
MicroRNA in adenoid cystic carcinoma (Review)
- Authors:
- Yunshan Li
- Feihan Gu
- Yaodong He
- Junwei Xiang
- Xu Huang
- Yuanyin Wang
- Ran Chen
-
Affiliations: College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China - Published online on: December 9, 2022 https://doi.org/10.3892/ijo.2022.5465
- Article Number: 17
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Nightingale J, Lum B, Ladwa R, Simpson F and Panizza B: Adenoid cystic carcinoma: A review of clinical features, treatment targets and advances in improving the immune response to monoclonal antibody therapy. Biochim Biophys Acta Rev Cancer. 1875:1885232021. View Article : Google Scholar : PubMed/NCBI | |
Cantù G: Adenoid cystic carcinoma. An indolent but aggressive tumour. Part A: From aetiopathogenesis to diagnosis. Acta Otorhinolaryngol Ital. 41:206–214. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Pan J, Chen J, Wu S, Wu T, Ye H, Zhang H, Nie X and Huang C: Multicentre clinicopathological study of adenoid cystic carcinoma: A report of 296 cases. Cancer Med. 10:1120–1127. 2021. View Article : Google Scholar : PubMed/NCBI | |
Coca-Pelaz A, Rodrigo JP, Bradley PJ, Vander Poorten V, Triantafyllou A, Hunt JL, Strojan P, Rinaldo A, Haigentz M Jr, Takes RP, et al: Adenoid cystic carcinoma of the head and neck-an update. Oral Oncol. 51:652–661. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Peng Z, Wang Y, Gao K, Liu Y, Fan R, Zhang H, Xie Z and Jiang W: Current opinions on diagnosis and treatment of adenoid cystic carcinoma. Oral Oncol. 130:1059452022. View Article : Google Scholar : PubMed/NCBI | |
Jaso J and Malhotra R: Adenoid cystic carcinoma. Arch Pathol Lab Med. 135:511–515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dillon PM, Chakraborty S, Moskaluk CA, Joshi PJ and Thomas CY: Adenoid cystic carcinoma: A review of recent advances, molecular targets, and clinical trials. Head Neck. 38:620–627. 2016. View Article : Google Scholar | |
Seshadri M and Rich LJ: Ultrasound guided generation of PDOX models of adenoid cystic carcinoma. EBioMedicine. 42:382019. View Article : Google Scholar : PubMed/NCBI | |
Ha H, Keam B, Ock CY, Kim TM, Kim JH, Chung EJ, Kwon SK, Ahn SH, Wu HG, Sung MW and Heo DS: Role of concurrent chemoradiation on locally advanced unresectable adenoid cystic carcinoma. Korean J Intern Med. 36:175–181. 2021. View Article : Google Scholar : | |
Guazzo E, Bowman J, Porceddu S, Webb L and Panizza B: Advanced adenoid cystic carcinoma of the skull base-the role of surgery. Oral Oncol. 99:1044662019. View Article : Google Scholar | |
Atallah S, Marc M, Schernberg A, Huguet F, Wagner I, Mäkitie A and Baujat B: Beyond surgical treatment in adenoid cystic carcinoma of the head and neck: A literature review. Cancer Manag Res. 14:1879–1890. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, Visakorpi T and Calin GA: The potential of MicroRNAs as prostate cancer biomarkers. Eur Urol. 70:312–322. 2016. View Article : Google Scholar : PubMed/NCBI | |
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen JQ, Papp G, Szodoray P and Zeher M: The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev. 15:1171–1180. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Li J and Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform. 15:1–19. 2014. View Article : Google Scholar : | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Achkar NP, Cambiagno DA and Manavella PA: miRNA biogenesis: A dynamic pathway. Trends Plant Sci. 21:1034–1044. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hata A and Lieberman J: Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 8:re32015. View Article : Google Scholar : PubMed/NCBI | |
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B and Eltzschig HK: Strategies to modulate MicroRNA functions for the treatment of cancer or organ injury. Pharmacol Rev. 72:639–667. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pritchard CC, Cheng HH and Tewari M: MicroRNA profiling: Approaches and considerations. Nat Rev Genet. 13:358–369. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : | |
Dragomir MP, Knutsen E and Calin GA: Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 38:379–394. 2022. View Article : Google Scholar | |
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M and Ghafouri-Fard S: MicroRNA: A signature for cancer progression. Biomed Pharmacother. 138:1115282021. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kiss O, Tőkés AM, Vranic S, Gatalica Z, Vass L, Udvarhelyi N, Szász AM and Kulka J: Expression of miRNAs in adenoid cystic carcinomas of the breast and salivary glands. Virchows Arch. 467:551–562. 2015. View Article : Google Scholar : PubMed/NCBI | |
Auxzilia Preethi K, Chandralekha Selvakumar S and Sekar D: MicroRNAs and it's targets in the treatment of salivary adenoid cystic carcinoma. Oral Oncol. 133:1060532022. View Article : Google Scholar : PubMed/NCBI | |
Andreasen S, Tan Q, Agander TK, Hansen TVO, Steiner P, Bjørndal K, Høgdall E, Larsen SR, Erentaite D, Olsen CH, et al: MicroRNA dysregulation in adenoid cystic carcinoma of the salivary gland in relation to prognosis and gene fusion status: A cohort study. Virchows Arch. 473:329–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM and El-Naggar AK: MicroRNA profiling of salivary adenoid cystic carcinoma: Association of miR-17-92 upregulation with poor outcome. PLoS One. 8:e667782013. View Article : Google Scholar : PubMed/NCBI | |
Brown AL, Al-Samadi A, Sperandio M, Soares AB, Teixeira LN, Martinez EF, Demasi APD, Araújo VC, Leivo I, Salo T and Passador-Santos F: MiR-455-3p miR-150 and miR-375 are aberrantly expressed in salivary gland adenoid cystic carcinoma and polymorphous adenocarcinoma. J Oral Pathol Med. 48:840–845. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Liu X, Lin J, Jiang M, Xu F, Zhang C, Tang Q, Zhu L, Dong L and Lin T: AKT2 identified as a potential target of mir-29a-3p via microRNA profiling of patients with high proliferation lacrimal gland adenoid cystic carcinoma. Exp Eye Res. 219:1090672022. View Article : Google Scholar : PubMed/NCBI | |
Zhang HD, Jiang LH, Sun DW, Li J and Ji ZL: The role of miR-130a in cancer. Breast Cancer. 24:521–527. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu SG, Qin XG, Zhao BS, Qi B, Yao WJ, Wang TY, Li HC and Wu XN: Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett. 5:1639–1642. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yan D, Wu W, Zhu J, Ye W and Shu Q: MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol Rep. 35:3285–3292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang XC, Tian LL, Wu HL, Jiang XY, Du LQ, Zhang H, Wang YY, Wu HY, Li DG, She Y, et al: Expression of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci. 340:385–388. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, Altmeyer P and Bechara FG: Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 167:847–855. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ishihara K, Sasaki D, Tsuruda K, Inokuchi N, Nagai K, Hasegawa H, Yanagihara K and Kamihira S: Impact of miR-155 and miR-126 as novel biomarkers on the assessment of disease progression and prognosis in adult T-cell leukemia. Cancer Epidemiol. 36:560–565. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Yu WW, Wang LL and Peng Y: miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol Rep. 34:1153–1161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, Döhner H, Stilgenbauer S, Pscherer A, Lichter P and Seiffert M: miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res. 72:1763–1772. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boll K, Reiche K, Kasack K, Mörbt N, Kretzschmar AK, Tomm JM, Verhaegh G, Schalken J, von Bergen M, Horn F and Hackermüller J: MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene. 32:277–285. 2013. View Article : Google Scholar | |
Qiu S, Lin S, Hu D, Feng Y, Tan Y and Peng Y: Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med. 11:102013. View Article : Google Scholar : PubMed/NCBI | |
Li B, Huang P, Qiu J, Liao Y, Hong J and Yuan Y: MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis. Med Oncol. 31:2302014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Huang L, Zhao Y and Tan W: Downregulation of miR-130a contributes to cisplatin resistance in ovarian cancer cells by targeting X-linked inhibitor of apoptosis (XIAP) directly. Acta Biochim Biophys Sin (Shanghai). 45:995–1001. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Wang R, Zhang F, Chen Y, Lv Q, Long G and Yang K: MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int J Clin Exp Pathol. 8:384–393. 2015.PubMed/NCBI | |
He L, Wang HY, Zhang L, Huang L, Li JD, Xiong Y, Zhang MY, Jia WH, Yun JP, Luo RZ and Zheng M: Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer. Cell Death Dis. 5:e12052014. View Article : Google Scholar : PubMed/NCBI | |
Ramsay RG and Gonda TJ: MYB function in normal and cancer cells. Nat Rev Cancer. 8:523–534. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim G, Lim S and Kim KD: N-myc downstream-regulated gene 2 (NDRG2) function as a positive regulator of apoptosis: A new insight into NDRG2 as a tumor suppressor. Cells. 10:26492021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang CY, Xia RH, Han J, Sun B, Sun SY and Li J: The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis. 9:9172018. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Jing Y, Hao J, Frankfort NC, Zhou X, Shen B, Liu X, Wang L and Li R: MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell. 4:813–819. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM and Herrera LA: The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 20:409–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Das PK, Islam F and Lam AK: The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells. 9:13922020. View Article : Google Scholar : PubMed/NCBI | |
Dioguardi M, Caloro GA, Laino L, Alovisi M, Sovereto D, Crincoli V, Aiuto R, Coccia E, Troiano G and Lo Muzio L: Circulating miR-21 as a potential biomarker for the diagnosis of oral cancer: A systematic review with meta-analysis. Cancers (Basel). 12:9362020. View Article : Google Scholar : PubMed/NCBI | |
Ribas J and Lupold SE: The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle. 9:923–929. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yang X, Yang J, Zhen J and Zhang D: Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clin Exp Med. 16:29–35. 2016. View Article : Google Scholar | |
Jiang LH, Ge MH, Hou XX, Cao J, Hu SS, Lu XX, Han J, Wu YC, Liu X, Zhu X, et al: miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. Lab Invest. 95:1398–1408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li T, Yan F, Cai W, Zheng J, Jiang X and Sun J: Effect of simvastatin and microRNA-21 inhibitor on metastasis and progression of human salivary adenoid cystic carcinoma. Biomed Pharmacother. 105:1054–1061. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Tsai YC, Tseng JH, Liou JJ, Horng S, Wen HC, Fan YC, Zhong WB and Hsu SP: Simvastatin inhibits cell proliferation and migration in human anaplastic thyroid cancer. Int J Mol Sci. 18:26902017. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Pan Y, Ma H and Li W: Simvastatin inhibits proliferation and induces apoptosis in human lung cancer cells. Oncol Res. 20:351–357. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Wang C, Li T, Cai W and Sun J: Role of miR-21 in the growth and metastasis of human salivary adenoid cystic carcinoma. Mol Med Rep. 17:4237–4244. 2018.PubMed/NCBI | |
Chen X, Chen S, Xiu YL, Sun KX, Zong ZH and Zhao Y: RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer. 14:312015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Ge H and Liu Y: Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res. 39:652020. View Article : Google Scholar : PubMed/NCBI | |
Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX and Yang SM: miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett. 408:23–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Liu TT, Yu XN, Balakrishnan A, Zhu HR, Guo HY, Zhang GC, Bilegsaikhan E, Sun JL, Song GQ, et al: microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene. 39:5768–5781. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Qu S, Lv XB, Liu B, Tan W, Nie Y, Su F, Liu Q, Yao H and Song E: BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat Commun. 5:54062014. View Article : Google Scholar : PubMed/NCBI | |
Koyama R, Tamura M, Nakagaki T, Ohashi T, Idogawa M, Suzuki H, Tokino T and Sasaki Y: Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53. Cancer Sci. 108:2413–2421. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Jin X, Shi Y and Zhang H: miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L. Cancer Cell Int. 18:722018. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, et al: MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 39:2502020. View Article : Google Scholar : PubMed/NCBI | |
Fu M, Chen CW, Yang LQ, Yang WW, Du ZH, Li YR, Li SL and Ge XY: MicroRNA-103a-3p promotes metastasis by targeting TPD52 in salivary adenoid cystic carcinoma. Int J Oncol. 57:574–586. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shehata M, Bièche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, Zeps N, Byth K, Bright RK, Lidereau R and Byrne JA: Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clin Cancer Res. 14:5050–5060. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rubin MA, Varambally S, Beroukhim R, Tomlins SA, Rhodes DR, Paris PL, Hofer MD, Storz-Schweizer M, Kuefer R, Fletcher JA, et al: Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res. 64:3814–3822. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang SJ, Li YJ, Gao B, Li XL, Li YT and He HY: Long non-coding RNA 00152 slicing represses the growth and aggressiveness of hemangioma cell by modulating miR-139-5p. Biomed Pharmacother. 120:1093852019. View Article : Google Scholar : PubMed/NCBI | |
Tennstedt P, Bölch C, Strobel G, Minner S, Burkhardt L, Grob T, Masser S, Sauter G, Schlomm T and Simon R: Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol. 44:609–615. 2014. View Article : Google Scholar | |
Ravegnini G, Cargnin S, Sammarini G, Zanotti F, Bermejo JL, Hrelia P, Terrazzino S and Angelini S: Prognostic role of miR-221 and miR-222 expression in cancer patients: A systematic review and meta-analysis. Cancers (Basel). 11:9702019. View Article : Google Scholar : PubMed/NCBI | |
Song J, Ouyang Y, Che J, Li X, Zhao Y, Yang K, Zhao X, Chen Y, Fan C and Yuan W: Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front Immunol. 8:562017. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Zhao W, Zhou L, Zhang L, Liu Z and Yu D: miR-222 regulates the cell biological behavior of oral squamous cell carcinoma by targeting PUMA. Oncol Rep. 31:1255–1262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zhou L, Jiang F, Zeng B, Wei C, Zhao W and Yu D: Downregulation of miR-222 induces apoptosis and cellular migration in adenoid cystic carcinoma cells. Oncol Res. 25:207–214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sperka T, Wang J and Rudolph KL: DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol. 13:579–590. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, He Y, Xiang J, Feng L, Wang Y and Chen R: The functional mechanism of MicroRNA in oral lichen planus. J Inflamm Res. 15:4261–4274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K and Chen Y: Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer. 19:1092020. View Article : Google Scholar : PubMed/NCBI | |
Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez-Aguayo C, Fuentes-Mattei E, Xiao L, Vannini I, Redis RS, D'Abundo L, et al: Combining anti-Mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res. 23:2891–2904. 2017. View Article : Google Scholar | |
Kulkarni P, Dasgupta P, Hashimoto Y, Shiina M, Shahryari V, Tabatabai ZL, Yamamura S, Tanaka Y, Saini S, Dahiya R and Majid S: A lncRNA TCL6-miR-155 interaction regulates the Src-Akt-EMT network to mediate kidney cancer progression and metastasis. Cancer Res. 81:1500–1512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bacci M, Giannoni E, Fearns A, Ribas R, Gao Q, Taddei ML, Pintus G, Dowsett M, Isacke CM, Martin LA, et al: miR-155 drives metabolic reprogramming of ER+ breast cancer cells following long-term estrogen deprivation and predicts clinical response to aromatase inhibitors. Cancer Res. 76:1615–1626. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hess AK, Müer A, Mairinger FD, Weichert W, Stenzinger A, Hummel M, Budach V and Tinhofer I: MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur J Cancer. 77:3–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gulei D, Raduly L, Broseghini E, Ferracin M and Berindan-Neagoe I: The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med. 70:33–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Hu Y, Fu J, Yang X and Zhang Z: MicroRNA155 in the growth and invasion of salivary adenoid cystic carcinoma. J Oral Pathol Med. 42:140–147. 2013. View Article : Google Scholar | |
Biswas DK and Iglehart JD: Linkage between EGFR family receptors and nuclear factor kappaB (NF-kappaB) signaling in breast cancer. J Cell Physiol. 209:645–652. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cascinu S, Verdecchia L, Valeri N, Berardi R and Scartozzi M: New target therapies in advanced pancreatic cancer. Ann Oncol. 17(Suppl 5): v148–v152. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bianco R, Gelardi T, Damiano V, Ciardiello F and Tortora G: Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol. 39:1416–1431. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Matsuo K, Zhang T, Hu Y, Mays AC, Browne JD, Zhou X and Sullivan CA: MicroRNA profiling and target genes related to metastasis of salivary adenoid cystic carcinoma. Anticancer Res. 37:3473–3481. 2017.PubMed/NCBI | |
Jin Y, Chen X, Gao ZY, Liu K, Hou Y and Zheng J: The role of miR-320a and IL-1β in human chondrocyte degradation. Bone Joint Res. 6:196–203. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shang C, Zhang H, Guo Y, Hong Y, Liu Y and Xue Y: MiR-320a down-regulation mediates bladder carcinoma invasion by targeting ITGB3. Mol Biol Rep. 41:2521–2527. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie N, Jia Z and Li L: miR-320a upregulation contributes to the development of preeclampsia by inhibiting the growth and invasion of trophoblast cells by targeting interleukin 4. Mol Med Rep. 20:3256–3264. 2019.PubMed/NCBI | |
Lv G, Wu M, Wang M, Jiang X, Du J, Zhang K, Li D, Ma N, Peng Y, Wang L, et al: miR-320a regulates high mobility group box 1 expression and inhibits invasion and metastasis in hepatocellular carcinoma. Liver Int. 37:1354–1364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Yang Z, Wang H, Cao Z, Zhao Y, Gong C, Ma L, Wang X, Hu X and Chen S: MicroRNA-320a inhibits proliferation and invasion of breast cancer cells by targeting RAB11A. Am J Cancer Res. 5:2719–2729. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen H, He F, Zhang S, Li A and Zhang A and Zhang A: MicroRNA-320a promotes epithelial ovarian cancer cell proliferation and invasion by targeting RASSF8. Front Oncol. 11:5819322021. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Liu B, Lin Z, Yao Y, Chen Y, Li Y, Chen J, Yu D, Tang Z, Wang B, et al: MiR-320a acts as a prognostic factor and inhibits metastasis of salivary adenoid cystic carcinoma by targeting ITGB3. Mol Cancer. 14:962015. View Article : Google Scholar : PubMed/NCBI | |
Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y and Cajal S: ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun. 11:42612020. View Article : Google Scholar : PubMed/NCBI | |
Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, Zheng Q, Ma Y, Zhang J, Wu N and Yang Y: MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 342:43–51. 2014. View Article : Google Scholar | |
Fang Z, Yin S, Sun R, Zhang S, Fu M, Wu Y, Zhang T, Khaliq J and Li Y: miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer. 16:1392017. View Article : Google Scholar : PubMed/NCBI | |
Rothman AM, Arnold ND, Pickworth JA, Iremonger J, Ciuclan L, Allen RM, Guth-Gundel S, Southwood M, Morrell NW, Thomas M, et al: MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Invest. 126:2495–2508. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE and Morris JC: Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol Cancer. 10:352011. View Article : Google Scholar : PubMed/NCBI | |
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L and Soto-Cerrato V: Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev. 39:887–909. 2019. View Article : Google Scholar | |
Qiao Z, Zou Y and Zhao H: MicroRNA-140-5p inhibits salivary adenoid cystic carcinoma progression and metastasis via targeting survivin. Cancer Cell Int. 19:3012019. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Sha H, Sun X, Zou R, Zhu Y, Zhou G and Feng J: Role and mechanism of miR-187 in human cancer. Am J Transl Res. 12:4873–4884. 2020.PubMed/NCBI | |
Mulrane L, Madden SF, Brennan DJ, Gremel G, McGee SF, McNally S, Martin F, Crown JP, Jirström K, Higgins DG, et al: miR-187 is an independent prognostic factor in breast cancer and confers increased invasive potential in vitro. Clin Cancer Res. 18:6702–6713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chao A, Lin CY, Lee YS, Tsai CL, Wei PC, Hsueh S, Wu TI, Tsai CN, Wang CJ, Chao AS, et al: Regulation of ovarian cancer progression by microRNA-187 through targeting disabled homolog-2. Oncogene. 31:764–775. 2012. View Article : Google Scholar | |
Liang Z, Xu J, Ma Z, Li G and Zhu W: MiR-187 suppresses non-small-cell lung cancer cell proliferation by targeting FGF9. Bioengineered. 11:70–80. 2020. View Article : Google Scholar : | |
Bagaeva LV, Rao P, Powers JM and Segal BM: CXC chemokine ligand 13 plays a role in experimental autoimmune encephalomyelitis. J Immunol. 176:7676–7685. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hussain M, Adah D, Tariq M, Lu Y, Zhang J and Liu J: CXCL13/CXCR5 signaling axis in cancer. Life Sci. 227:175–186. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wu JS, Xian HC, Chen BJ, Wang HF, Yu XH, Pang X, Dai L, Jiang J, Liang XH and Tang YL: CXCR5 induces perineural invasion of salivary adenoid cystic carcinoma by inhibiting microRNA-187. Aging (Albany NY). 13:15384–15399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gui T and Shen K: miRNA-101: A potential target for tumor therapy. Cancer Epidemiol. 36:537–540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Yu T, Han Y, Jiang H, Wang C, You T, Zhao X, Shan H, Yang R, Yang L, et al: LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 17:1192018. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yao Y, Jiang X, Zhong X, Wang Z, Li C, Kang P, Leng K, Ji D, Li Z, et al: SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma. J Exp Clin Cancer Res. 37:812018. View Article : Google Scholar : PubMed/NCBI | |
Cao S, Lin L, Xia X and Wu H: lncRNA SPRY4-IT1 regulates cell proliferation and migration by sponging miR-101-3p and regulating AMPK expression in gastric cancer. Mol Ther Nucleic Acids. 17:455–464. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Gao D, Fang K, Guo Z and Li L: Med19 is targeted by miR-101-3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett. 444:105–115. 2019. View Article : Google Scholar | |
Liu D, Li Y, Luo G, Xiao X, Tao D, Wu X, Wang M, Huang C, Wang L, Zeng F and Jiang G: LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 388:281–291. 2017. View Article : Google Scholar | |
Xu J, Xiong G, Cao Z, Huang H, Wang T, You L, Zhou L, Zheng L, Hu Y, Zhang T and Zhao Y: PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. J Exp Clin Cancer Res. 35:1332016. View Article : Google Scholar : PubMed/NCBI | |
Pang W, Tian X, Bai F, Han R, Wang J, Shen H, Zhang X, Liu Y, Yan X, Jiang F and Xing L: Pim-1 kinase is a target of miR-486-5p and eukaryotic translation initiation factor 4E, and plays a critical role in lung cancer. Mol Cancer. 13:2402014. View Article : Google Scholar : PubMed/NCBI | |
Liu XY, Liu ZJ, He H, Zhang C and Wang YL: MicroRNA-101-3p suppresses cell proliferation, invasion and enhances chemotherapeutic sensitivity in salivary gland adenoid cystic carcinoma by targeting Pim-1. Am J Cancer Res. 5:3015–3029. 2015.PubMed/NCBI | |
Zhou H, Huang Z, Chen X and Chen S: miR-98 inhibits expression of TWIST to prevent progression of non-small cell lung cancers. Biomed Pharmacother. 89:1453–1461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang SD, Yuan Y, Zhuang CW, Li BL, Gong DJ, Wang SG, Zeng ZY and Cheng HZ: MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma. Mol Cancer. 11:512012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang W, Guo H, Yue J and Zhuo S: miR-98 functions as a tumor suppressor in salivary adenoid cystic carcinomas. Onco Targets Ther. 9:1777–1786. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thumar J, Shahbazian D, Aziz SA, Jilaveanu LB and Kluger HM: MEK targeting in N-RAS mutated metastatic melanoma. Mol Cancer. 13:452014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Velho S, Vakiani E, Peng S, Bass AJ, Chu GC, Gierut J, Bugni JM, Der CJ, Philips M, et al: Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 3:294–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhatlekar S, Manne BK, Basak I, Edelstein LC, Tugolukova E, Stoller ML, Cody MJ, Morley SC, Nagalla S, Weyrich AS, et al: miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood. 136:1760–1772. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y and Mori M: MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res. 17:2725–2733. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhao T, Yuan Z and Ge S: MIR600HG sponges miR-125a-5p to regulate glycometabolism and cisplatin resistance of oral squamous cell carcinoma cells via mediating RNF44. Cell Death Discov. 8:2162022. View Article : Google Scholar : PubMed/NCBI | |
Falcicchia C, Tozzi F, Arancio O, Watterson DM and Origlia N: Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci. 21:56242020. View Article : Google Scholar : PubMed/NCBI | |
Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han J and Sun P: The pathways to tumor suppression via route p38. Trends Biochem Sci. 32:364–371. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Ye J, Jiao J, Zhang J, Lu Y, Zhang L, Wan D, Duan L, Wu Y and Zhang B: Down-regulation of miR-125a-5p is associated with salivary adenoid cystic carcinoma progression via targeting p38/JNK/ERK signal pathway. Am J Transl Res. 9:1101–1113. 2017.PubMed/NCBI | |
Zeng X, Ma X, Guo H, Wei L, Zhang Y, Sun C, Han N, Sun S and Zhang N: MicroRNA-582-5p promotes triple-negative breast cancer invasion and metastasis by antagonizing CMTM8. Bioengineered. 12:10126–10135. 2021. View Article : Google Scholar | |
Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE and Cui X: FOXC1: An emerging marker and therapeutic target for cancer. Oncogene. 36:3957–3963. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gilding LN and Somervaille TCP: The diverse consequences of FOXC1 deregulation in cancer. Cancers (Basel). 11:1842019. View Article : Google Scholar : PubMed/NCBI | |
Wang WW, Chen B, Lei CB, Liu GX, Wang YG, Yi C, Wang YY and Zhang SY: miR-582-5p inhibits invasion and migration of salivary adenoid cystic carcinoma cells by targeting FOXC1. Jpn J Clin Oncol. 47:690–698. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Tang J, Lu L, Li B and Wang M: CASC9 plays a role in salivary adenoid cystic carcinoma in vitro by upregulation of ACLY. Oral Dis. 28:352–363. 2022. View Article : Google Scholar | |
Huo F, Zhang C, He H and Wang Y: MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells via targeting of mTOR. Biotechnol Lett. 38:409–416. 2016. View Article : Google Scholar | |
Hou CX, Sun NN, Han W, Meng Y, Wang CX, Zhu QH, Tang YT and Ye JH: Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in salivary adenoid cystic carcinoma. Carcinogenesis. 43:682–692. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang Q, Su H, Li HY, Cao G, Xu JK, Wang JL, Niu CZ, Zhang F, Yang J and Chen W: miR-5191 acts as a tumor suppressor in salivary adenoid cystic carcinoma by targeting Notch-2. Oral Dis. 28:1871–1881. 2022. View Article : Google Scholar | |
Wang S, Zhang L, Shi P, Zhang Y, Zhou H and Cao X: Genome-wide profiles of metastasis-associated mRNAs and microRNAs in salivary adenoid cystic carcinoma. Biochem Biophys Res Commun. 500:632–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Yu X, Li Y, Ma H, Fan S, Chen W, Pan G, Wang W, Zhang H, Li J and Lin Z: Upregulation of lncRNA ADAMTS9-AS2 promotes salivary adenoid cystic carcinoma metastasis via PI3K/Akt and MEK/Erk signaling. Mol Ther. 26:2766–2778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bertoli G, Cava C and Castiglioni I: MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 5:1122–1143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ju R, Huang Y, Guo Z, Han L, Ji S, Zhao L and Long J: The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem. 476:1269–1282. 2021. View Article : Google Scholar | |
Xu Q, Liu X, Chen W and Zhang Z: Inhibiting adenoid cystic carcinoma cells growth and metastasis by blocking the expression of ADAM 10 using RNA interference. J Transl Med. 8:1362010. View Article : Google Scholar : PubMed/NCBI | |
Andreasen S: Molecular features of adenoid cystic carcinoma with an emphasis on microRNA expression. Apmis. 126(Suppl 140): S7–S57. 2018. View Article : Google Scholar | |
Liang H, Gong F, Zhang S, Zhang CY, Zen K and Chen X: The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley Interdiscip Rev RNA. 5:285–300. 2014. View Article : Google Scholar | |
Papaspyrou G, Hoch S, Rinaldo A, Rodrigo JP, Takes RP, van Herpen C, Werner JA and Ferlito A: Chemotherapy and targeted therapy in adenoid cystic carcinoma of the head and neck: A review. Head Neck. 33:905–911. 2011. View Article : Google Scholar | |
Le Tourneau C, Razak AR, Levy C, Calugaru V, Galatoire O, Dendale R, Desjardins L and Gan HK: Role of chemotherapy and molecularly targeted agents in the treatment of adenoid cystic carcinoma of the lacrimal gland. Br J Ophthalmol. 95:1483–1489. 2011. View Article : Google Scholar |