricha PJ, Bardeesy N,
Matsui W, et al: DCLK1 marks a morphologically distinct
subpopulation of cells with stem cell properties in preinvasive
pancreatic cancer. Gastroenterology. 146:245–256. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
May R, Sureban SM, Lightfoot SA, Hoskins
AB, Brackett DJ, Postier RG, Ramanujam R, Rao CV, Wyche JH, Anant S
and Houchen CW: Identification of a novel putative pancreatic
stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas. Am J
Physiol Gastrointest Liver Physiol. 299:G303–G310. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sureban SM, May R, Qu D, Weygant N,
Chandrakesan P, Ali N, Lightfoot SA, Pantazis P, Rao CV, Postier RG
and Houchen CW: DCLK1 regulates pluripotency and angiogenic factors
via microRNA-dependent mechanisms in pancreatic cancer. PLoS One.
8:e739402013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yao ZX, Qin ML, Liu JJ, Chen XS and Zhou
DS: In vitro cultivation of human fetal pancreatic ductal stem
cells and their differentiation into insulin-producing cells. World
J Gastroenterol. 10:1452–1456. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Seeley ES, Carrière C, Goetze T,
Longnecker DS and Korc M: Pancreatic cancer and precursor
pancreatic intraepithelial neoplasia lesions are devoid of primary
cilia. Cancer Res. 69:422–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee H, Basso IN and Kim DDH: Target
spectrum of the BCR-ABL tyrosine kinase inhibitors in chronic
myeloid leukemia. Int J Hematol. 113:632–641. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Gao C, Cao F, Wu Y, Chen S, Han
X, Mo J, Qiu Z, Fan W, Zhou P and Shen L: Pan-cancer analysis of
IGF-1 and IGF-1R as potential prognostic biomarkers and
immunotherapy targets. Front Oncol. 11:7553412021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Y, Zoltan M, Riquelme E, Xu H, Sahin
I, Castro-Pando S, Montiel MF, Chang K, Jiang Z, Ling J, et al:
Immune cell production of interleukin 17 induces stem cell features
of pancreatic intraepithelial neoplasia cells. Gastroenterology.
155:210–223.e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
DelGiorno KE, Naeem RF, Fang L, Chung CY,
Ramos C, Luhtala N, O'Connor C, Hunter T, Manor U and Wahl GM: Tuft
cell formation reflects epithelial plasticity in pancreatic injury:
Implications for modeling human pancreatitis. Front Physiol.
11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Park JT and Leach SD: Zebrafish model of
KRAS-initiated pancreatic cancer. Anim Cells Syst (Seoul).
22:353–359. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhou B, Irwanto A, Guo YM, Bei JX, Wu Q,
Chen G, Zhang TP, Lei JJ, Feng QS, Chen LZ, et al: Exome sequencing
and digital PCR analyses reveal novel mutated genes related to the
metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther.
13:871–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qu D, Weygant N, Yao J, Chandrakesan P,
Berry WL, May R, Pitts K, Husain S, Lightfoot S, Li M, et al:
Overexpression of DCLK1-AL increases tumor cell invasion, drug
resistance, and KRAS activation and can be targeted to inhibit
tumorigenesis in pancreatic cancer. J Oncol. 2019:64029252019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chandrakesan P, Panneerselvam J, May R,
Weygant N, Qu D, Berry WR, Pitts K, Stanger BZ, Rao CV, Bronze MS
and Houchen CW: DCLK1-isoform2 alternative splice variant promotes
pancreatic tumor immunosuppressive M2-macrophage polarization. Mol
Cancer Ther. 19:1539–1549. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xu Z, Pang TCY, Liu AC, Pothula SP,
Mekapogu AR, Perera CJ, Murakami T, Goldstein D, Pirola RC, Wilson
JS and Apte MV: Targeting the HGF/c-MET pathway in advanced
pancreatic cancer: A key element of treatment that limits primary
tumour growth and eliminates metastasis. Br J Cancer.
122:1486–1495. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rieder S, Michalski CW, Friess H and
Kleeff J: Insulin-like growth factor signaling as a therapeutic
target in pancreatic cancer. Anticancer Agents Med Chem.
11:427–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sureban SM, May R, Lightfoot SA, Hoskins
AB, Lerner M, Brackett DJ, Postier RG, Ramanujam R, Mohammed A, Rao
CV, et al: DCAMKL-1 regulates epithelial-mesenchymal transition in
human pancreatic cells through a miR-200a-dependent mechanism.
Cancer Res. 71:2328–2338. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bjerknes M, Khandanpour C, Moroy T,
Fujiyama T, Hoshino M, Klisch TJ, Ding Q, Gan L, Wang J, Martín MG
and Cheng H: Origin of the brush cell lineage in the mouse
intestinal epithelium. Dev Biol. 362:194–218. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ali Y, Lin Y, Gharibo MM, Gounder MK,
Stein MN, Lagattuta TF, Egorin MJ, Rubin EH and Poplin EA: Phase I
and pharmacokinetic study of imatinib mesylate (Gleevec) and
gemcitabine in patients with refractory solid tumors. Clin Cancer
Res. 13:5876–5882. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Giannakis M, Stappenbeck TS, Mills JC,
Leip DG, Lovett M, Clifton SW, Ippolito JE, Glasscock JI, Arumugam
M, Brent MR and Gordon JI: Molecular properties of adult mouse
gastric and intestinal epithelial progenitors in their niches. J
Biol Chem. 281:11292–11300. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Weygant N, Ge Y, Qu D, Kaddis JS, Berry
WL, May R, Chandrakesan P, Bannerman-Menson E, Vega KJ, Tomasek JJ,
et al: Survival of patients with gastrointestinal cancers can be
predicted by a surrogate microRNA signature for cancer stem-like
cells marked by DCLK1 kinase. Cancer Res. 76:4090–4099. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang Y and Huang X: Investigation of
doublecortin and calcium/calmodulin-dependent protein
kinase-like-1-expressing cells in the mouse stomach. J
Gastroenterol Hepatol. 25:576–582. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Meng QB, Yu JC, Kang WM, Ma ZQ, Zhou WX,
Li J, Zhou L, Cao ZJ and Tian SB: Expression of doublecortin-like
kinase 1 in human gastric cancer and its correlation with
prognosis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 35:639–644.
2013.(In Chinese). PubMed/NCBI
|
|
75
|
Sureban SM, Qu D and Houchen CW:
Regulation of miRNAs by agents targeting the tumor stem cell
markers DCLK1, MSI1, LGR5, and BMI1. Curr Pharmacol Rep. 1:217–222.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu ZQ, He WF, Wu YJ, Zhao SL, Wang L,
Ouyang YY and Tang SY: LncRNA SNHG1 promotes EMT process in gastric
cancer cells through regulation of the miR-15b/DCLK1/Notch1 axis.
BMC Gastroenterol. 20:1562020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Carli ALE, Afshar-Sterle S, Rai A, Fang H,
O'Keefe R, Tse J, Ferguson FM, Gray NS, Ernst M, Greening DW and
Buchert M: Cancer stem cell marker DCLK1 reprograms small
extracellular vesicles toward migratory phenotype in gastric cancer
cells. Proteomics. 21:e20000982021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dai J, Li ZX, Zhang Y, Ma JL, Zhou T, You
WC, Li WQ and Pan KF: Whole genome messenger RNA profiling
identifies a novel signature to predict gastric cancer survival.
Clin Transl Gastroenterol. 10:e000042019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Schellnegger R, Quante A, Rospleszcz S,
Schernhammer M, Höhl B, Tobiasch M, Pastula A, Brandtner A, Abrams
JA, Strauch K, et al: Goblet cell ratio in combination with
differentiation and stem cell markers in barrett esophagus allow
distinction of patients with and without esophageal adenocarcinoma.
Cancer Prev Res (Phila). 10:55–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ge Y, Fan X, Huang X, Weygant N, Xiao Z,
Yan R, Liu H, Liu J, An G and Yao J: DCLK1-short splice variant
promotes esophageal squamous cell carcinoma progression via the
MAPK/ERK/MMP2 pathway. Mol Cancer Res. 19:1980–1991. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang L, Zhou S, Guo E, Chen X, Yang J and
Li X: DCLK1 inhibition attenuates tumorigenesis and improves
chemosensitivity in esophageal squamous cell carcinoma by
inhibiting β-catenin/c-Myc signaling. Pflugers Arch. 472:1041–1049.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Whorton J, Sureban SM, May R, Qu D,
Lightfoot SA, Madhoun M, Johnson M, Tierney WM, Maple JT, Vega KJ
and Houchen CW: DCLK1 is detectable in plasma of patients with
Barrett's esophagus and esophageal adenocarcinoma. Dig Dis Sci.
60:509–513. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Quante M, Bhagat G, Abrams JA, Marache F,
Good P, Lee MD, Lee Y, Friedman R, Asfaha S, Dubeykovskaya Z, et
al: Bile acid and inflammation activate gastric cardia stem cells
in a mouse model of Barrett-like metaplasia. Cancer Cell. 21:36–51.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Haakensen VD, Bjøro T, Lüders T, Riis M,
Bukholm IK, Kristensen VN, Troester MA, Homen MM, Ursin G,
Børresen-Dale AL and Helland Å: Serum estradiol levels associated
with specific gene expression patterns in normal breast tissue and
in breast carcinomas. BMC Cancer. 11:3322011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu YH, Tsang JY, Ni YB, Hlaing T, Chan
SK, Chan KF, Ko CW, Mujtaba SS and Tse GM: Doublecortin-like kinase
1 expression associates with breast cancer with neuroendocrine
differentiation. Oncotarget. 7:1464–1476. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhao S, Ma D, Xiao Y, Li XM, Ma JL, Zhang
H, Xu XL, Lv H, Jiang WH, Yang WT, et al: Molecular subtyping of
triple-negative breast cancers by immunohistochemistry: Molecular
Basis and clinical relevance. Oncologist. 25:e1481–e1491. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ramamoorthy P, Dandawate P, Jensen RA and
Anant S: Celastrol and triptolide suppress stemness in triple
negative breast cancer: Notch as a therapeutic target for stem
cells. Biomedicines. 9:4822021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang YL, Li Y, Ma YG and Wu WY: DCLK1
promotes malignant progression of breast cancer by regulating
Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci.
23:9489–9498. 2019.PubMed/NCBI
|
|
89
|
Liu H, Wen T, Zhou Y, Fan X, Du T, Gao T,
Li L, Liu J, Yang L, Yao J, et al: DCLK1 plays a
metastatic-promoting role in human breast cancer cells. Biomed Res
Int. 2019:10619792019.PubMed/NCBI
|
|
90
|
Wang J, Wang S, Zhou J and Qian Q:
miR-424-5p regulates cell proliferation, migration and invasion by
targeting doublecortin-like kinase 1 in basal-like breast cancer.
Biomed Pharmacother. 102:147–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ge Y, Weygant N, Qu D, May R, Berry WL,
Yao J, Chandrakesan P, Zheng W, Zhao L, Zhao KL, et al: Alternative
splice variants of DCLK1 mark cancer stem cells, promote
self-renewal and drug-resistance, and can be targeted to inhibit
tumorigenesis in kidney cancer. Int J Cancer. 143:1162–1175. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ding L, Yang Y, Ge Y, Lu Q, Yan Z, Chen X,
Du J, Hafizi S, Xu X, Yao J, et al: Inhibition of DCLK1 with
DCLK1-IN-1 suppresses renal cell carcinoma invasion and stemness
and promotes cytotoxic T-cell-mediated anti-tumor immunity. Cancers
(Basel). 13:57292021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sureban SM, Madhoun MF, May R, Qu D, Ali
N, Fazili J, Weygant N, Chandrakesan P, Ding K, Lightfoot SA and
Houchen CW: Plasma DCLK1 is a marker of hepatocellular carcinoma
(HCC): Targeting DCLK1 prevents HCC tumor xenograft growth via a
microRNA-dependent mechanism. Oncotarget. 6:37200–37215. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ali N, Chandrakesan P, Nguyen CB, Husain
S, Gillaspy AF, Huycke M, Berry WL, May R, Qu D, Weygant N, et al:
Inflammatory and oncogenic roles of a tumor stem cell marker
doublecortin-like kinase (DCLK1) in virus-induced chronic liver
diseases. Oncotarget. 6:20327–20344. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Girotto G, Vuckovic D, Buniello A,
Lorente-Cánovas B, Lewis M, Gasparini P and Steel KP: Expression
and replication studies to identify new candidate genes involved in
normal hearing function. PLoS One. 9:e853522014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Srikrishna G: S100A8 and S100A9: New
insights into their roles in malignancy. J Innate Immun. 4:31–40.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wilen CB, Lee S, Hsieh LL, Orchard RC,
Desai C, Hykes BL Jr, McAllaster MR, Balce DR, Feehley T, Brestoff
JR, et al: Tropism for tuft cells determines immune promotion of
norovirus pathogenesis. Science. 360:204–208. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ali N, Nguyen CB, Chandrakesan P, Wolf RF,
Qu D, May R, Goretsky T, Fazili J, Barrett TA, Li M, et al:
Doublecortin-like kinase 1 promotes hepatocyte clonogenicity and
oncogenic programming via non-canonical β-catenin-dependent
mechanism. Sci Rep. 10:105782020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ali N, Allam H, May R, Sureban SM, Bronze
MS, Bader T, Umar S, Anant S and Houchen CW: Hepatitis C
virus-induced cancer stem cell-like signatures in cell culture and
murine tumor xenografts. J Virol. 85:12292–12303. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ali N, Allam H, Bader T, May R,
Basalingappa KM, Berry WL, Chandrakesan P, Qu D, Weygant N, Bronze
MS, et al: Fluvastatin interferes with hepatitis C virus
replication via microtubule bundling and a doublecortin-like
kinase-mediated mechanism. PLoS One. 8:e803042013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pattabiraman DR and Weinberg RA: Tackling
the cancer stem cells-what challenges do they pose? Nat Rev Drug
Discov. 13:497–512. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Brooks MD, Burness ML and Wicha MS:
Therapeutic implications of cellular heterogeneity and plasticity
in breast cancer. Cell Stem Cell. 17:260–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Weygant N, Qu D, Berry WL, May R,
Chandrakesan P, Owen DB, Sureban SM, Ali N, Janknecht R and Houchen
CW: Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent
activity against colorectal and pancreatic cancer through
inhibition of doublecortin-like kinase 1. Mol Cancer. 13:1032014.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ferguson FM, Nabet B, Raghavan S, Liu Y,
Leggett AL, Kuljanin M, Kalekar RL, Yang A, He S, Wang J, et al:
Discovery of a selective inhibitor of doublecortin like kinase 1.
Nat Chem Biol. 16:635–643. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sureban SM, Berahovich R, Zhou H, Xu S, Wu
L, Ding K, May R, Qu D, Bannerman-Menson E, Golubovskaya V and
Houchen CW: DCLK1 monoclonal antibody-based CAR-T cells as a novel
treatment strategy against human colorectal cancers. Cancers
(Basel). 12:542019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cao Z, Weygant N, Chandrakesan P, Houchen
CW, Peng J and Qu D: Tuft and cancer stem cell marker DCLK1: A new
target to enhance anti-tumor immunity in the tumor
microenvironment. Cancers (Basel). 12:38012020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chae YC and Kim JH: Cancer stem cell
metabolism: Target for cancer therapy. BMB Rep. 51:319–326. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sancho P, Barneda D and Heeschen C:
Hallmarks of cancer stem cell metabolism. Br J Cancer.
114:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Verissimo CS, Elands R, Cheng S, Saaltink
DJ, ter Horst JP, Alme MN, Pont C, van de Water B, Håvik B,
Fitzsimons CP and Vreugdenhil E: Silencing of doublecortin-like
(DCL) results in decreased mitochondrial activity and delayed
neuroblastoma tumor growth. PLoS One. 8:e757522013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Patel O, Roy MJ, Kropp A, Hardy JM, Dai W
and Lucet IS: Structural basis for small molecule targeting of
doublecortin like kinase 1 with DCLK1-IN-1. Commun Biol.
4:11052021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Oliveras-Ferraros C, Vazquez-Martin A,
Cuyàs E, Corominas-Faja B, Rodríguez-Gallego E, Fernández-Arroyo S,
Martin-Castillo B, Joven J and Menendez JA: Acquired resistance to
metformin in breast cancer cells triggers transcriptome
reprogramming toward a degradome-related metastatic stem-like
profile. Cell Cycle. 13:1132–1144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Nakane T, Ido A, Higuchi T, Todaka H,
Morisawa K, Nagamine T, Fukunaga K, Sakamoto S, Murao K and
Sugiyama Y: Candidate plasticity gene 16 mediates suppression of
insulin gene expression in rat insulinoma INS-1 cells under
glucotoxic conditions. Biochem Biophys Res Commun. 512:189–195.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nakane T, Matsumoto S, Iida S, Ido A,
Fukunaga K, Murao K and Sugiyama Y: Candidate plasticity gene 16
and jun dimerization protein 2 are involved in the suppression of
insulin gene expression in rat pancreatic INS-1 β-cells. Mol Cell
Endocrinol. 527:1112402021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhao H, Duan Q, Zhang Z, Li H, Wu H, Shen
Q, Wang C and Yin T: Up-regulation of glycolysis promotes the
stemness and EMT phenotypes in gemcitabine-resistant pancreatic
cancer cells. J Cell Mol Med. 21:2055–2067. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ponnurangam S, Mammen JM, Ramalingam S, He
Z, Zhang Y, Umar S, Subramaniam D and Anant S: Honokiol in
combination with radiation targets notch signaling to inhibit colon
cancer stem cells. Mol Cancer Ther. 11:963–972. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ahmed I, Roy BC, Rao Jakkula LUM,
Subramaniam D, Dandawate P, Anant S, Sampath V and Umar S:
Infection-induced signals generated at the plasma membrane
epigenetically regulate Wnt signaling in vitro and in vivo. J Biol
Chem. 295:1021–1035. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Dandawate P, Subramaniam D, Panovich P,
Standing D, Krishnamachary B, Kaushik G, Thomas SM, Dhar A, Weir
SJ, Jensen RA and Anant S: Cucurbitacin B and I inhibits colon
cancer growth by targeting the Notch signaling pathway. Sci Rep.
10:12902020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Sameri S, Saidijam M, Bahreini F and
Najafi R: Cancer chemopreventive activities of silibinin on
colorectal cancer through regulation of E-cadherin/β-catenin
pathway. Nutr Cancer. 73:1389–1399. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sureban SM, May R, Weygant N, Qu D,
Chandrakesan P, Bannerman-Menson E, Ali N, Pantazis P, Westphalen
CB, Wang TC and Houchen CW: XMD8-92 inhibits pancreatic tumor
xenograft growth via a DCLK1-dependent mechanism. Cancer Lett.
351:151–161. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kato H, Tateishi K, Fujiwara H, Ijichi H,
Yamamoto K, Nakatsuka T, Kakiuchi M, Sano M, Kudo Y, Hayakawa Y, et
al: Deletion of histone methyltransferase G9a suppresses mutant
kras-driven pancreatic carcinogenesis. Cancer Genomics Proteomics.
17:695–705. 2020. View Article : Google Scholar : PubMed/NCBI
|